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Abstract

We report that speed and energy efficiency of large-scale electronic structure simulations, which target realistically sized
systems consisting of multi-million atoms, can be hugely improved with offload-computing using graphics processing unit
(GPU) devices. For simulations of quantum dot devices that have ~ 1.5 million atoms and are described by a sp>d’s* tight-
binding (TB) model, a remarkable performance enhancement is obtained with asynchronous sharing of computing load in
host CPUs and Tesla K40 devices. Compared to the case when only host CPUs are used, sparse matrix-vector multiplications,
the core operation needed to solve Schrodinger equations, become remarkably faster leading ~ 1.5 speed-up of end-to-end
simulations with GPU devices. Asynchronous streams accelerate data-transfer reducing the associated overhead below ~ 15%
of the total wall-time. The speed and energy efficiency of TB simulations also turn out to be better with Tesla GPU devices
than those obtained with Intel Xeon Phi Knights Corner (KNC) coprocessors, such that Tesla K40 GPU devices save ~ 10% of
the wall-time and ~ 40% of the total energy consumed with KNC 7120 coprocessors for the target simulation. With technical
details of offload-computing that can be also applied to accelerate other numerical problems involving large-scale sparse
matrix operations, this work delivers practical information regarding the efficiency of GPU computing that has not been well
covered for empirical modeling of large-scale electronic structures.

Keywords Electronic structure simulations - Tight-binding approach - Heterogeneous computing - High-performance
computers

1 Introduction tures must involve a precise prediction with computer-aided

simulations coupled to quantum physics, because otherwise

Low-dimensional semiconductor structures have become of
critical importance with recent revolutionary progress in
lithographical technologies, [ 1-3] since they not only present
the fundamental framework for designs of advanced elec-
tronic devices in the nanoscale regime, [4,5] but also open
the possibility to find novel materials that may not be feasi-
ble with traditional bulk structures [6,7]. Solid understanding

of electronic and material properties of nanoscale struc-
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there would be a huge loss in time and cost stemming from
trial-and-error processes for determination of optimal con-
ditions in sizes, shapes, material species, and so on. In
particular, electronic structures have been a popular target
of quantum simulations since they reveal the key informa-
tion of low-dimensional structures, e.g., the band-structure
which provides clues for material and electronic properties
of nanoscale structures such as electrostatic profiles and car-
rier transport [8—10].

As semiconductor structures are downscaled in sizes,
their characteristics become more sensitive to atomistic
fluctuations such as interface roughness, non-ideal or unin-
tended doping, alloy composition and strain relaxation, and
associated quantum effects [11-14]. Also, experimentally
realizable modern nanoscale structures usually consist of
several million or more atoms though the core regions (e.g.,
nanowire channels or core-cells of quantum dot structures)
have sizes of just a few nanometers (nms), because, in many
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cases, these regions are surrounded by or connected to large
external layers that affect bias-dependent potential profiles
and energy-level splitting in core parts [14—16]. The nearest-
neighbor sp3d’s* tight-binding (TB) model, [17] which
represents a single atom with a set of 10 (20 with spin-orbit
couplings) bases and parameters that are fitted to reproduce
band-structures of bulk materials, has been popularly used to
study electronic structures of multi-million atomic systems,
and has been verified with the capability to present strong
connections to experimentally observed behaviors [5,8,18—
21] or guidelines for advanced designs of nanoscale devices
[22-24].

High-performance computing (HPC) clusters are essential
to simulate electronic structures of multi-million atomic sys-
tems with empirical methods like a TB approach, because the
size of Hamiltonian matrices, which needs to be diagonalized
to solve associated Schrodinger equations, is proportional
to the number of atoms residing in simulation domains.
Nano-Electronic Modeling tool (NEMO), which is a well-
known package of TB simulations [25,26], has established
the framework of large-scale electronic structure simulations
with traditional HPCs of multicore processors (CPUs), over-
coming the structural size-limit (< 10° atoms) of simulations
with density functional theory (DFT) [27]. However, general-
purpose graphics processing unit (GPU) devices, which have
attracted attention of HPC communities being utilized to
accelerate expensive scientific computations, [28-31] have
not been fully exploited yet for empirical modeling of large-
scale electronic structures that involves multi-million atomic
systems, although several pioneer works have reported
remarkable performance enhancement with GPU devices for
DFT simulations of electronic structures [30,31].

