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Abstract
Amodern circuit board consists of several thousand interacting electronic components. Reduced-order models are often used
to rapidly simulate such systems for design purposes, which require the testing of large numbers of design configurations.
Reduced-order simulators, such as SPICE, are often used, which are based on a lumped mass nodal analysis. While the
intended use of such models is for rigid and isothermal systems, they are also used in order to acquire the temperature
evolution in integrated circuits (IC) by computing the dissipation produced in components such as transistors. Generally,
reduced-order circuit simulators are not as accurate as a detailed, computationally expensive, direct finite element method
(FEM) simulation of an electromagnetic system. In this paper, we determine the inaccuracies introduced in a reduced-order
model by simulating the same system by means of a detailed three-dimensional, coupled, and nonlinear FEM analysis
for electromagneto-thermomechanical fields. Specifically, we compare results from a one-dimensional SPICE simulation
to the three-dimensional transient FEM computation. Using SPICE, we calculate the electric potential with the known
resistance providing Joule heating of a resistor on an IC. In an FEM computation, we solve coupled governing equations for
electromagnetic potentials, determine electric current distribution, and integrate over the continuum body in order to calculate
the dissipated power. We find out that there is an up to 30% of discrepancy between computations from SPICE and FEM in
terms of the dissipation. After an intensive study explained in this manuscript, we obtain the root cause of the aforementioned
significant difference between SPICE and FEM. The geometrical simplification from three-dimensional continuum to a one-
dimensional model brings in an inadequate assumption on the boundary conditions. This assumption generates a significant
error in the determined power from SPICE in the case of a resistor, concretely a standard micro-metal electrode leadless face
(MELF) studied herein.

Keywords Integrated circuits · Reduced-order models · Thermomechanical response · Finite element method

1 Introduction

Electric circuit design is greatly supported by circuit sim-
ulators. One of the widely established codes is SPICE [1],
and it is based on the elementary nodal relations between
electronic devices. Every component is dealt as a black box
having an input and output. The response of every single
component is known. Parallel or in series, connections of dif-
ferent components create an integrated circuit design and the
elementary rules in electric engineering establish an overall
system response computed by, for example, SPICE algo-
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rithm. The general idea is based on Kirchhoff’s law, which
states that the total electric current entering a node and the
total electric current leaving that node are equal. This bal-
ance is fundamental, and for every single node, this basic
law generates one equation to fulfill. In a circuit with hun-
dreds of components, we have a system of only hundreds of
equations solved in less than a minute with a regular lap-
top. Hence, such a circuit simulator is a powerful support
in engineering design. It is simple, fast, and reliable for non-
dissipative systems. Before the production stage, one can test
and develop the suggested design at (nearly) no cost.

A circuit simulator reduces the complexity of a system
by means of four assumptions. First of all, the components
are analyzed as being isolated, i.e., the components have no
interactionswith eachother. Second, the components are sim-
plified and their geometric shape is completely ignored in a
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SPICE

Isolated components
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Simplified geometryNo dissipation

Fig. 1 Diagram of assumptions necessary for the circuit simulator
SPICE

circuit simulator. Third, all components are modeled as rigid
bodies. Fourth, connections (solders, pads, traces, and vias)
are perfect conductors such that no dissipation is modeled.
These assumptions are shown in Fig. 1; we want to discuss
their effects to the accuracy.

It is important to remark that in the industry, these simpli-
fications are seen critical and different strategies are used to
overcome the inaccuracy determined with the aid of experi-
ments. Especially in nanometer length scale, the deficiencies
are well known, and in field effect transistors like CMOS,
MOSFET, FinFET, the reduced size introduces many chal-
lenges in predicting the system response accurately. Many
amendments to the usual SPICEmodel needs to be made, for
example, see [2–5]. The justification of the model is estab-
lished by using numerical simulations of more sophisticated
models. We want to start a discussion in the microme-
ter length scale, where quantum mechanical effects can be
neglected and continuum mechanics approach holds. Espe-
cially in designs of an IC, the thermal management is of
paramount importance. In this work, we want to test the
aforementioned assumptions and their effects on heat pro-
duction. Therefore, we will use the dissipation computed by
SPICE and compare it to a numerical solution of the detailed
model based on finite element method (FEM).

The first assumption, isolated components, results in a
system response in any length scale. Considering high-
frequency applications, we know that an induced magnetic
field affects the distribution of electric charges in wires.
Instead of a bundle, litzwires are used tominimize this effect.
In low-frequency applications, induced magnetic effects are
small such that they are negligible even in short distances.
As a natural consequence of miniaturization, the compo-
nents are built denser and interaction between components
might be necessary even in the case of low-frequency appli-
cations. We will investigate this condition by varying the
frequency and observe that the total amount of the dissi-
pated heat remains equal although the charge distribution
alters. The second assumption eliminates any deformation.

