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Abstract
The signal propagation and logical operations performed by the electrostatic interaction between the nanodots belonging 
to the quantum cellular automata (QCA) cells of different polarizations are influenced by the environmental noise like tem-
perature fluctuations. The effect of thermal randomness on the computational fidelity of QCA-based 4-bit binary-to-Gray 
and binary-to-excess-3 code converters is studied in this article. The fidelity of computation of these digital circuits in the 
presence of noise is calculated by applying Shannon’s information-theoretic measures, and thus, the robustness of the quan-
tum cellular automata circuits to thermal noise is estimated. Finally, the temperature range over which the semiconductor 
quantum cellular automata circuits yield reliable computation is indicated. The proposed converters have minimum number 
of clock zones and high device density.

Keywords  Binary-to-Gray code converter · Binary-to-excess-3 code converter · Information theory · Communication · 
QCA · Computational fidelity

1  Introduction

Nanoscale-based circuit design using quantum dot cellular 
automata (QCA) is focused by the researchers today because 
of the advantages of low energy consumption and high pro-
cessing speed [1–7]. The fundamental QCA logic is based 
on the 3-input majority gate (MV), QCA wire and QCA 
inverter [8–15]. The architecture of QCA accommodates the 
above three cellular automata structures. Lent et al. [1] pro-
posed a new paradigm for computation with cellular autom-
ata and also showed the construction and interconnection of 
basic digital logic gates. An adiabatic switching technique 
that permits the clocked control of the arrays of quantum 
dot cells performing useful computations was developed 
[6, 16–19]. Researchers already reported the experimental 
demonstration of a binary wire and logic gate using QCA 
[2–5, 8, 20, 21]. Lots of general-purpose combinational and 

sequential circuits have been designed using QCA [22–30]. 
The overview of logic redundancy schemes and the classi-
cal fault-tolerant approaches for circuit reliability was also 
discussed [7, 8, 14, 15, 31–34]. The computational efficiency 
of such circuits is, however, influenced by the environmental 
noise such as temperature variation. The efficacy of nano-
computing devices in the presence of noise can be estimated 
by Shannon’s information-theoretic measures. In nanocom-
puting, two things are most important: (1) the efficacy of 
noisy channels to implement complex computational opera-
tions and (2) statistically how the efficacy varies in ensem-
bles of channels having variable physical structures. Those 
aspects motivate the information-theoretic measures, which 
statistically confines the computational efficacy of noisy 
computation channels that assembled via processes. This 
induces the randomness in the structure of physical channel 
and is therefore tailor-made to characterize realistic nano-
computing channels. The stated confinement is generally 
appropriate for any artificial as well as natural nanocom-
puting channels, realized through a structured or in random 
nanonetwork, which can be modeled like discrete computa-
tion channel. Recently, Anderson et al. [35] have quantified 
the impact of structural randomness and temperature fluc-
tuations on the efficiency of performance of the full-adder 
circuit from the information-theoretic point of view.
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The main aim of this work is to explore the robustness 
and trustworthiness of digital circuits in QCA through 
calculation of computational fidelity under thermal ran-
domness and presence of noise. Thus, this work deals 
with the computational fidelity of QCA circuits, i.e., 
computation of channel fidelity in QCA channel routing 
when they will be implemented as noiseless and noisy 
nanocomputing channels. This work has the contributions 
as follows.

1.	 Computation of channel fidelity in QCA channel routing. 
The computation is performed for both noiseless and 
noisy QCA channels.

2.	 To perform the computation of channel fidelity, in this 
work, QCA-based 4-bit binary-to-Gray code and binary-
to-excess-3 code converters have been considered as a 
routing channels.

3.	 The computational fidelity has been estimated applying 
Shannon’s information-theoretic measures to confirm 
the robustness of the QCA channels.

4.	 It has been observed that the computational fidelity 
of QCA channel fluctuates by rising the temperatures. 
Thus, range of temperatures over which the QCA chan-
nels yield reliable computation is proposed.

This article has five sections as follows. The QCA-
based design of both the converters is outlined in Sect. 2. 
Estimation of channel fidelity in QCA channel routing 
for noiseless and noisy QCA channels is given in Sect. 3. 
Comparative analysis is given in Sect. 4. Finally, the con-
clusion is made in Sect. 5.