This work examines the utility of GPU devices for simu-
lations of extremely large-scale electronic structures with a
TB approach. Using our in-house code as a baseline that
has been recently introduced as quantum simulation tool
for advanced nanoscale devices (Q-AND), [32] we per-
form extensive code-refactoring with CUDA and benchmark
the performance using Si:P quantum dots (QDs) as target
devices, which are defined to be huge silicon (Si) layers
encapsulating a phosphorus (P) atom and have been studied
with a 10-band sp3d°s* TB model for designs of Si-based
quantum computers [20,21]. In particular, we justify the util-
ity of GPU devices by elaborating the following items: (1)
strategical details of offload-computing and asynchronous
data-transfer scheme with descriptions of major numerical
approaches for solving large-scale electronic structures, (2)
excellence of speed and scalability of end-to-end simulations
with Nvidia Tesla K40 devices, compared to the performance
measured in CPU-only nodes, and (3) benefits of simulations
with Tesla K40 devices (a single K40 device has 2880 CUDA
cores (745MHz) and 12 GB memory [33]) in terms of com-
puting time, data-transfer overhead and energy consumption,

particularly against the case with their Intel counterpart,
Xeon Phi Knights Corner (KNC) 7120 family (a single KNC
7120 coprocessor has 61 cores (1.24 GHz) and 16 GB mem-
ory [34]). Extending our latest study with KNC coprocessors
[32] to the area of GPU devices, this work delivers practi-
cal information for the efficiency of offload-computing that
has been rarely covered for empirical modeling of large-
scale electronic structures and would be thus beneficial to
researchers in the field of nanoelectronics who consider a
code-migration toward heterogeneous computing systems
supporting manycore devices via PCI-express (PCI-E) com-
munications, which take ~30% of top 100 HPC clusters in
the world [35].

2 Methods

All the simulations of Si:P QD electronic structures con-
sidered in this work employ a 10-band sp3d>s* TB model,
[27] which describes a single atom with a set of 10 orthog-
onal orbital bases (s, 3 X p, 5 X d, s*) ignoring spin—orbit
couplings. The size of a Hamiltonian matrix associated with
a specific atomic structure, therefore, becomes 10 times
larger than the number of atoms in the structure. As the TB
approach we employed assumes nonzero coupling energies
only among nearest-neighbor atoms, Hamiltonian matrices
become sparse and thus are constructed with a Compressed
Sparse Row (CSR) format [36]. Simulation domains are
parallelized with a hybrid utilization of Massage Passing
Interface (MPI) and OpenMP, so they are decomposed along
the x-direction with MPI processes where the y-z plane allo-
cated in a single MPI process is further decomposed with
multiple threads. (We note Ref. [32] presents a detailed illus-
tration of the domain decompositions with multicore CPUs.)
Hamiltonian matrices are then decomposed in a row-wise
manner as Fig. 1a shows. The Schrédinger equation solver,
which numerically tackles normal eigenvalue problems in
our case, is implemented with the well-known Lanczos
method [37].

