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Abstract
Research in condensed matter physics on topological insulators and superconductors has contributed greatly to the character-
ization of the surface properties and zero modes of nanowires. In this work we investigated theoretically, using the recursive
Green’s function approach, electron transport through a T-shaped single-level spinless quantum dot, connected to a zigzag
chain and coupled to a p-wave superconductor. This model is an extension of the Kitaev chain for a triangular network of finite
size with three, four, and five sites. We found that the Majorana zero modes can be tuned through the coupling parameters of
the device and that the linear conductance shows Majorana bound states (MBS) in the topological phase, being maximally
robust in the general topological phase. This more realistic model permits the detection of MBS via control of the parameters
governing the electronic tunneling and could be helpful for relevant experiments.

Keywords Majorana fermions · Recursive Green’s function approach · Kitaev chain · Electronic nanodevices · Quantum
dot · T-shaped · Qubit · Majorana bound states (MBS)

1 Introduction

Majorana fermions (MFs) are neutral particles that con-
stitute their own antiparticles. Although first proposed to
describe fundamental particles [1], they gained importance
after Majorana bound states (MBS) were detected. This
implies the degeneracy of the fundamental state and allows
the system to support excitations with non-Abelian statis-
tics (i.e., particles that are neither fermions nor bosons) [2].
There is currently a significant interest in topological quan-
tum computers [3], which make use of degenerate ground
states of topological matter to encode qubits [4].
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Experiments with ultracold atoms [5, 6] in optical net-
works offer great control over both the mobility and the
intensity of the interactions of periodic arrangements and
have been proposed to detect Majorana fermions using semi-
conductor wires, topological superconductors, insulators,
and magnetic adatoms. Moreover, experimental realiza-
tion of a proximity-induced topological superconductor was
recently reported [7], forming states connected to MBS in
InSb nanowires.

The Kitaev chain [8] is a model for detecting Majorana
fermions through the MBS located at the ends of a one-
dimensional (1D) chain above a topological superconductor
of spin-triplet or p-wave type. The superconductor that sup-
ports aMajorana fermion must necessarily be topological [9,
10].

The MBS wavefunctions observed experimentally for a
long nanowire byMourik et al. [7] decay exponentially when
a large degree of disorder is included in the model [11]. Fur-
thermore, study of finite-length chains is relevant, because
they are exactly solvable and MBS are perfectly located
at the ends. Moreover, experimentally, long semiconductor
nanowires coupled with the surface of a superconductor [12]
can basically be considered to be segmented by disorder into
a smaller number of coherent chains [7].
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A specific type of arrangement with triangular zigzag
geometry has been investigated. In this case, adding one or
more sites to the zigzag chain produces coupled inverted tri-
angles (chiral modes) [13]. In this work, we consider a zigzag
chain and the influence of such a triangular network on the
emergence of unpaired Majorana modes, corresponding to a
tight-binding representation of a 1D chain above a topologi-
cal superconductor [13].

The system consists of two leads in contact with a single-
level quantumdot (QD) [14], coupled to a nanowire of zigzag
atoms above a topological superconductor (TS) with p-wave
pairing (Fig. 1a). The QD is a possible candidate for detec-
tion of MBS [15–17]. Study of quantum transport through a
QD coupled with MBS (QD-MBS) also extends to system
configurations based on a T-shaped QD structure [18]. More
recently, study of quantum transport through QD-MBS was
extended to multi-QD systems [19].

The chemical potential μ, hopping h, and pairing ampli-
tude Δ induce relatively complex couplings; the model
illustrated in Fig. 1a is analyzed in two phases: (a) the trivial
phase with μ < 0 and Δ � h � 0, and (b) the topological
phase with μ � 0 and Δ � h �� 0, as well as (b.1) the more
general topological situation with μ �� 0 and Δ �� h, which
still lies in the topological phase [2, 13] (Fig. 1c).

In Fig. 1c, the green curve shows the transition between
the trivial and topological phases. Any point on this curve
corresponds to the system in phase transition, i.e., EZ �√

Δ2 + μ2, where EZ is the Zeeman energy due to the exter-
nal magnetic field B. Below the green curve, the system
is represented by the trivial phase with EZ <

√
Δ2 + μ2;

Above the green curve, the system is characterized by the
topological phase (b) with μ � 0, hα � Δα � Δ � h �� 0
and by the more general topological situation withμ �� 0 and
Δ �� h (b.1), but still in the topological phase.