2 � QCA‑based binary‑to‑Gray and excess‑3 
code converters

For an n-bit converter, the output bits (Yi,n) of the Gray code 
related to the input bits (Xi,n) can be written as

The truth table for conversion of 4-bit binary code into Gray 
code is given in Table 1 [12]. It is seen from the truth table that 
the most significant bit (MSB) of the Gray code is same with 
that of the input binary code. The logic expressions of the 4-bit 
binary code-to-Gray code converter circuit can be expressed 
a s  W = A, X = A⊕ B, Y = B⊕ C, Z = C⊕ D  . 
QCA-based majority function representations are given 
by X = M(M(A,B, 0),M(A,B, 0), 1) ,  Y = M(M(B,C, 0),

M(B,C, 0), 1) , Z = M(M(C,D, 0),M(C,D, 0), 1).
The QCA layout of this code converter circuit is outlined 

in Fig. 1. The circuit is developed using QCA Designer tool. 
The design is executed as follows.

1.	 Each XOR layout consists of 2 inverters and 3 MVs.
2.	 The inputs are in first clock zone.
3.	 The AND and OR operations necessary for the XOR 

operation are performed in the second and third clock 
zones, respectively.

4.	 The circuit layout consists of total 194 QCA cells over 
the area 920 nm × 240 nm, and three clock zones are 
required.

5.	 The simulation is achieved by the coherence vector 
method and it requires 5 iterations to converge into the 
initial steady-state polarization.

Yi,n = Xi,n, Yi,n−1 = Xi,n ⊕ Xi,n−1,… , Yi,1 = Xi,2 ⊕ Xi,1

Table 1   Truth table for the 
conversion of 4-bit binary code 
into Gray code

Xi A B C D Yi W X Y Z

X0 0 0 0 0 Y0 0 0 0 0
X1 0 0 0 1 Y1 0 0 0 1
X2 0 0 1 0 Y2 0 0 1 1
X3 0 0 1 1 Y3 0 0 1 0
X4 0 1 0 0 Y4 0 1 1 0
X5 0 1 0 1 Y5 0 1 1 1
X6 0 1 1 0 Y6 0 1 0 1
X7 0 1 1 1 Y7 0 1 0 0
X8 1 0 0 0 Y8 1 1 0 0
X9 1 0 0 1 Y9 1 1 0 1
X10 1 0 1 0 Y10 1 1 1 1
X11 1 0 1 1 Y11 1 1 1 0
X12 1 1 0 0 Y12 1 0 1 0
X13 1 1 0 1 Y13 1 0 1 1
X14 1 1 1 0 Y14 1 0 0 1
X15 1 1 1 1 Y15 1 0 0 0
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6.	 The required clock zone is three. Thus, after ¾ clock 
cycles the correct output will be appeared as displayed 
in Fig. 2.

The computational efficacy of both the code converter cir-
cuits designed in this article can be analyzed by considering 
them as the computational channel where the output(s) can 
arise from the combination of the different inputs unlike the 
noiseless communication channel having one-to-one map-
ping between the input(s) and output(s) as shown in Fig. 3.

The truth table for conversion of 4-bit binary code into 
excess-3 code is shown in Table  2. Here, the circuit is 
designed using four serial adders as presented in Fig. 4. The 
combinations of the input bit sequence range from “0000” 
to “1111” (i.e., 0–15). Since any output of the excess-3 code 
converter is increased by three with respect to a specific 
binary input, four bits cannot represent the correct output of 
the converter for the input combinations “1101,” “1110” and 
“1111” (i.e., 13–15). The most significant bit (E) denotes 
the error in the output of the excess-3 code converter as 

Fig. 1   QCA layout of 4-bit binary code-to-Gray code converter

Fig. 2   Simulation result for 
4-bit binary code-to-Gray code 
converter
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shown in the truth table for the last three combinations of 
the binary input.

The circuit layout of the binary-to-excess-3 code con-
verter shown in Fig. 5 is designed using QCA Designer 
simulation tool. The design is carried out as follows.