The two core mathematical operations, which involve MPI
communications for parallel processing of Lanczos itera-
tions, are multiplication of a sparse matrix and a vector, and
dot-product of two vectors [37]. In particular, matrix-vector
multiplications take a significant portion of the end-to-end
computing time [32], becoming a hot spot that must be tack-
led to accelerate simulations with GPU devices. To achieve
this mission with offload-computing, we decompose a block
of the matrix belonging to a single MPI rank into two
sub-blocks in a row-wise manner, where the ratio of decom-
position is set as an input parameter in the unit of percentages.
As illustrated in Fig. 1a, we then place one sub-block of
the matrix in a single GPU device to process multiplications
simultaneously in host and GPU devices. Additional over-
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Fig. 1T A scheme of offload-computing for matrix-vector multiplica-
tions. a Each GPU device has a part of the block-matrix belonging to a
single MPI process in host, which sends/receives input/output vectors
to/from the associated GPU device. Each MPI process does not need to
send the whole input vector (Vin), since multiplications in a MPI process
can be done with only three block-vectors of Vin (one in itself, two in
its neighbor processes) as our TB model assumes nearest-neighbor cou-
plings. Upon the completion of multiplications, a GPU device just needs
to send one block of the output vector (Vout) back to its associated MPI
process. Host CPUs and GPU devices can thus perform multiplications
simultaneously with no heavy overhead of data-transfer. b Utilization
of pinned memory can further reduce the overhead of data-transfer, as
it not only boosts the speed of data-transfer (~ 3 x speed-up against the
case with pageable memory), but enables asynchronous data-transfer
by which Vout can be transferred back to host while host is performing
multiplications.

head, caused by transfer of input (Vin) and output (Vout)
vectors between host and GPU devices, must be paid. The
cost, however, may not be huge since we assume nearest-
neighbor couplings, where each MPI process needs to send
only three blocks of Vin (one in itself, two in adjacent MPI
processes) to the associated GPU device, and each GPU
device just needs to send one block of Vout back to the
associated MPI process after multiplications are completed.
This is clearly illustrated in Fig. 1a, where three blocks of
Vin and one block of Vout are the targets of data-transfer
between a MPI process (rank 2 of 4 processes) and its asso-
ciated GPU device. The cost of data-transfer can be further
reduced with aids of CUDA pinned (page-locked) memory,
[38] which leads ~ 3 x speed-up of data-transfer against the
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case with regular (pageable) memory. Utilization of CUDA
pinned memory also enables data to be transferred via asyn-
chronous streams, so Vout can be transferred from GPU
devices to host while host is still performing multiplications
as Fig. 1b shows.

Performance of sparse matrix-vector multiplications in
GPU kernels is known to be limited by global memory access
[39], which cannot be circumvented in our case as nonzero
elements of large sparse matrices (Hamiltonian) have to be
stored in global memory of GPU devices. We thus adopt
a single-instruction, multiple-thread (SIMT) model [40] to
increase the efficiency of global memory access. Figure 2
conceptually describes the advantage of performance that
can be achieved with a SIMT model. Figure 2a shows first 4
rows of the Hamiltonian matrix for a [100] Si unitcell, where
h(i,j) is the nonzero element at (row i, column j), and (NZ
k) denotes the element is the kth nonzero value of the matrix.
Figure 2b gives a fundamental view of how a GPU kernel can
access nonzero elements in first 4 rows with multiple threads.
Here, a single thread takes a single row of the matrix, so the
speed of global memory access for reading nonzero elements
will be determined by the thread which takes the row that has
the largest number of nonzero values. The optimized version
of Fig. 2b is shown in Fig. 2¢, which we use in the code. Here,
multiple threads simultaneously access multiple nonzero ele-
ments, where each thread accesses a single element. A group
of these threads, called as a CUDA WARP, [40] consists of
contiguous threads, and a single WARP in Tesla K40 devices
consists of 32 threads [41].

One of goals this work pursues is to assess the energy
efficiency of GPU (Tesla K40) devices for TB simulations
of electronic structures, via a comparison to data obtained
with Intel Xeon Phi (KNC 7120) coprocessors. For this pur-
pose, the real-time power-usage of a single computing node is
monitored while simulations are being performed. The power
used by host (CPUs and memory) is measured with Intel
RAPL library, [42] where power used by KNC and Tesla
devices are retrieved with Inte]l MICSMC utility and NVidia
Management Library (NVML), [43,44], respectively.