Themodelwithfive sites is investigated basedon the phase
diagram in Fig. 1d, plotted as pairing amplitude (Δ) versus
QD chain coupling (λ). The topological phase is robust and
sensitive forΔ ≈ 0.1, characterizing the phase transition and
ensuring detection of Majorana fermions for GC(ω) � 0.5.

We carried out calculations at the thermodynamic limit
in the context of Green’s functions [16, 20], focusing on
finite-size effects by varying the free parameters of themodel
for three, four, and five sites, for further projection of the
behavior for n sites. In fact, we performed calculations under
conditions of very low temperatures and small potential dif-
ferences [21], such that the temperature almost does not affect
the conductance curve and quantum effects are preserved.

The aim of this work is to consider a more realistic con-
figuration based on the complexity of the triangular network
chain (triangular disorder) [22]. This model is an extension
of the Kitaev chain [13] and, in addition, is an experimen-
tally realistic example for detection of Majorana fermions
[17].

2 Methodology

We consider a single-level quantum dot (QD), in contact with
spinless leads, coupled to a nanowire of zigzag atoms formed
by two Kitaev chains (with odd or even sites) [13, 22] above
a topological superconductor with p-wave pairing.

The system is split into three parts: quantum dot (QD),
leads (L), and zigzag chain atoms (C), as shownby theHamil-
tonian in Eq. 1.

The Hamiltonian of a finite 1D chain of size L is given by

H � HD +HL +HDL +HDC +HC, (1)

whereHD � εdd
†
0d0 describes the quantum dot with energy

tuned to εd , HL � ∑

kα
εkc

†
kαckα describes the left and right

metallic leads with chemical potential μL � 0, and HDC �
λd†0c1 + λc†1d0 andHDL � ∑

kα
Vkα

(
c†kαd0 + d†0ckα

)
describe

the coupling between the QD and the first site of the zigzag
chain or leads, respectively. In addition, Vkα represents the
tunneling between the QD and leads, and λ ≥ 0 the coupling
between the QD and the chain.

We consider single-component fermions on a finite 1D
chain of size L with HamiltonianHC � Hα�1 +Hα�2 +Hμ,

where Hμ � −μ
L∑

i�1

(
c†i ci

)
is the number operator, and

Hα �
L−α∑

i�1

(
−hαc

†
i ci+α − hαc

†
i+αci + Δαci ci+α + Δαc

†
i+αc

†
i

)

(2)

describes the interactions between electrons at adjacent sites
and the interactions due to the proximity of the superconduc-
tor to the chain. Moreover, ci and c

†
i are fermionic operators

(i � 1, 2, …, L), hα ≥ 0, and Δα � |Δα|ejθα with α � 1 and
α � 2 representing intersite hopping and the pairing ampli-
tudes of the topological superconductor, respectively; the
arbitrary phase is θ , and j is the imaginary complex unit. The
pairing amplitude terms in Hα are obtained using Raman-
induced dissociation of Cooper pairs or Feshbach molecules
forming a Bardeen–Cooper–Schrieffer (BCS) atomic reser-
voir [13].

Majorana fermions are represented by ξkl , where k
� A, B through cl � e−jθ/2(ξBl + jξAl)/2 and c†l �
ejθ/2(ξBl − jξAl)/2, l � 0, 1, 2, …, N (where l � 0 is the
QD) [8]. The ξkl satisfy [ξkl , ξk′l ′ ]+ � 2δkk′δll ′ and ξkl � ξ

†
kl .

We use the recursive Green’s function approach [16,
17, 20], based on Green’s functions calculated to describe
the configuration indicated in Fig. 1a and the interactions
between neighboring sites in the chain as shown in Fig. 2b.