1.	 The inputs are in first clock zone.
2.	 Each of the full adders requires four clock zones to exe-

cute.
3.	 The layout consists of 686 cells including four inputs 

and five outputs.
4.	 The simulation is calculated by coherence vector method 

and it requires 10 iterations to converge into the initial 
steady-state polarization, and the output is shown in 
Fig. 6.

x0
x1
x2

y0
y1
y2

y0
y1
y2

x0
x1
x2

(a)

(b)

Fig. 3   a Noiseless communication channel, b computation channel

Table 2   Truth table for the 
binary-to-excess-3 code 
converter

Xi A B C D Yi W X Y Z

X0 0 0 0 0 Y0 0 0 1 1
X1 0 0 0 1 Y1 0 1 0 0
X2 0 0 1 0 Y2 0 1 0 1
X3 0 0 1 1 Y3 0 1 1 0
X4 0 1 0 0 Y4 0 1 1 1
X5 0 1 0 1 Y5 1 0 0 0
X6 0 1 1 0 Y6 1 0 0 1
X7 0 1 1 1 Y7 1 0 1 0
X8 1 0 0 0 Y8 1 0 1 1
X9 1 0 0 1 Y9 1 1 0 0
X10 1 0 1 0 Y10 1 1 0 1
X11 1 0 1 1 Y11 1 1 1 0
X12 1 1 0 0 Y12 1 1 1 0
X13 1 1 0 1 Y13 0 0 0 0
X14 1 1 1 0 Y14 0 0 0 1
X15 1 1 1 1 Y15 0 0 1 0

Full Adder 1 Full Adder 2 Full Adder 3 Full Adder 4

WXYZ

E (5th bit)0

D 1 C 1 B 0 A 0

Fig. 4   Design of binary-to-excess-3 code converter
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The simulation result of proposed converters as shown in 
Figs. 2 and 6 is compared with their theoretic values. The eval-
uation agreed the circuit’s functional efficiency. The param-
eters used for coherence vector simulation of proposed QCA 
layout is shown in Fig. 7. The height as well as breadth of 
QCA cell used to achieve the circuit is 18 nm.

3 � Computational fidelity in QCA channel 
routing

The logical 4-bit binary code-to-Gray code as well as 
binary-to-excess-3 code converter has no information 
loss as because the number of inputs and that of the cor-
responding outputs are equal. Besides, each input line and 

Fig. 5   QCA layout of binary code-to-excess-3 code converter

Fig. 6   Simulation result for 
binary-to-excess-3 code con-
verter
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output line are distinct in nature. Thus, this computational 
channel can behave almost like a communicational chan-
nel. In particular, when both the converters having equal 
number of input and output bits perform ideal logical 
transformation, then they will behave as an ideal noise-
less communication channel.

The 4-bit binary code-to-Gray code converter has 4-bit 
output for each 4-bit input. But binary code-to-excess-3 
code converter has 5-bit output for each 4-bit input. So, 
there must be 32 (25 = 32) distinct output combinations. 
But, out of these 32 output combinations, logically only 
16 output combinations are valid. As there is only 16 input 
combinations, the number of output combinations must be 
≤ 16. Thus, binary code-to-Gray code as well as binary-to-
excess-3 code converter is 16-input and 16-output channel.

Though both the converters have equal number of inputs 
as well as outputs, the QCA circuit of binary-to-excess-3 
code converter as shown in Fig. 5 is more complex than that 
of the QCA circuit of binary code-to-Gray code converter 
circuit as shown in Fig. 1. Binary-to-excess-3 code converter 
required more QCA cells, MVs and clocking zones. Thus, 
it is better to study how computational fidelity varies in 
QCA circuits, which have same number of input and output 
combinations. This motivates the selection of the proposed 
converters as a QCA routing channels.

The mean or average information per message (consid-
ering equal probability {pi} of input bits of message (m) 
defined in terms of M-array input alphabet {xi} and N-array 

output alphabet {yj}with probability {qj}) transmitted by the 
discrete memory less source is given by the entropy [35, 36],

where Ii = log2

(
1

pi

)
 bits represent the information content 

in the message m. Thus, Eq. (1) can be written as

Since the nanodots are arranged in the QCA cells, form the 
channel for carrying signal and circuit for performing compu-
tation, Shannon’s information theory-based measures can be 
applied to evaluate the amount of uncertainty in obtaining the 
correct output as specified by the logical transformation of the 
inputs given to the circuits in the presence of noise. The 4-bit 
binary number contains total 16 combinations of the input (xi) 
to both the binary code-to-Gray code and binary-to-excess-3 
code converters and the output (yj) of the circuit also contains 
16 combinations as the input. So, pi = qi = 1/16. Using Eq. (2), 
the Shannon’s entropy for the input of both the converters is 
given by,