3 Results and discussion

Performance of TB simulations is carefully investigated
against a Si:P QD system that includes a single P atom at
the center of a cuboid [100] Si layer. The Si layer consists
of 30 x 80 x 80 [100] unitcells that spatially correspond to
a dimension of ~ 16nm x43 nm x43 nm. The target device
has a total of 1.536 million (M) atoms and involves a
15.36x15.36 M Hamiltonian system matrix. With a maximal
iteration of 10* and a convergence criterion of 10~ electron-
volt, the calculations are continued until either they reach the
maximal iteration or find 10 lowest energy-levels in conduc-
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Fig. 2 A conceptual illustration of performance benefits that can be
obtained with WARP-based parallelization of matrix-vector multipli-
cations in GPU kernels. a First 4 rows of a 10-band TB Hamiltonian
that describes a single [100] silicon unitcell, being stored in a CSR for-
mat. h(i,j) represents the nonzero element located in (row i, column
j) of the matrix, where (NZ k) denotes the matrix element is the kth
nonzero element of the matrix. b The pattern of access to global memory
when purely thread-based parallelization is used. Here, a single thread
accesses a single row of the matrix, so the speed of accessing the matrix
stored in global memory is determined by the thread which takes the
row that has the largest number of nonzero values. ¢ With WARPs, the
speed of multiplications can be improved since multiple threads (32
threads in this work) in a single WARP can access multiple nonzero
values simultaneously.

tion band. All the workloads are tested with up to 3 computing
nodes connected with an infinite-band 4 x FDR (56 Gbps)
network, where each node has 2 Intel Xeon E5-2670 v2
(2.5 GHz) processors (10 cores per processor), 128 GB DDR3
SDRAM (1866 MHz), and 2 PCI-E (16 x ) devices (Tesla K40
or KNC 7120). Since one MPI process is mapped to a single
PCI-E device as described in the previous section, all the sim-
ulations are performed with 2 MPI processes per node, where
a single MPI process has 10 threads to maximally utilize the
host computing resource. In each PCI-E device, multiplica-
tion is performed with a maximum number of threads that
the device can support.

Figure 3a summarizes the performance of calculations
measured in a single computing node with Tesla K40 devices.
The wall-time for end-to-end simulations is shown as a
function of computing load for multiplications imposed
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Fig. 3 Performance measured for the simulation of a
16nmx43nmx43nm cuboid [100] Si:P QD that involves a
~15M x 15M Hamiltonian matrix. a The wall-time of end-to-
end simulations measured in a single node, shown as a function of
computing load of matrix-vector multiplications imposed upon GPU
devices. The wall-time is minimized when GPU devices perform 70%
of multiplications. With a 70% load, the overall speed-up becomes
~1.46x compared to the case when host performs all the multiplica-
tions, mainly due to ~2.93 x speed-up of the process of multiplications
that includes data-transfer from GPU devices to host. b The strong
scalability measured up to 3 nodes is nice regardless of the computing
load of GPU devices (only the results at a 70% load are shown). Note
that the performance here is also better than that of NEMO3D-PETA
(Ref. [25]). ¢ Utilization of pinned memory accelerates data-transfer
and enables a simultaneous execution of data-transfer (GPUs — host)
and multiplications (host). With a 70% load, the speed of multiplica-
tions (MVMul+CP(DtoH)) and data-transfer from host to GPU devices
(CP(HtoD)) become ~1.4x and ~3x, respectively, compared to
the case when pageable memory is used. d WARP-based paralleliza-
tion (Fig. 2c) dramatically improves the speed of multiplications in
GPU kernels, leading ~7.5x speed-up against the case with purely
thread-based parallelization (Fig. 2b)