The recursive method was validated by the pioneering
work of Meier and Wingreen [23], who applied the Green’s
function method to a two-terminal system coupled to the
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Fig. 1 aAquantum dot with a single level, coupledwith two electrodes,
with respective couplings Γ L and Γ R, connected to a zigzag chain of
atoms with n sites via a coupling constant λ, where the chain is above
a superconductor substrate with p-wave pairing. C2i–1 and C2i are the
Majorana operators for each site. cA,1 and cB,1 are the MBS at the ends
of the 1D chain. The coupling constants within the chain are h1,Δ1 and
h2,Δ2, called hopping and pairing amplitudes, respectively. bThe elec-

tronic interaction between the five sites of the zigzag chain, measured
by the K, H, J, and S coupling matrices. These matrices are presented
in Sect. 2 and reveal how much electron tunneling occurs between the
sites of the chain. c Diagram representing the difference between the
trivial and topological phases [2]. d Phase diagram (Δ)× (λ)× GC(ω).
The topological phase with Majorana zero modes corresponds to the
blue region in the figure for the system containing five sites
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Fig. 2 a LDOS with fixed parameters 2d � −5 and Γ R � Γ L � Γ
/
2

and coupling between the QD and the chain (λ) and pairing amplitudes
(Δ) varying as λ � 0 and Δ � 5 (black color), λ � 5 and Δ � 0 (red
color), and λ � 6.5 and Δ � 5 (blue color). b LDOS with fixed param-
eters 2d � −5 and Γ R � Γ L � Γ

/
2 in the more general topological

situation for three, four, and five sites with parameters tuned to 2d �
−5, Γ � 1.2, and Δα � 0.2hα , and numerically varied λ and hα . c
Calculated transmittance in TP (hα � Δα � Δ � h) with 2d � 0 for:
3TP with parameters Γ � 0.9, λ � 2.8, Δ � 0.45; 4TP with Γ � 0.45,
λ � 1.45, Δ � 0.6; 5TP with Γ � 0.7, λ � 1.5, Δ � 1.11. d Cal-
culated transmittance in STG (μ � 0 and hα �� Δα) with 2d � 0 and
Δα � 0.2hα for: 3STG with parameters Γ � 0.7, λ � 1.7, h � 0.175;
4STG with Γ � 0.43, λ � 1.6, h � 0.325; 5STG with Γ � 0.52, λ �
1.45, h � 0.65

central region of a QD. The coupled matrix equations for the
topological phase describe the configuration for the model
containing n sites (Fig. 1a). The set of the coupled matrix
equations for n sites can be represented as

Gn � HGn−2, (3)

Gn−1 � HGn−3 + JGn−2, (4)

Gn−2 � HGn−4 + JGn−3 + SGn−1 + KGn, (5)

...
G3 � HG1 + JG2 + SG4 + KG5,

(6)

G2 � JG1 + SG3 + KG4, (7)

G1 � QG0 + SG2 + KG3, (8)

WG0 �
(
1
0

)
+ PVGkα + ZG1. (9)

Therefore, the set of coupled matrix equations for n sites
is defined by Eqs. (3)–(9), with

H �

⎡

⎢⎢
⎣

− h2
ω

Δ2
ω

− Δ2
ω

h2
ω

⎤

⎥⎥
⎦; J �

⎡

⎢⎢
⎣

− h1
ω

Δ1
ω

− Δ1
ω

h1
ω

⎤

⎥⎥
⎦; S �

⎡

⎢⎢
⎣

− h1
ω

− Δ1
ω

Δ1
ω

h1
ω

⎤

⎥⎥
⎦

(10)

K �

⎡

⎢⎢⎢
⎣

−h2
ω

− Δ2
ω

Δ2
ω

h2
ω

⎤

⎥⎥⎥
⎦
; Q �

⎡

⎢⎢
⎣

λ
ω

0

0 − λ
ω

⎤

⎥⎥
⎦; Z �

⎡

⎢⎢
⎣

λ 0

0 −λ

⎤

⎥⎥
⎦;

(11)

W �

⎡

⎢⎢
⎣

(ω − εd) 0

0 (ω + εd)

⎤

⎥⎥
⎦; PV �

⎡

⎢⎢
⎣

jΓ 0

0 jΓ

⎤

⎥⎥
⎦ (12)

such that the matrices H, J, S, and K represent the values of
the pairing amplitudes and hopping for nearest neighbors as
well as next nearest neighbors, Q and Z show the coupling
between the QD and the first site, and W and PV represent
the level of the QD and the level broadening between the
electrode and the QD, respectively.