The average uncertainty about the input bits (xi) with 
respect to the received output bits (yj) is calculated by the 
conditional entropy as follows [35, 36] 

where H(X�yj) = −
M−1∑
i=0

pi�j log2 pi�j is the average entropy for 

all output bits yj and pi|j = (qi|jpi∕qj) stands for conditional 

(1)H(m) =

M−1∑

i=0

piIi

(2)

H(m) =

M−1∑

i=0

pi log2

(
1

pi

)

= −

M−1∑

i=0

pi log2 pibits

H(Xabcd) = −

M−1∑

i=0

pi log2 pi

= −

15∑

i=0

(
1

16

)
log2

(
1

16

)

= −16
[(

1

16

)
log2

(
1

16

)]

= 4

(3)H(X|Y) =
N−1∑

j=0

qjH(X|yj) =
N−1∑

j=0

qj

(
−

M−1∑

i=0

pi|j log2 pi|j

)

Fig. 7   Coherence vector simulation parameter list
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probability of output bit (yj) with respect to input bits (xi) 
[35]. Similarly, qi|j is the transition probability. qi|j will be 1 
if i ∈ {i}j ; otherwise, it will be zero.

The mutual information received at the output of the cir-
cuits, i.e., the information present in output Y about input X is 
formulated by,

In practical cases, the array of QCA cells can behave as 
noisy channel in the presence of thermal randomness because 
of the change in maximum output polarization (MOP) of the 
cells with temperature. Consequently, the logical transforma-
tion effectively done by the circuits may deviate from the pre-
dicted output.

The computational fidelity (FL) measure provides the 
amount of information about how far the noisy channel out-
put resembles the correct output expected from the logical 
transformation of the same input distribution, i.e.,{xi} with 
probability mass function {pi} performed by a noiseless chan-
nel [35]. Basically, computational fidelity measure provides a 
more widespread description of computational efficacy. It is 
an information theory-based measure that reveals the statisti-
cal information of correlations between inputs and outputs in 
a noisy computing channel, yielding quantitative data about 
computational abilities of the channel that transcend a specific 
cluster of the M channel outputs ({zk}) into N abstract outputs 
yj (logical) and assignment of N sequence of digits to this yj. 
Besides, the computational fidelity measure is more versatile 
due to their information-theoretic nature and the entropic sce-
nario of information-theoretic approach enables connections 
from computational efficacy to the physical costs for noisy 
computation. In more general, the computational fidelity 
measure statistically computes the distinguishability of out-
puts resulting from the inputs which belongs to the poles apart 
logical outputs. Note that the computational fidelity measure is 
mainly used in quantum computation to quantify the closeness 
behavior of physical outputs to desire states.

So, we consider an M-input ({xi}), K-output ({zk}) noisy 
discrete channel as binary-to-Gray and binary-to-excess-3 code 
converters and the channels are characterized by a channel 
matrix ({πk|i}) that represents the conditional probability of the 
occurrence of a particular output ({zk}) for a particular input xi.

For both the circuits, the amount of information about the 
extent to which the noisy channel generates correct logical 
output which is analogous to that of the ideal channel is given 
by the mutual information between the noise-free and noisy 
channel outputs as [35] as shown in Eq. (5).

where

(4)I(X;Y) = H(X) − H(X|Y)

(5)I(Z;Y) = H(Z) − H(Z|Y)

(6)H(Z) = −

k−1∑

k=0

�k log2 �k

and

In Eq. (5), Y stands for output of ideal channel and Z 
denotes output for noise channel. H(Z) is the self-entropy for 
noise channel output Z and H(Z|Y) denotes average entropy 
for noisy channel output.

The conditional entropy in the noisy channel output, i.e., 
average entropy for both the converters can be calculated 
from the expression [35] as shown in Eq. (8).

where

In Eq. (8), H(Z|yj) is the entropy given that Y = yj and 
�
(j)

k
 is the probability for Z = zk when Y = yj . For a noisy 

computing channel N =
{{

xi
}
,
{
zk
}
,
{
�k|i

}}
 with input 

probability mass function{pi}, the computational fidelity 
can be written as

where

In Eq. (10), HL(Y) is the output entropy associated with 
the logical transformation of the ideal channel, i.e., the out-
put entropy for logical transformation L with input prob-
ability mass function {pi} [35]. The computational fidelity 
of the proposed circuits can be calculated using Eq. (10).