upon GPU devices (GPU Load) and is decomposed into
the following 5 components: the time taken for (1) MPI
Communication (Comm), (2) data-transfer from host to
PCI-E devices (CP(HtoD)), (3) multiplication including data-
transfer from PCI-E devices to host (MVMul+CP(DtoH)),
(4) dot-product (VVDot), and (5) other operations (Oth-
ers). As briefly mentioned in the Methodology section,
the two operations involving MPI communications, i.e.,
matrix-vector multiplication and vector dot-product, take a
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significant portion of the wall-time. In particular, the process
of multiplications, which includes data-transfer from PCI-E
devices to host, consumes ~ 56% of the wall-time when only
host CPUs are utilized. However, the time needed to com-
plete the process of multiplications reduces as the GPU Load
increases, and finally reaches its minimum when the GPU
Load is ~70%. A 70% GPU Load, consequently, minimizes
the wall-time, causing ~ 1.46x speed-up of end-to-end sim-
ulations compared to the case when host CPUs perform all
the multiplications (GPU Load is zero), which is driven by
~2.93x speed-up of the process of multiplications. Though
other operations (Others) also take a non-negligible portion
of the wall-time, they are performed in host CPUs and do
not belong to the targets of GPU computing in this work. We
note that more detailed discussion about the Others portion
can be found in the supplementary document.

It is not easy to clarify with exact numbers why the
wall-time is minimized at a ~70% GPU Load, because the
speed of sparse matrix operations is affected by many fac-
tors such as computing performance, memory bandwidth,
and latency stemming from data-transfer via PCI-E lanes.
The ideal roofline of the optimal GPU Load, however, can be
roughly estimated with the known theoretical (peak) perfor-
mance of host CPUs and GPU devices, by ignoring effects
of memory access and data-transfer. Let us say that the peak
performance (in the unit of FLoating point Operations Per
Second (FLOPS)) of host CPUs and PCI-E devices are Py
and Pp, respectively. The ceiling of the optimal GPU Load
(x) then can be calculated with a simple equation as follows:

X NPD
100—x ~— Py’

ey

which can be justified as long as we ignore effects of mem-
ory access and data-transfer, because the speed of overall
multiplications then would be maximized when host CPUs
and GPU devices complete computing operations at the same
time. For double-precision floating point operations, a single
computing node used in this work has Py of ~ 4 x 10!!
FLOPS (for 20 Xeon E5-2670 v2 cores), [45] and Pp of
~ 2.86 x 10'2 FLOPS (for 2 Tesla K40 devices) [33]. x is
therefore estimated as ~ 87.7%, which is a bit larger than
what we observe (~70%) due to the assumed ignorance.
Although the answer may not be strictly precise, Eq. (1) can
still explain why the optimal load in this work is observed to
be slightly larger than the one observed with Intel Xeon Phi
KNC 7120 coprocessors (~65%) for the workload and host
computing environment identical to the ones of this work,
[32], because the peak performance of a single Tesla K40
device (~ 1.43 x 10'2 FLOPS) is a bit larger than that of a
single KNC 7120 coprocessor (~ 1.21 x 10'> FLOPS) [34]
for double-precision operations.
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Figure 3b shows the strong scalability at a 70% GPU Load
that is measured in up to 3 computing nodes (2 MPI processes
per node). Here, we show that the scalability in multi-
ple nodes is quite nice even though the workload involves
offload-computing. The speed-up of end-to-end simulations
obtained with 3 computing nodes becomes ~ 2.34x against
the case with a single node, showing a ~78% scaling-ratio
(= 2.34 + 3) that is not very different to the one obtained
with host CPUs only (~ 85% = 2.6 = 3) in both this work
and Ref. [32]. It is straightforward that utilization of more
nodes reduces the computing load of both multiplication and
dot-product that a single MPI process has. It is, however,
worthwhile to emphasize the overhead of data-transfer is also
mitigated with an increasing number of computing nodes (or
MPI processes), because of the size reduction of Vin and
Vout (See Fig. 1a) that have to be transferred between host
and GPU devices during the process of multiplications. The
performance at a 70% GPU Load also turns out to be gener-
ally better than that of NEMO3D-PETA package, [25] which
adopts a MPI-based 3D domain decomposition for parallel
processing of TB simulations for large-scale electronic struc-
tures. We note that, for simulations with NEMO3D-PETA,
2/4/6 MPI processes are used to decompose the simulation
domain along the x-direction, as we did with our code. The
y-z plane belonging to each MPI process, however, is decom-
posed with 10 MPI processes instead of 10 threads since
NEMO3D-PETA only supports a MPI-based parallelization.