We will model the complex geometry with all connections
as a deformable continuum body and determine that no sig-
nificant changes occur owing to the small displacements in
a realistic design. The third assumption reduces the system
to a nodal analysis by neglecting the geometric shape. We
will model a resistor widely used with all its connections
and soldering as well as board and traces. Additionally, the
fourth assumption ignores all different connections, and by
modeling all connections of the resistor with their material
properties (electric and thermal conductivity) as rigid bodies,
we will find out that the second and fourth assumptions are
responsible for inaccuracies in the heat generation.

Since a circuit simulator computes a simplified system, it
is fastwith respect to the FEMcomputation. Therefore, it is of
interest to pair SPICE and FEM. Especially, the assumption
of no dissipation is overcome by first obtaining the Joule’s
loss (power, heat) from SPICE and then running FEM analy-
sis to compute the temperature distribution in the system, see
[6,7]. In a rigid and isothermal system, the dissipation con-
sists of Joule’s loss, and for many applications, the results
are appropriate, see [8]. Generally speaking, dissipation con-
sists terms due to the heat conduction as well as due to the
irreversible deformation. In order to solve SPICE and FEM
separately, we have to accept that the system is decoupled,
see [9, Sect. 2.4]. In order to involve the deformation, again
after assuming that mechanics and electromagnetism can be
decoupled, in a similar fashiononeneeds to introduceSPICE-
like models based on several FEM calculations, see [10].
In this setting, mechanics and electromagnetism are treated
separately with a weak coupling. If the application deserves
a more accurate coupling, an iterative scheme is used, for
example, see [11]. It is challenging to justify the decoupling
as we will see the dissipation results in an inherent coupling
of mechanics, thermodynamics, and electromagnetism.

For most of the applications, aforementioned assump-
tions are adequate and the suggested designs work. From
smartphones to controllers in a spaceship, various technolog-
ical devices are constructed by using several assumptions.
Increasing complexity of ICs introduces yet to be solved
problems, see [12]. For example in printed circuit boards
(PCBs) used in high frequency, so-called S-parameters are
introduced to match the inaccuracy of response function
to the experimental values. We aim at comprehending the
taken assumptions such that we can judge their feasibility
and even ignite newer modeling methods without introduc-
ing correction parameters. Consider a transformer embedded
in an epoxy. We can simulate the system response under
the assumption of a rigid system. The design would work
as expected, with an unexpected consequence of an audible
noise, see [13]. Electromagneto-restriction is a shape change
of the electronic components, and this deformation creates a
noise. In a laptop, a sophisticated motherboard design con-
sists of hundreds of components creating a specific noise by
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operating, commonly called “coil whine.” Not only unpleas-
ant, this effect is a security problem, see [14].

A transient, nonlinear, and coupled system of deformable
bodies subject to electromagnetic fields is modeled in [15,
Chap.3]. In this work, we exploit the strategy and apply for
micrometer length-scale systems in order to test the usual
assumptions and simplifications done in SPICE models.

2 Governing equations

For a solid continuum body, we aim at computing electric
potential φ in V(olt), magnetic potential A in T(esla)m(eter),
displacement u in m, and temperature T in K(elvin). We
simply list the necessary equations and refer to [15, Chap.3]
for their elaborate derivation. All quantities are expressed
in a Cartesian coordinate system, and we use the standard
tensor notation with the summation convention. The electro-
magnetic potentials are used to obtain electric field Ei and
magnetic flux (area density) Bi as follows:

Ei = − ∂φ

∂Xi
− ∂Ai

∂t
, Bi = εi jk

∂Ak

∂X j
, (1)

where Xi indicates the reference position of particles. The
current position is denoted by xi such that the displacement
reads ui = xi − Xi . We will have small displacements with
respect to the geometric dimensions in the applications such
thatwe neglect any geometric nonlinearities.Hence, a deriva-
tive in Xi and xi is identical. From the electric field and
magnetic flux, we acquire charge potential Di and current
potential Hi by means of Maxwell–Lorentz aether rela-
tions:

Di = ε0Ei , Hi = 1

μ0
Bi . (2)

The specific electric charge, z, in C(oulomb)/k(ilo)g(ram) is
separated into free and bound charges. In the same fashion,
we can propose to separate the charge and current potentials,

Di = Di − Pi , Hi = Hi + Mi , (3)

into potentials caused by the free charges,Di ,Hi , and poten-
tials effected by the bound charges, Pi , Mi . Since we have
the aforementioned Maxwell–Lorentz aether relations,
we need constitutive equations either for Di , Hi or for Pi ,
Mi . For computing the electric potential, we use the balance
of electric charge and one Maxwell equation