3.1 � Computational fidelity in noiseless QCA channel 
routing

In this section, the measure of computational fidelity of 
4-bit binary code-to-Gray code converter and binary code-
to-excess-3 code converter is performed when they behaves 
like a noiseless computing channels.

The conditional probabilities comprising the channel 
matrix ({πk|i}) for the binary-to-Gray code converter (for 
the binary inputs 0–15) are presented in Eq. (12).

(7)�k =
∑

i

pi�k|i

(8)H(Z|Y) =
N−1∑

j=0

qjH(Z|yj) =
N−1∑

j=0

qj

(
−

k−1∑

k=0

�
(j)

k
log2 �

(j)

k

)

(9)�
(j)

k
=

1

qj

∑

i∈{i}j

pi�k|i

(10)FL =
I(Z;Y)

HL(Y)

(11)HL(Y) = −
∑

j

qj log2 qj

(12a)�0|i =
1

16

(
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i

)(
1 − PX

i

)(
1 − PY

i

)(
1 − PZ

i
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where PW
i

,PX
i
,PY

i
 and PZ

i
 denote the polarization of output 

cell W, X, Y and Z, respectively, for ith input {xi}. If it is 
assumed that the proposed channels have the logical out-
puts, i.e., all the outputs which are logically true provide 
perfect 1 and all the outputs which are logically false provide 
perfect 0. Then, the channel matrix ({πk|i}) for the binary-
to-Gray code converter can be estimated (Table 3) using 
Eqs. (12a–12p).

The conditional probabilities comprising the channel 
matrix ({πk|i}) for the binary-to-excess-3 code converter (for 
the binary inputs 0–15) are presented in Eq. (13).
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Table 3   Channel matrix for 
the binary code-to-Gray code 
converter

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15

X0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
X3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
X4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
X5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
X6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
X7 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
X8 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
X9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
X10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
X11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
X12 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
X13 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
X14 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
X15 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
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where PW
i

,PX
i
,PY

i
,PZ

i
 and PE

i
 denote the polarization of out-

put cell W, X, Y, Z, and E respectively, for ith input {xi}. If 
it is assumed that the proposed channels have the logical 
outputs, i.e., all the outputs which are logically true provide 
perfect 1 and all the outputs which are logically false provide 
perfect 0. Then, the channel matrix ({πk|i}) for binary-to-
excess-3 code converter can be estimated (Table 4) using 
Eqs. (13a–13p).

Now, in case of binary-to-Gray code converter, for noise-
less communication, PW

i
= PX

i
= PY

i
= PZ

i
= 1 and then from 

Eq. (12), we can write
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�k|i =
1
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(1 + 1)(1 + 1)(1 + 1)(1 + 1)

=
(
1

16
× 16

)

= 1

Table 4   Channel matrix for 
the binary-to-excess-3 code 
converter

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15

X0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
X1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
X2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
X3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
X4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
X5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
X6 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
X7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
X8 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
X9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
X10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
X11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
X12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
X13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X14 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X15 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
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Using Eq. (7), for every value of k (k = 0, 1, …, 15), �k can 
be calculated as

Again from Eq. (9), �(j)

k
 can be calculated as

�k =
∑

i

pi�k|i

=
(
1

16
× 1

)(
For 4 - bit binary code-to-Gray code converter pi =

1

16

)

=
1

16

Therefore, H(Z) = −
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�k log2 �k
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15∑
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1
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log2

1
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= − log2
1
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= 4
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1
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(
For 4 - bit binary-to-Gray code converter qi =
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)

= 16 ×
1

16

= 1

Thus, H(Z|yj) = −

k−1∑

k=0

�
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k
log2 �
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= −

15∑

k=0

�
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log2 �

(j)
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= −
1

16
(1 log2 1)

= 0

H(Z|Y) =
15∑

j=0

qjH(Z|yj)

=
1

16
× 0

= 0

I(Z;Y) = H(Z) − H(Z|Y)
= 4 − 0

= 4

Placing the value of I(Z;Y) and HL(Y) in Eq. (10), the com-
putational fidelity can be calculated as

So, fidelity (FL) will be 1 when the circuit behaves like a 
noiseless computing channel.

Similarly, in case of binary-to-excess-3 converters, it can 
be shown that the fidelity (FL) will be 1 when it behaves like 
a noiseless computing channel.