We performed calculations to obtain the Green’s function
of the model proposed in Fig. 1a for the largest finite quantity
desired, as shown byKraus et al. [13] for a system containing
30 sites and Kraus [22] for a periodic 70 × 70 lattice.

Based on the set of coupled matrix equations for n sites,
we consider the specific case of a zigzag chain with five sites,
i.e., i � 5 (Eqs. 13–18), for which we have

G5 � HG3, (13)

G4 � HG2 + JG3, (14)

G3 � HG1 + JG2 + SG4 +KG5, (15)

G2 � JG1 + SG3 +KG4, (16)

G1 � QG0 + SG2 +KG3, (17)

WG0 �
(
1
0

)
+ PVGkα + ZG1. (18)

Equations (13)–(18) represent the interactions between
adjacent sites through the matrices (10) to (12).

Figure 1a and Eq. (14) show the fourth site interacting
with the second and third site via the matrices H and J that
represent the pairing amplitudes of the topological supercon-
ductor to the chain and hopping for nearest neighbors as well
as next nearest neighbors, respectively.

123



Journal of Computational Electronics (2018) 17:959–966 963

Using the iterativemethod to decouple the set of equations
(13) to (18), we obtain G

′
0, a 2 × 1 matrix that represents the

Green’s function of the QD, given by

G
′
0 � [W − PV − T i ]

−1
(
1
0

)
, (19)

with Ti a 2 × 2 matrix given by

T i �

⎡

⎢⎢
⎣

Ri (ω)λ2
Si (ω)λ2

Si (ω)λ2 Ri (ω)λ2

⎤

⎥⎥
⎦, (20)

and the elements Ri (ω) and Si (ω) of the scattering matrix
(20) for i � 4 and i � 5 sites, respectively, are

R4(ω) �
(
24Δ4 − 12Δ2ω2 + ω4

)

48Δ4ω − 16Δ2ω3 + ω5
;

S4(ω) � 4Δ2
(−6Δ2 + ω2

)

48Δ4ω − 16Δ2ω3 + ω5
, (21)

R5(ω) �
(−32Δ6 + 72Δ4ω2 − 18Δ2ω4 + ω6

)

−64Δ6ω + 96Δ4ω3 − 20Δ2ω5 + ω7
;

S5(ω) � 2Δ2
(
16Δ4 − 12Δ2ω2 + ω4

)

−64Δ6ω + 96Δ4ω3 − 20Δ2ω5 + ω7
, (22)

Therefore, inserting Eqs. (20)–(22) into Eq. (19), one
obtains the exact Green’s function Gr

d0d0
(ω), according to

Ref. [17].
The Green’s function of the QD can be expressed as

Gr
d0d0(ω) � 1

ω − εd + iΓ − Ri (ω)λ2
{
1 + λ2 R̃i (ω)

} , (23)

with

R̃i (ω) � Bi (ω)

ω + εd + iΓ − Ri (ω)λ2
(24)

and

Bi (ω) � S2i (ω)

Ri (ω)
. (25)

After obtaining Gr
d0d0

(ω), we detected MBS in the topo-
logical phase (TP) and in the more general topological situa-
tion (STG, b.1) described in the previous section, and calcu-
lated the transmittance T (ω), conductance GC(ω), and local
density of states (LDOS) ρ(ω) of the device containing three,
four, and five sites, respectively, where T (ω) � GC(ω) �
−Γ Im

{
Gr

d0d0
(ω)

}
and ρ(ω) � (−1

π

)
Im{Gr

d0d0
(ω)}.

3 Results

According to the formulation described above, we consider
symmetric coupling Γ � Γ R � Γ L and control the free
parameters λ, Δ, and Γ . For a nanowire with three sites,
we adjusted the level of the QD to 2d � −5 and varied the
parameters Γ , λ, and Δ.

The LDOS in Fig. 2a with μ � 0 and hα � Δα � Δ �
h corresponds to the topological phase (TP) [2, 13]. The
Majorana peak appears at the Fermi level 2f � 0 (blue curve)
when the chain is strongly coupled to the QD with λ � 6.5
and to the superconductor with Δ � 5.0.

In the trivial phase, the red curve with λ � 5 and Δ � 0
shows a gap atω � 0, typical of common fermions, and forΔ
� 0 and λ � 0 (black curve), resulting in electron tunneling.
Therefore, this T-shaped structure also exhibited nonlocal
processes, such as electron tunneling (ET) and Majorana
bound states (MBS).