∂ρz

∂t
+ ∂ Ji

∂Xi
= 0, ρz = ∂Di

∂Xi
. (4)

For the total electric current in the laboratory frame, we use

Ji = J fr.i + ∂Pi
∂t

+ εi jk
∂Mk

∂X j
,

J fr.i = J fr.i + ρzfr.vi = J fr.i + ∂D j

∂X j
vi , (5)

where we need a constitutive equation for the electric current
of free charges in the material frame, J fr.i . For computing the
magnetic potential, we use another Maxwell equation:

− ∂Di

∂t
+ εi jk

∂Hk

∂X j
= Ji . (6)

After inserting Maxwell–Lorentz aether relations and
Lorenz’s gauge:

ε0
∂φ

∂t
+ 1

μ0

∂Ai

∂Xi
= 0, (7)

we obtain

ε0
∂2Ai

∂t2
− 1

μ0

∂2Ai

∂X j∂X j
= Ji , (8)

as the governing equation for the magnetic potential Ai . For
computing the displacement, we use the balance of linear
momentum:

ρ
∂2ui
∂t2

+ ∂(D × B)i

∂t
− ∂(σ j i + m ji )

∂X j
− ρ fi = 0, (9)

where we have introduced the electromagnetic momentum
density (per volume), (D × B)i , and Maxwell stress:

m ji = −1

2
δ j i (Hk Bk + DkEk) + Hi B j + Dj Ei . (10)

For the Cauchy stress, σ j i , we need a constitutive equation.
The specific body force, fi , is due to gravitation, and its value
is known. For computing the temperature, we are going to
use the balance of entropy:

ρ
∂η

∂t
+ ∂
i

∂Xi
− ρ

r

T
= �, (11)

where the entropy flux is given by 
i = qi/T with the heat
flux qi . For the specific entropy, η, as well as for the heat flux,
qi , we need constitutive equations. The entropy production:

� = − qi
T 2

∂T

∂Xi
+ 1

T

(
dσ j i − Pj Ei + Mi B j

) ∂vi

∂X j

+ 1

T
Ei J fr.i , (12)
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will be determined after defining constitutive equations for
the heat flux, qi , for the dissipative stress, dσ j i , for the electric
polarization, Pi , for the magnetic polarization, Mi , and for
the free electric current in thematerial frame, J fr.i . The electric
field in the material frame is given by,

Ei = Ei + εi jkv j Bk . (13)

After a thermodynamical investigation as in [15, Sect. 3.5],
for an elastic material, we acquire the following linear con-
stitutive equations:

qi = − κ
∂T

∂Xi
+ ςπT , J fr.i = ςπ

∂T

∂Xi
+ ςEi ,

dσ j i = Pj Ei − Mi B j ,

σ j i = Pj Ei − Mi B j − C jiklαkl(T − Tref.) + C jiklεkl

− T̃k ji Ek − S̃k j i Bk,

η = c ln

(
T

Tref.

)
+ 1

ρ
Ci jklαklεi j − 1

ρ
T̃i jkα jk Ei

− 1

ρ
S̃i jkα jk Bi ,

Pi = − T̃i jkα jk(T − Tref.) + T̃i jkε jk + ε0χ
el.
i j E j

+ R̃ ji B j ,

Mi = − S̃i jkα jk(T − Tref.) + S̃i jkε jk

+ R̃i j E j +
(
µ−1
mag.

)
ik

χel.
k j B j , (14)

under the assumption that polarization is reversible, in
other words, we neglect electromagnetic hysteresis. Mate-
rial parameters, namely thermal conductivity κ , electrical
conductivity ς , Peltier or thermoelectric parameter π , stiff-
ness tensor Ci jkl , coefficients of thermal expansion αi j ,
piezoelectric tensor T̃i jk , piezomagnetic tensor S̃i jk , specific
heat capacity c, electric susceptibility χel.

i j , magnetoelectric

coupling R̃i j , magnetic susceptibility χ
mag.
i j , magnetic per-

meabilityμ
mag.
i j , need to be determined by experiments. For a

homogeneous material, the parameters are constant in space.

3 Numerical method of solution

Thegoverning equations augmented by the constitutive equa-
tions form a set of differential equations called the field
equations. We obtain them from Eqs. (4), (8), (9), (11) as
follows:

∂Di,i

∂t
+

(
J fr.i + viD j, j + εi jkMk, j

)
,i

= 0,

ε0
∂2Ai

∂t2
− 1

μ0
Ai, j j = J fr.i + viD j, j + ∂Pi

∂t
+ εi jkMk, j ,

ρ0
∂2ui
∂t2

+ εi jk
∂D j Bk

∂t
− (σ j i + m ji ), j − ρ0 fi = 0,

ρ0
∂η

∂t
+ 
 j, j − ρ0

r

T
= �, (15)

where we have introduced the notation “i ,” indicating a par-
tial differentiation with respect to Xi . These field equations
for the primitive variables, {φ, Ai , ui , T }, are coupled and
nonlinear partial differential equations in space and time.
We will solve them by using finite difference method in time
and finite element method in space. We refer to [16] for an
elaborate derivation of the integral forms presented in the
following.