It can be noted that the computational fidelity is within the range 
0 ≤ FL ≤ 1. The equality in the lower bound occurs when the noisy 
channel output, i.e., Z has no knowledge about the logical output Y. 
On the other hand, the equality in the upper bound occurs when Y 
can be inferred from Z without ambiguity, i.e., I(Z;Y) has maximum 
value of HL(Y) [35]. Thus, it can be noted that if the output of any 
circuit is correspondent to logical one then the circuit will achieve 
the maximum fidelity, i.e., FL = 1 and it indicates no induced noise 
in the outputs. But, less than one means the noise is present in the 
outputs, i.e., the output is produced with induced noise.

3.2 � Computational fidelity in noisy QCA channel 
routing

Fidelity may vary based on induced noise, which may present 
due to dissipated power, structural randomness and thermal 

HL(Y) = −
∑

j

qj log2 qj

= −16
(
1

16
log2

1

16

)

= 4

FL =
I(Z;Y)

HL(Y)

=
4

4

= 1
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randomness. In this section, the estimation of fidelity for both 
the circuits is performed considering thermal randomness.

To perform the estimation of fidelity, proposed binary code-
to-Gray code converter circuit as shown in Fig. 1 has been 
simulated on QCA Designer tool at different temperatures such 
as 1 K and 2 K. From the simulation outcome, the polariza-
tion of each output cell at specific temperature is observed 
and utilized in calculation of fidelity. For example, if the cir-
cuit is simulated at 1 K temperature, then each output cell has 
the maximum output polarization (MOP) for logical true as 
follows.

From Eq. (12), we can write

Using Eq. (7), for every value of k (k = 0, 1, ….., 15), �k can 
be calculated as

PW
i
= PX

i
= PY

i
= PZ

i
= 0.954

�k|i =
1

16
(1 + 0.954)(1 + 0.954)(1 + 0.954)(1 + 0.954)

=
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16
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1
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× 0.9111

)(
For 4 - bit binary code-to-Gray code converter pi =
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16

= 0.05694

Therefore,H(Z) = −
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= −16
[(

0.9111

16

)
log2
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0.9111
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)]

= −(0.9111) log2

(
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16
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= 3.7670

Again from Eq. (9), �(j)

k
 can be estimated as

�
(j)

k
=

1

qj

∑

i∈{i}j

pi�k|i

= 16 ×
1

16
× (0.9111)

= 0.9111

Thus, H(Z|yj) = −

k−1∑

k=0

�
(j)

k
log2 �

(j)

k

= −16[(0.9111) log2(0.9111)]

= 1.9575

H(Z|Y) =
15∑

j=0

qjH(Z|yj)

=
1

16
(16 × 1.9575)

= 1.9575

I(Z;Y) = H(Z) − H(Z|Y)
= 3.7670 − 1.9575

= 1.8094

Table 5   Fidelity calculation 
of binary code-to-Gray code 
converter

Tempera-
ture (K)

MOP πk|i H(z) πk(j) H(Z|yj) H(Z|Y) I(Z;Y) FL

1 0.954 0.9111 3.7670 0.9111 1.9575 1.9575 1.8094 0.4567
2 0.954 0.9111 3.7670 0.9111 1.9575 1.9575 1.8094 0.4567
3 0.954 0.9111 3.7670 0.9111 1.9575 1.9575 1.8094 0.4567
4 0.954 0.9111 3.7670 0.9111 1.9575 1.9575 1.8094 0.4567
5 0.953 0.9093 3.7621 0.9093 1.9957 1.9957 1.7664 0.4416
6 0.950 0.9037 3.7469 0.9037 2.1126 2.1126 1.6343 0.4086
7 0.940 0.8853 3.6960 0.8853 2.4899 2.4899 1.2062 0.3015
8 0.935 0.8762 3.6720 0.8762 2.6731 2.6731 0.9989 0.2497
9 0.922 0.8529 3.6074 0.8529 3.1328 3.1328 0.4746 0.1187
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Placing the value of I(Z;Y) and HL(Y) in Eq. (10), the com-
putational fidelity at 1 K temperature can be calculated as

Similarly, at different temperatures, the computational fidel-
ity of the binary code-to-Gray code converter is estimated and 
tabulated in Table 5.