This process extends to the LDOS of the more general
topological situation (STG) with μ �� 0 and hα �� Δα

(Fig. 2b). In this case, we tuned 2d � −5, Γ � 1.2, Δα �
0.2hα , with λ and hα varying to λ � 7.5 and hα= 3.1 (black
color), λ � 8.2 and hα= 3.8 (red color), and λ � 8.5 and
hα= 6.8 (blue color). This reconfirms the robustness of the
MBS for ω � 0, even with the increased complexity of the
hopping processes in the chain (Fig. 1b).

Assuming 2d � 0, we obtained the transmittance curves
in the TP (Fig. 2c) and STG (Fig. 2d) for chains of 3–5 sites,
tuning the remaining parameters to guarantee MBS for ω �
0. By coupling the fourth and fifth sites to the end of the
chain, the number of interactions is increased. As a result,
the complexity of possible hoppings between sites increases,
and new peaks arise.

In both Fig. 2c and d, the largest contribution comes from
the first peak adjacent to the MBS, and even in 3STG, this
peak shifts to close to the Fermi level.

In Fig. 2d, for STG, a dependence on h was added to
the free parameters, and the results again confirm that the
topology of the chain created subgaps near the Fermi level,
due to the type of coupling between neighboring sites.

In general, the second and third peaks in the STG deviate
from the Fermi level, indicating a smaller contribution to the
electronic tunneling due to the QD-chain coupling (λ), since
the coupling of the superconductor Δα � 0.2hα is highly
sensitive to the topology of the chain.

Figure 3 shows the conductance GC (ω) in the more gen-
eral topological situation. To ensure MBS, the system was
tuned to 2d � − 3, Γ � 1, and λ � 8.5Γ , and we varied the
hopping couplings with the dependence h � Δ/0.2 for three
pairing amplitudes of Δ � 0.5, Δ � 1.0, and Δ � 1.5.

The choice of the pairing amplitudes (Δ) is experimentally
based on the technique of Raman-induced dissociation of
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Fig. 3 Conductance of the system in the STG containing five sites with
fixed parameters 2d � −3, Γ � 1, and λ � 8.5Γ , while varying the
pairing amplitudes and hopping to a Δ � 0.5 and h � 2.5 (black color),
b Δ � 1.0 and h � 5.0 (red color), and c Δ � 1.5 and h � 7.5 (blue
color) (Color figure online)

Cooper pairs or Feshbach molecules forming an atomic BCS
reservoir, where μ is the Raman detuning [13].

The best MBS signal was obtained for Δ � 0.5; for Δ �
1.5, MBS were preserved and the highest electron mobility
in the chain was guaranteed when h � 2.5, in comparison
with the linear Kitaev chain.

The choice of the h parameter in our model is experimen-
tally determined by the type of geometry of the studied chain,
being related to optical grids that can be obtained using the
cold atoms technique [5, 6].

This latter technique allows control of the amplitude of
the coupling h1 � h2 � h present in the Hamiltonian of the
system (Fig. 1a) and thereby the construction of the geometry
of the sites in the zigzag chain.

Figure 4 shows the conductance of the model containing
five sites for the following parameter values: QD level 2d,
level of the leads Γ , and pairing amplitudes of the topologi-
cal superconductor Δ, as previously fixed, while varying the
hopping h.

Furthermore, we investigated the effect of the dot–chain
coupling (λ) with 2d � − 1, Δ � 0.5, and Γ � 1 for two
types of hopping. In Fig. 4a, h � Δ/0.1, while in Fig. 4b,
h � Δ/0.2; the nature of the intersite coupling is sensitive
to this, while at the same time guaranteeing the MBS at the
extremity of the wire.

In Fig. 4a with h � Δ/0.1, the conductance shows two ET
peaks, while in Fig. 4b, with h� Δ/0.2, three regular fermion
peaks are present.Weconfirmed theMBSsignature, and once
again, the hopping value limits the electron mobility in the
chain.

In Fig. 4a, b, the fixed values ensure that, when the other
parameter values are chosen, only the dot–chain coupling (λ)
will vary, guaranteeing the best MBS signal.