WARP-based parallelization of matrix-vector multiplica-
tions (Fig. 2c) and asynchronous data-transfer with pinned
memory (Fig. 1b) can drive remarkable speed-up of end-
to-end simulations. Figure 3¢, which shows the time spent
for the process of multiplications (MVMul+CP(DtoH)) and
data-transfer at a 70% GPU Load, delivers the following
messages: (1) the time spent for CP(HtoD) and CP(DtoH)
supports the speed of data-transfer itself increases with
pinned memory, showing ~3x speed-up against the case
when pageable memory is used. (2) The time spent for
MVMul+CP(DtoH) shows the benefit of data-transfer via
asynchronous streams. When pinned memory is used for
data-transfer, we find ~174s are saved for MVMul+CP
(DtoH) compared to the case when pageable memory is
used. This time-saving is a bit larger than the time saved
for CP(DtoH) (~ 139s), and the additional saving of 355 is
thus caused by the overlap of the two processes, i.e., multipli-
cations in host and data-transfer from host to GPU devices,
which is enabled by data-transfer via asynchronous streams.
Note the speed of multiplications itself in host (MVMul(H))
and GPU kernels (MVMul(D)) is not much affected by the
type of memory used for data-transfer. As Fig. 3d shows, mul-
tiplications in GPU kernels become drastically faster with
WARP-based parallelization, where we find ~7.5x speed-
up at a 70% GPU Load, compared to the speed measured
with thread-based parallelization (Fig. 2b).
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Fig. 4 Performance measured in a single computing node equipped
with GPU devices or Xeon Phi coprocessors. 70 and 65% of multiplica-
tions are performed in Tesla K40 devices and KNC 7120 coprocessors,
respectively, where it is known from Ref. [32] that a 65% load gives the
best performance with KNC 7120 coprocessors in the same condition
as the one used in this work. a The end-to-end simulation with Tesla
K40 devices takes ~ 10% less time (163 s) than the one with KNC 7120
coprocessors. b Most of the time-saving (163 s) driven with Tesla K40
devices comes from the process of multiplication (MVMul+CP(DtoH))
and transfer of input vectors (CP(HtoD)), which take less by 65 and 76's,
respectively, than the ones with KNC 7120 coprocessors. b Transfer of
output vectors (CP(DtoH)) with Tesla devices takes less by 48 s than the
one with KNC coprocessors, explaining ~75% of the time saved for
MVMul+CP(DtoH) (65s). Remaining ~25% of the time-saving (17s)
means the speed of multiplications itself is also improved with Tesla
K40 devices

Figure 4a shows the wall-time of end-to-end simula-
tions measured in a single computing node that has either
Tesla K40 devices or KNC 7120 coprocessors. 70 and
65% of multiplications are performed in GPU devices and
Xeon Phi coprocessors, respectively, where 65% is known
to be the optimal load for KNC 7120 coprocessors in
the same environment as the one used in this work [32].
With Tesla K40 devices, the wall-time is measured to be
~1700s, which turns out to be ~10% smaller than the
wall-time measured in a single node with KNC coproces-
sors (~ 1863 s). Figure 4b shows the times that are spent for
the process of multiplications (including data-transfer from
PCI-E devices to host) and data-transfer, where the labels
of MVMul+CP(DtoH), CP(HtoD) and CP(DtoH), are iden-
tical to the ones defined in Fig. 3. Here, the time-saving
driven by Tesla K40 devices (163s) mostly comes from
CP(HtoD) and MVMul+CP(DtoH), which take less by 76
and 65 s, respectively, than the times taken with KNC copro-
cessors. Time-saving of CP(HtoD) (48s) and CP(DtoH)
(76s) is due to the increased speed of data-transfer that
comes from utilization of the asynchronous stream through
pinned memory (Fig. 1b). The time saved for MVMul (17s)
implies the speed of multiplications itself improves with