For the time discretization, we use the so-called backward
Euler scheme, which is stable for real-valued problems. For
the space discretization, wemultiply each field equation with
a test function, {δφ, δAi , δui , δT }, and use an integration by
parts in order to reduce the differentiability condition of the
terms. In other words, we weaken the formulation.We obtain
the weak form for φ,

Fφ =
∫

�

(
−

(
Di − D0

i

)
δφ,i − �tJ fr.i δφ,i

−
(
ui − u0i

)
D j, jδφ,i − �tεi jkMk, jδφ,i

)
dV

+
∫

∂�I
Ni�tεi jk�Mk, j �δφ dA, (16)

and for Ai ,

FA =
∫

�

(
ε0

Ai − 2A0
i + A00

i

�t�t
δAi + 1

μ0
Ai, jδAi, j

− J fr.i δAi − ui − u0i
�t

D j, jδAi − Pi − P0
i

�t
δAi

+ εi jkMkδAi, j

)
dV , (17)

where jump conditions are applied over the interface �I

between two different materials and �. . .� indicates the dif-
ference of the value between two adjacent materials. Models
will be embedded in air, so the computational domain’s
boundary is far away from the object under investigation.
On boundary of the computational domain, φ and Ai are set
to zero since we expect electromagnetic potentials to dimin-
ish far away from the continuum body. With the analogous
approach, we obtain the weak form for ui ,

Fu =
∫

�

(
ρ0

ui − 2u0i + u00i
�t�t

δui − σ̄ j i, jδui + τ j iδui, j

− ρ0 fiδui

)
dV +

∫

∂�I
N j �σ̄ j i �δui dA. (18)

123



Journal of Computational Electronics (2018) 17:625–636 629

FEM

Rigid and isothermal system Form = Fφ + FA

Rigid bodies Form = Fφ + FA + FT

Deformable system Form = Fφ + FA + Fu + FT

Fig. 2 Diagram of different types of FEM analysis leading to more sophisticated models

where the total stress σ tot.
j i = σ j i + m ji is decomposed into

terms consisting of derivatives of the primitive variables, τ j i ,
and consisting only the primitive variables but no derivatives,
σ̄ j i , as follows:

τ j i = −1

2
δ j i (Hk Bk + DkEk) + Hi B j + D j Ei

+C jiklεkl − T̃k ji Ek − S̃k j i Bk,

σ̄ j i = −C jiklαkl(T − Tref.). (19)

This approach is of importance in order to apply the inte-
gration by parts only to the terms where it is needed. On
the boundary �, we assume that the deformation of the air
is given; concretely, we set it zero. Although we compute
the displacement of the embedding air by using a fictitious
modulus, its value is not accurate and will not be presented
as a result. In the same fashion, we acquire a weak form for
T after implementing the condition that the heat flux toward
surface normal is continuous

FT =
∫

�

(
ρ0

(
η − η0

)
δT − �t
iδT,i − �tρ0

r

T
δT

−�t�δT

)
dV , (20)

and assume that on the boundary of the embedding air, the
temperature is given by Tref. = 300K. A simulation starts
with the given initial conditions, namelyφ = 0, Ai = 0, ui =
0, and T = Tref., within the whole computational domain.
The primitive variables are computed over time such that the
weak forms are fulfilled.

Now we have the possibility to solve different problems
in various settings. For example, a rigid and isothermal body
can be solved by using

Form = Fφ + FA. (21)

If the temperature distribution is necessary, we canmodel the
body as rigid and solve

Form = Fφ + FA + FT . (22)

The most general solution is of course

Form = Fφ + FA + Fu + FT . (23)

We have compiled these different types of FEM solutions in
Fig. 2, which will be used in the next section for testing the
SPICE models for resistor. As expected, more complexity
increases the computation time as well as the accuracy of the
model problem. By setting one or more material parameters
in the constitutive equations, we can test the importance of
assumptions about the system response.