In similar approach, the estimation of computational fidel-
ity of proposed binary-to-excess-3 code converter for different 
temperatures such as 1 K and 2 K has been performed. For 
example, if the circuit is simulated at 1 K temperature, then 
each output cell has the maximum output polarization (MOP) 
for logical true as follows.

From Eq. (13), we can write

Using Eq. (7), for every value of k (k = 0, 1, ….., 15), �k can 
be calculated as
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Again from Eq. (9), �(j)
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 can be calculated as
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1
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Placing the value of I(Z;Y) and HL(Y) in Eq. (10), the 
computational fidelity 1 K temperature can be calculated as

FL(For1K) =
I(Z;Y)

HL(Y)

=
3.3988

4

= 0.8497
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Similarly, at different temperatures, the computational 
fidelity of the binary-to-excess-3 code converter is esti-
mated and tabulated in Table 6.

4 � Results and discussions

4.1 � Fidelity versus temperature analysis

The variation of computational fidelity of the binary-
to-Gray and binary-to-excess-3 code converter with 

Table 6   Fidelity calculation 
of binary-to-excess-3 code 
converter

Tempera-
ture (K)

MOP Πk|i H(z) Πk
(j) H(Z|yj) H(Z|Y) I(Z;Y) FL

1 0.988 0.9762 3.9388 0.9762 0.5425 0.5425 3.3963 0.8497
2 0.988 0.9762 3.9388 0.9762 0.5425 0.5425 3.3963 0.8497
3 0.988 0.9762 3.9388 0.9762 0.5425 0.5425 3.3963 0.8497
4 0.988 0.9762 3.9388 0.9762 0.5425 0.5425 3.3963 0.8497
5 0.988 0.9762 3.9388 0.9762 0.5425 0.5425 3.3963 0.8497
6 0.988 0.9762 3.9388 0.9762 0.5425 0.5425 3.3963 0.8497
7 0.988 0.9762 3.9388 0.9762 0.5425 0.5425 3.3963 0.8497
8 0.988 0.9762 3.9388 0.9762 0.5425 0.5425 3.3963 0.8497
9 0.988 0.9762 3.9388 0.9762 0.5425 0.5425 3.3963 0.8497
10 0.987 0.9743 3.9334 0.9473 0.5860 0.5860 3.3474 0.8368
11 0.985 0.9703 3.9236 0.9703 0.6745 0.6745 3.2491 0.8123
12 0.983 0.9664 3.9135 0.9664 0.7617 0.7617 3.1517 0.7879
13 0.980 0.9604 3.8982 0.9604 0.8914 0.8914 3.0068 0.7517
14 0.977 0.9548 3.8830 0.9548 1.0197 1.0197 2.8633 0.7158
15 0.972 0.9451 3.6476 0.9451 1.2304 1.2304 2.4157 0.6039
16 0.966 0.9337 3.8274 0.9337 1.4783 1.4783 2.3491 0.5872
17 0.960 0.9224 3.7971 0.9224 1.7206 1.7206 2.0769 0.5191
18 0.952 0.9074 3.7569 0.9074 2.0354 2.0354 1.7216 0.4304
19 0.944 0.8926 3.7169 0.8926 2.3405 2.3405 1.3762 0.3440
20 0.935 0.8762 3.6720 0.8762 2.6731 2.6731 0.9989 0.2497

Fig. 8   Computational fidelity versus temperature characteristics of a 4-bit binary code-to-Gray code converter
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temperature is shown in Figs. 8 and 9. The observations 
from the graphs are as follows.

1.	 Mop decreases by raising temperature. Thus, the com-
putational fidelity decreases with increasing temperature 
for both the code converter circuits.

2.	 Both the circuits perform reliable computation over the 
low temperature range, i.e., stability of the code con-
verter circuits decreases under thermal randomness.

4.2 � Comparative analysis

The comparative study of the computational fidelity for 
both the code converter circuits is shown in Fig. 10 which 
shows results as follows.

1.	 The fidelity of the binary code-to-Gray code converter 
is much less than that of the binary-to-excess-3 code 
converter even in the low-temperature regime.

2.	 Further, the fidelity of the binary-to-excess-3 code con-
verter starts to degrade at a relatively higher temperature 
range than that of the other converter.

3.	 The binary-to-Gray code and binary-to-excess-3 code 
converters can perform logical transformation or com-
putation efficiently over the temperature range 1–4 K 
and 1–11 K, respectively.