A possible experimental technique to study this phe-
nomenon is the mechanical break junction (MBJ) [24–26] in
nanowire structures. Indeed, due to the dependence of MBS
on λ, it has been shown that MBS can be mechanically mod-
ulated in MBJ experiments [27] by changing the distance
between the QD and chain.

Figure 5 shows the conductance of the model with five
sites. We fixed the level of the QD 2d, the level of the leads
Γ , and the pairing amplitudesΔ. Furthermore, we varied the
dot–chain coupling λ and hopping h, respectively.

Figure 5 shows the conductance of the device containing
five sites. We tuned 2d � 0, Γ � 1, and Δ � 2 and varied the
hopping h and dot–chain couplings according to λ � 2h. For
Fig. 5a with h� 0.4, we guaranteed ETmobility, but without
the presence of MBS.

In Fig. 5b, for h � 0.6, we detected, in addition to common
fermions at ω ∼� ±4.8, 2.9, and 1.5 eV, MBS at ω � 0 eV.

The plot in Fig. 5c, for hopping h � 0.8, presents an
enhanced Majorana signal at ω � 0 together with the sig-
natures of common fermions at ω ∼� ±5.8, 4.2, and 1.6 eV.

The short-range h interaction affects the detection of
MBS, whereas the sufficiently strong long-range interaction
induces the appearance ofMBS at the extremities of the chain
and, therefore, leads to GPeak � e2/2h, as shown in Fig. 5b,
c. Such results indicate the potential to monitor the MBS
spectrum in a triangular chain by relating it to experimental
techniques applicable to the presented model.

4 Conclusions

We propose a new class of nanodevice using the recursive
Green’s function approach that governs the whole model.

The results for the system were analyzed in the trivial
phase, the topological phase, and the more general topolog-
ical situation, for the following parameter values: μ �� 0,
hα � Δα � 0; μ � 0, hα � Δα � Δ � h �� 0, and
μ �� 0 and hα �� Δα , for a finite chain with up to five sites
[2, 13].

Was observed a peak in the conductance at G � e2/h
for regular fermions. Furthermore, the peak for Majorana
fermions was verified at G � e2/2h.

We confirmed that the zigzag chain topology creates sub-
gaps close to the Fermi level, due to the increased complexity
of hopping in the chain for themodelwithweakdisorder,with
four and five sites.

These analyses were carried out by choosing values for
the free parameters, being experimentally anchored in the
type of geometry of the studied chain. This could refer to:
(i) an optical grid, which can be produced using the cold
atoms technique, or (ii) combination with another technique,
such as the mechanical break junction (MBJ) [28] due to the
dot–chain interface in the T-shaped geometry [29].
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Fig. 4 Conductance of the
model containing five sites with
fixed parameters and tuned to 2d
� −1, Δ � 0.5, and Γ � 1. a
Hopping varying according to h
� Δ/0.1, and dot–chain
coupling of λ � 3.5 and λ � 7.5.
b Hopping varying according to
h � Δ/0.2, and dot–chain
coupling of λ � 3.5 and λ � 6.5

Fig. 5 Conductance of the device containing five sites with parameters
tuned and fixed at 2d � 0 and Γ � 1 with pairing amplitudesΔ � 2 and
a hopping of h � 0.4 and dot–chain coupling of λ � 2h, b hopping of

h � 0.6 and dot–chain coupling of λ � 2h, and c hopping of h � 0.8
and dot–chain coupling of λ � 2h

To decrease the number of interactions between the chain
sites and thereby the number of peaks adjacent to the MBS
in the zigzag chain of atoms containing five sites, we used
the more general topological situation to analyze this effect,
with μ � 0 and hα � 2, 5Δα .

The results show that, in the more general topological
situation, the effect of disorder in the chain remains for sites
4 and 5.

The effect of disorder in the chain causes fluctuations in
the spacing of the levels at the sites, but does not affect the
qualitative structure; however, at site 5, Fig. 5a–c shows the
elimination of a pair of adjacent peaks at the zero mode.

The results for this more realistic model for obtaining
MBS in linear chains, networks, and nanowires are in agree-
ment with literature.

This work represents an analytical and numerical study
in systems with experimentally accessible parameter values.
We have also shown that it can be applied to systems inwhich
the QDs [30] are defined by other processes, for example,
formed by InAs, InSb, or a single nanowire.
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