4 Applications

In this section, we will examine some common design sim-
plifications in the electric circuit design. Wemainly compare
results from a one-dimensional SPICE simulation to the
three-dimensional transient FEM computation. We focus on
the dissipation in a circuit design, since the thermal man-
agement is a critical issue in electronic design. In the most
general case, the dissipated power, T�, alters the tempera-
ture. As aforementioned, for an elastic material, we obtain

T� = − 1

T
qi T,i + Ei J fr.i . (24)

In a conductor, we expect that the production by the electric
current is homogeneous. Based on this, we may approximate
the temperature distribution in a conductor as constant lead-
ing to suppression of the first term in the production, T�.
Then, the production or generated power is given by the so-
called Joule’s heat (loss), Ei J fr.i . Since Ei is in V/m and J fr.i
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is in A(mpere)/m2, the contraction Ei J fr.i results in a power
density (per volume). In FEM computation, we will integrate
over the continuum body and calculate the dissipated power
in W(att). By using a circuit simulator, we can calculate the
electric field and current giving us Joule’s loss in W at a
node for a comparison with the FEM computation.

We use PySPICE with NG-SPICE coded in Python for
all SPICE calculations, [17]. For FEM, we use FEniCS in
Python and visualize in ParaView 5.3, [18–20]. Geometries
are constructed in Salome 7.5. All codes and geometries used
in this section are publicly available in [21] licensed under
[22] in order to encourage scientific exchange.

4.1 Skin and proximity effects

Consider a surface mount technology (SMT) resistor, like
a metal electrode leadless face (MELF), of type 103, i.e.,
10k� resistor on a circuit. We simulate resistor as a rigid
and isothermal body, i.e., only electromagnetic potentials φ

and Ai are computed within the computational domain. Two
cylindrical resistors are embedded in air as seen in Fig 3.
The resistors and air are modeled as rigid, isothermal bodies,
leading to

c = 0, κ = 0, Ci jkl = 0, T̃k ji = 0, S̃k j i = 0, (25)

for air as well as resistors. Moreover, we choose

ς = 3 × 10−15 mS/mm, χel. = 0, χmag. = 0, (26)

for air and

ς = �

R a
, a = πr2, r = 0.01mm

⇒ R = 10 k� =̂ 10mS−1,

χel. = 0, χmag. = 1 × 10−5, (27)

for the resistors based on the values of copper with the length
of the resistor �, and radius r . The inertial term in the bal-
ance of charge, namely the time rate of divergence of free
charge potential, becomes dominating if the electromagnetic
fields vary quickly in time. For higher frequencies, the diver-
gence term results in concentration of free charge on the
surface of the resistors with round cross-sectional profiles.
This phenomenon is called skin effect. Alternate current
(AC) generates electromagnetic fields varying in time. This
implies a magnetic field, which alters the charge distribu-
tion in the environment. Therefore, both resistors affect each
other, which is known as proximity effect. Skin and proximity
effects are addressed in a transient three-dimensional solution
as shown in Fig 3. In SPICE, such effects are ignored under
the assumption that these effects are negligible. If the tests
show a significance, it is possible to determine S-parameters

Fig. 3 Left: geometry of two rigid and isothermal resistors connected
in parallel, modeled in mm. Right: distribution of electric current due
to the skin and proximity effects

for future designs such that the skin and proximity effects
are involved for the electromagnetic response function. For
a thermal management, i.e., for computing the dissipation,
there are no such parameters known to the best knowledge
of authors. Herein, we want to examine the inaccuracy intro-
duced to the dissipation by neglecting skin and proximity
effects.

Wemodel the resistors as connected in parallel by exclud-
ing the connecting vias from the FEM simulation.We simply
generate a potential difference by setting the electric potential
on one end of each resistors,

φ = A sin(2πνt), A = 12V, (28)

and by grounding the other end, i.e., setting as 0V. In a low-
frequency excitation, the distribution of the electric current
is homogeneous; however, in a high-frequency application, it
concentrates to the surface far from the neighboring conduc-
tor, as presented in Fig 3 for ν = 500MHz at the end of one
period, t = 2×10−9 s. Although the distribution changes, the
total amount of the electric current remains the same, so the
overall dissipation is not affected from the skin and proximity
effects. We run several simulations in different frequencies
and compare them with their SPICE calculations as seen in
Fig 4. No significant difference can be seen between SPICE
and FEM, for 500Hz and 500MHz AC excitations.
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Fig. 4 Frequency variations and comparing SPICE to FEM in order to
test the skin and proximity effects
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Fig. 5 Size scale variations and comparing SPICE to FEM in order to
examine the effect of geometrical length scale

4.2 Size effects

We have used a relatively simple geometry, a cylinder as the
MELF resistor. Circuit simulator determines the current and
potential, such that the dissipation is computed by means of
them. For the 2 cylinders as MELFs, we simply have

2IU = 2U 2

R
, (29)

where I is the total amount of electric current flowing through
the cross-sectional area of one resistor and R is the resistance
of this resistor. In each resistor U = 12V varying harmon-
ically and R = 10k� as set by the type of the MELF. We
have calculated the electrical conductivity

ς = �

R a
, a = πr2, (30)

by using the length of resistor �, as well as cross-sectional
area a. Therefore, the dissipationmay depend on the geomet-
ric length scale. We simulate different length scales, namely
length is 0.1 and radius is 0.01 in m, and in mm. The results
of these two simulations in different length scales can be seen
in Fig. 5. No significant difference is observed such that the
miniaturization seems to be adequate for SPICE models, as
long as the quantum mechanical effects can be neglected.