The fidelity of the binary code-to-Gray code converter is 
much less than that of the binary-to-excess-3 code converter 
even in the low-temperature regime because of MOP. Higher 
value of MOP means higher fidelity as in that case I(Z;Y) 
has maximum value of HL(Y). Section 3.2 shows that both 
the converters have same value of HL(Y), i.e., 4. Thus, the 
variation in fidelity depends on I(Z;Y) . If I(Z;Y) increases, 
fidelity also increases, and if I(Z;Y) decreases, fidelity 
also decreases. Now, the value of I(Z;Y) depends on MOP. 

Fig. 9   Computational fidelity versus temperature characteristics of a 4-bit binary-to-excess-3 code converter

Fig. 10   Comparison of computational fidelity versus temperature 
characteristics of a 4-bit binary-to-Gray (“+” symbol) and binary-to-
excess-3 code (“*” symbol) converters

Table 7   Computational 
faithfulness under thermal 
randomness

Degree of computational 
fidelity

Temperature (T) range (binary code-to-
Gray code converter)

Temperature (T) range (binary 
code-to-excess-3 code converter)

Good 0 ≤ T < 4 K 0 ≤ T < 11 K
Adequate 5 K ≤ T < 7 K 11 K ≤ T < 18 K
Poor 7 K ≤ T < 9 K 18 K ≤ T < 20 K
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So, if MOP increases, I(Z;Y) also increases, and if MOP 
decreases, I(Z;Y) also decreases. For example, as described 
in Sect. 3.2, at T = 1 K, the MOP of binary code-to-Gray 
code converter is 0.954 which causes I(Z;Y) = 1.8094 and 
thus fidelity (FL) = 0.4567. But in case of binary-to-excess-3 
code converter, at T = 1 K, the MOP is 0.988 which causes 
I(Z;Y) = 3.3963 and thus fidelity (FL) = 0.8497. Therefore, 
due to lower MOP, the fidelity of the binary code-to-Gray 
code converter is much less than that of the binary-to-
excess-3 code converter even in the low-temperature regime.

4.3 � Computational faithfulness

During estimation process, the degree of computational 
faithfulness of proposed converters with temperature is 
observed and the result is plotted in Table 7. The result is 
analyzed as follows.

1.	 The computational fidelity of the QCA binary-to-Gray 
and binary-to-excess-3 code converters is good over 
the temperature range 0 ≤ T < 4K and 0 ≤ T < 11K , 
respectively. Thus, both the code converters have reli-
able computation over that range of temperatures.

2.	 Adequate over the range 5K ≤ T < 7K  and 
11K ≤ T < 18K , respectively. Thus, the output from 
both of the code converters can be considered as valid 
outputs over that range of temperatures.

3.	 Poor over the range 7K ≤ T < 9K and 18K ≤ T < 20K , 
respectively. Thus, both the code converters have faulty 
outputs.

4.4 � Data statistics of the proposed code converter 
circuits

The data statistics for both the code converter circuits is 
tabulated in Table 8. Table 8 shows that the standard devia-
tion of the computational fidelity of the binary code-to-
excess-3 code converter is slightly larger than that of the 
binary-to-Gray code converter. This little difference of the 
order of approximately 0.07 is manifested in the small dif-
ference in the slope of the two curves (Fig. 10). The phe-
nomenon reveals the performance of the binary-to-excess-3 

code converter to be more reliable than the binary-to-Gray 
code converter under thermal randomness.

5 � Conclusion

This article shows the computation of channel fidelity in 
QCA channel routing for noiseless and noisy QCA channel 
routing. Shannon’s information-theoretic measure of com-
putational fidelity confirms the robustness of the proposed 
binary-to-Gray and binary-to-excess-3 code converter-based 
QCA routing channels. The proposed routing channels yield 
reliable computation under certain range of temperatures. 
The computational fidelity is found to deteriorate with 
increasing temperature for both the routing channels. This 
routing channels exhibit considerable fidelity when operated 
in the temperature regime 1–5 K and 1–11 K, respectively. 
Hence, both the channels yield appreciable computational 
efficacy over the low-temperature regime. Moreover, the 
extent of variation of the computational fidelity of the cir-
cuits with the thermal fluctuations reflects the fuzzy multi-
valued status of the performance of the QCA-based routing 
channels. The simulation result is verified through theoretic 
values that agreed the design accuracy of the proposed 
channels.
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