Fig. 6 Geometry of micro-MELF soldered on a piece of epoxy board
and all geometry is embedded in air (transparent gray). Colors: board is
green, traces and solder pads are yellow, solder is white, ceramicMELF
is light blue, and metallic caps on the MELF are orange (Color figure
online)

4.3 Geometrical simplification

As is usually the case, we have ignored the real geometry and
modeled the MELF resistor as a cylinder. This assumption is
justified as a consequence of having negligible resistance in
the conductor with respect to the resistor. In order tomake the
ideas more concrete, in reality, MELF is a ceramic cylinder
placed on top of an epoxy-based composite board as soldered
to the copper traces. Copper traces carry the electric signals,
and this transmission is assumed to be perfect for small dis-
tances as in an IC. Since MELF is ceramic (insulator), the
electrical contact is established through metallic caps at the
both ends of the cylinder. Inside the ceramic cylinder, a thin
sheet (usually copper) is laser-cut in the middle such that the
effectively conducting area is precisely constructed, leading
to an accurate resistivity. We skip a modeling of the inner
of the cylinder and apply the electrical conductivity of the
MELF to the ceramic cylinder as a whole. A realistic micro-
MELF resistor of type MMU 0102 is seen1 in Fig. 6. Since
the conductivities of the traces, pads, solders, and caps are
much higher than the cylinder, their CAD accuracies are not
important. The objective is to determine the geometric effect
of the cylinder with caps having an electric contact only on
a fraction of the faces.

SPICE implementation is identical to the previous case;
only for a single resistor, we obtain the half of the power
dissipation. In FEM, we conduct three different simulations.
First, we model a rigid and isothermal body of the presented
geometry in mm for a half period. Air embeds the polyimide
board with Al2O3 ceramic MELF and its nickel-steel caps,

1 All dimensions are taken from http://www.farnell.com/datasheets/
572574.pdf.
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Table 1 Material parameters for the rigid and isothermal simulation

Air Copper pads, traces Ceramic MELF Nickel-steel caps Polyimid board SnAg35 solder

χel. 0 0 8.1 0 2.4 0

χmag. 0 − 10−5 0 0 0 0

ς in mS/mm 3 × 10−15 5.8 × 107 �/(R a) ςcu × 18.75% 0 1/0.123 × 106

Table 2 Additional material parameters for the non-isothermal case

Air Copper pads, traces Ceramic MELF Nickel-steel caps Polyimid board SnAg35 solder

ρ in Mg/mm3 1.2 × 10−12 8960 × 10−12 3690 × 10−12 7900 × 10−12 1420 × 10−12 7370 × 10−12

κ in mW/(mmK) 0.0257 386 18 90 0.12 55

c in mJ/(MgK) 1005 × 106 390 × 106 880 × 106 440 × 106 1090 × 106 210 × 106

Table 3 Additional material parameters for the deformable structure

Copper pads, traces Ceramic MELF Nickel-steel caps Polyimid board SnAg35 solder

E in MPa 140 × 103 300 × 103 200 × 103 25 × 103 26.2 × 103

G in MPa 124 × 103 80 × 103

ν 0.3 0.34 0.3

α in K−1 18 × 10−6 8.1 × 10−6 18 × 10−6 12 × 10−6 19 × 10−6

which is soldered by SnAg35 lead-free solder to the copper
pad and traces. MELF is a cylinder of radius 0.55mm with
the cross-sectional area a. For the rigid and isothermal simu-
lation, material parameters are compiled in Table 1. In order
to cause significant temperature rise, we use R = 100� as
the resistance of the resistor. In each time step, Joule’s loss
is computed within the whole ceramic cylinder. In order to
ensure the reliability of the FEM implementation, we per-
form several test simulations. First, we validate the solution
in the case of different materials by using a simple geometry
after a comparison of the numerical solution to the analytic
solution. Second, we generate meshes with different space
discretization by increasing the degrees of freedom and test
the convergence. Both tests perform well and are discussed
further in Appendix.

The second FEM computation addresses the thermody-
namics and illustrates that the temperature deviates from
the reference value. In addition to the already mentioned
parameters, we use the material parameters in Table 2.
In this simulation, we neglect the thermoelectric coupling
π = 0V/K for every material. Only conductors have a ther-
moelectric coupling in reality.

The third FEM computation involves the elastic deforma-
tion. We avoid to implement piezomagnetic, piezoelectric,
and magnetoelectric effects, i.e., T̃ki j = 0, S̃ki j = 0, and
R̃i j = 0, respectively. We model all materials as isotropic,

αi j = αδi j , Ci jkl = λδi jδkl + μδikδ jl + μδilδ jk,

μ = G = E

2(1 + ν)
,

λ = 2μν

1 − 2ν
= (E − 2G)G

3G − E
= Eν

(1 + ν)(1 − 2ν)
, (31)

with only two of E,G, ν, see Table 3 for the implemented
material parameters. For air, we simply set the realistic
parameter α = 3.2 × 10−3 K−1 and the artificial values
λ = μ = 0.1MPa, which are very small with respect to
the moduli of other materials. Therefore, embedding air fails
to restrict motion of other components. Although we calcu-
late a fictitious displacement in the embedding air, we never
evaluate this.

We observe significant differences between SPICE and
FEM approaches, see results in Fig. 7. Obviously, the under-
lying geometry alters the dissipated power greatly. The main
reason behind lies in the assumption that the electric cur-
rent be homogeneous within the resistor. Although we have
modeled the cylinder as a homogeneous material of 100�

resistance and the potential difference is implemented nearly
homogeneous by means of nickel-steel caps of nearly zero
resistance, the distribution of the electric current is het-
erogeneous as seen in Fig. 8 at the quarter period, when
maximum electric potential difference occurs. The geom-
etry of the metallic caps and their contact surfaces affects the
distribution of the electric current within MELF. Moreover,
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Fig. 7 MELF modeled with SPICE versus FEM as a rigid, isotherm;
rigid, thermal; elastic, thermal system

Fig. 8 Electric current distribution as colors and denoted by the scaled
arrows on a cut of the ceramicMELF, electric potential’s distribution as
colors on a cut on the circuit board, at the quarter period (Color figure
online)

Joule’s loss is concentrated in the core of MELF between
caps. Therefore, in reality, the dissipated power is greater than
determined in a circuit simulator. By involving temperature
distribution and displacement, the dissipation within MELF
fails to change significantly. This fact is due to the small dis-
placements, see Fig. 9, as well as due to almost homogeneous
temperature distribution in the core, see Fig. 10. Although
displacements are small, coefficients of thermal expansion
are different between the adjacent components leading to
thermal stresses. By computing the displacements, inspec-
tion of thermal stresses is possible. If the sole purpose is to
determine the produced power, then a rigid and isothermal
computation on three-dimensional geometry is sufficient.

Generally, in a circuit simulator, the resistor is modeled
as a one-dimensional component such that the cylinder is a
line segment with beginning and ending nodes. The differ-
ence in electric potentials at these boundary nodes implies an
electric field with generated heat. If we want to mimic this
behavior in 3-D, we use a cylinder with boundary conditions
applied on the entire beginning and ending faces. In reality,
only the contact area between solder and caps is supplying
the electric current. This difference is the root cause of the
inaccuracy, and we wish to explain it by considering a sim-
plified model. For this purpose, the micro-MELF is modeled

Fig. 9 Displacement at the half of the period in themicro-MELF, scaled
3000 times for the sake of visualization

Fig. 10 Temperature distribution on a cut in the middle of the MELF,
at the half of the period

as a ceramic cylinder and we simply suppress board, solder,
pads, and caps. On this geometry, two simulations with dif-
ferent boundary conditions are performed: One uses only the
contact area between MELF and solder, we call it type A;
another uses the whole front and back faces for boundary
conditions, we name it type B. For the sake of clarity, we
mark these different selection of surfaces in Fig. 11. MELF
is modeled as a rigid and isothermal material embedded in
air; we perform simulations, where φ is set on both sides. On
one side, it is the same harmonic function, and on the other,
it is grounded. As seen in Fig. 12, the significant difference
is due to the model reduction to one-dimensional continuum.
We have selected one single component, namely MELF, out
of various devices used on a circuit board. The simplification
to one-dimensional components in circuit simulators relies
on the fact that the whole cross section is used in MELF. In
reality, within MELF, only a thin sheet conducts current. For
a better comparison, we modeled MELF as a ceramic mate-
rial with a given resistance such that the whole cross section
conducts. However, the implementation of boundary condi-
tions affects the heat generation greatly. We have observed
that only boundary conditions are relevant for a mismatch
between SPICE and FEM. Otherwise, SPICE is doing an
invaluable job for determining the overall system response
of an IC. In thermal analysis, we recall that there are stark
differences between SPICE and FEM. This fact is due to
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Fig. 11 Boundary conditions of type A (left) and type B (right) for the
simplified MELF model
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Fig. 12 Comparison of FEM results with type A and type B boundary
conditions to SPICE results

Joule’s loss being quadratic in the electric field. Therefore,
for an accurate thermal analysis, production of heat should be
computed by using a transient electromagnetism code such
as ours. In order to encourage more research, we make our
codes available in [21] licensed under [22].

5 Conclusion

A circuit simulator such as SPICE performs a fast and
reliable computation of a complex system response under
several assumptions, namely isolated components, simplified
geometry, rigid bodies, and neglecting dissipation. Espe-
cially on an IC, thermal management is of great importance
and we have investigated the possible inaccuracies intro-
duced by these assumptions. For a micro-MELF, we have
presented a realistic, three-dimensional, coupled, and non-
linear solution based on the finite element method (FEM)
for electromagneto-thermomechanical fields, viz., electric
potentialφ, magnetic potential Ai , displacement ui , and tem-
perature T . The same system is simplified by assuming a rigid
body, ui = 0, and rigid as well as isothermal system, ui = 0
and T = Tref.. After a comparison of the dissipation in these
three-dimensional simulations to Joule’s loss obtained from
a one-dimensional computation on a circuit simulator, we
have found out that cutting down on the detailed geometry
leads to inaccurate results. For different electronic compo-
nents, we expect analogous results.

We want to emphasize, according to the presented obser-
vation, the strategy of a thermal analysis with the obtained
power from a circuit simulator is prone to inaccuracies. The
main reason for this phenomenon is the simplification of
the geometry leading to different boundary conditions than
in reality. We have modeled MELF as a ceramic cylinder
with homogeneous electric conductance. Actually, even this
model is an assumption since only a thin metallic sheet
inside the ceramic cylinder is conducting electric current.
We want to start a discussion and increase the awareness that
the geometry simplification can be held responsible for the
inaccuracies in thermal management of ICs. Assumption of
rigid bodies as well as isolated components is appropriate for
the micrometer length scale. Due to the nature of the used
materials, we have neglected piezoelectric, piezomagnetic,
magnetoelectric, and thermoelectric couplings in the simu-
lations. We encourage further studies to determine limits of
the very powerful circuit simulators in order to let designers
know, how far and whether to use or avoid them in certain
analyses.

Acknowledgements B. E. Abali’s work was supported by a grant from
the Max Kade Foundation to the University of California, Berkeley.

AppendixA:Ananalysisusingdifferentmate-
rials on a simple geometry

For a simple test of the code implementing different materi-
als, we generate a simple geometry. Four blocks of 1mm ×
1mm × 1mm are attached together in two different config-
urations: in series and in parallel. Two blocks are stitched
together as the (yellow) material with R1 = 100� and the
(blue) material with R2 = 500�, see Fig. 13. Referring to
Fig. 13, in case 1, we have four blocks, stacked in series,
where the same material is in the vertical direction. In case
2, we have four blocks, stacked in parallel, where the same
material is in the horizontal direction. For case 1, the total
resistance reads

R =
(
(R1 + R2)

−1 + (R1 + R2)
−1

)−1
. (32)

Fig. 13 Two configurations for testing different materials: in series
(left-case 1) and in parallel (right-case 2). The yellow material has a
resistance of R1, and the blue material is of R2 (Color figure online)
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Fig. 15 Models with increasing number of nodes, from top to bottom,
with 36,360 nodes (top), 51,567 nodes (middle), 56,950 nodes (bottom).
Surrounding air is not shown for the purpose of better visualization
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Fig. 16 Results of convergence test: L2 norm at different time instants
in a log–log plot (left), dissipation for a quarter period from the different
meshes (right)

For case 2, the total resistance is

R =
(
(R1 + R1)

−1 + (R2 + R2)
−1

)−1
. (33)

With a given potential difference in V

U = 12 sin(2π f t), (34)

the current I = U/R in A and power P = U I in W are
calculated and compared to the three-dimensional, transient,
FEM solution as well as SPICE solution in Fig. 14. All solu-
tions match exactly.

Appendix B: FEM convergence

The model has been tested for convergence by using three
different meshes. All triangulation has been done with Net-
GENalgorithmusing Salome. TheMELFmesh size has been
decreased such that the solution within ceramic is captured
more accurately. In Fig. 15, the three different meshes are
shown.We ran the rigid and isothermal code for thesemeshes
and plotted the results with the two approaches. First, the
conventional approach was used where the norm of the solu-
tion, φ, A1, A2, A3, over the wholemesh has been calculated
and plotted for different time instants in Fig. 16. The calcu-
lated power dissipation for a quarter period for three meshes
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is shown in Fig. 16. As expected, the linear and monotonic
convergence in log–log plot shows the accuracy of the FEM
code used in the analysis. Moreover, we emphasize that the
obtained solution used for comparison, the total dissipation
in the ceramic can be considered free of a appreciable numer-
ical error. In the simulations throughout the manuscript, we
use the mesh with 36,360 nodes.
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