Tesla K40 devices, although the multiplication processes is
also optimized in KNC coprocessors with Initial Many Core
Instructions (IMCI), [46] which support single-instruction,
multiple-data (SIMD) vectorization with 512-bit registers.
It should be noted our code also transfers data through the
asynchronous stream in KNC coprocessors [47]. Another
important point that must be clarified is that the pattern of
convergence and the accuracy of eigenvalues do not promi-
nently depend on the type of PCI-E devices. The fairness
in the performance comparison with different PCI-E devices
can be supported by Table S1 in the supplementary document,
which shows the total number of converged eigenvalues,
magnitudes of converged eigenvalues, and iteration numbers
at which eigenvalues are converged in computing environ-
ments with CPU-only, CPU+K40 devices, and CPU+KNC
COProcessors.

So far, we have used the speed (wall-time) as the only
indicator to assess the performance of TB simulations for
large-scale electronic structures. Another indicator that has
been widely agreed to be important to discuss the perfor-
mance of scientific computing in HPC clusters, however, is
the energy efficiency that is defined as the rate of computa-
tion performed for every watt (W) of power consumed (in the
unit of FLOPS/W). As Tesla GPU devices are considered to
be good solutions for energy-efficient computing, they are
popularly adopted by clusters in Green500 sites, [48] where
computing systems in Top500 sites citeR33 are ranked in
terms of energy efficiency that is normally quantified with
LINPACK benchmark [49]. The official energy efficiency
known for Tesla K40 devices (~ 6 x 10° FLOPS/W) is
nice, [33] particularly compared to the one of KNC 7120
coprocessors (~ 4 X 10° FLOPS/W) [34]. But this offi-
cial comparison may not be directly applicable to our target
problem, since LINPACK benchmark consists of computing-
bound problems involving full matrix operations, while the
core of TB electronic structure simulations involve large-
scale sparse matrix operations whose performance may not
be computing-bound [39].

To investigate the energy efficiency of TB simulations, the
power-usage of host and the two PCI-E devices is retrieved
as a function of elapsed time. Figure 5a, b shows the results
measured, while the simulation is being performed in a sin-
gle computing node with KNC 7120 coprocessors (with a
65% load) and Tesla K40 devices (with a 70% load), respec-
tively. Here, the pattern of power-usage is similar in both
cases such that it roughly consists of the following 3 steps:
(1) power-usage increases during the setup of the domain and
associated Hamiltonian matrix, (2) oscillates rapidly during
the process of Lanczos iterations, and (3) reduces back as the
workload is finished. Our results indicate the power-usage of
host (CPUs and memory) does not show clear dependency
on PCI-E devices during the whole runtime, but the power-
usage of KNC 7120 coprocessors is much larger than that
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(@)se (b)... the job is finished (wall-time). In particular, the energy effi-
—KNC 7120 —Tesla K40 . . . . .
—Host —Host ciency of TB simulations (1) can be approximated with the
;;; g following equation:
= I Mk =
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V 1 where Eoa and Tioa represent the total energy and wall-
% 103 23 % 1o 2e3 time consumed by a single job (or simulation), respectively.
(c) Elapsed Time (secs) (d) Elapsed Time (secs) As discussed with the results shown in Fig. 5, the total
o2 MmHost mmHost energy consumed to simulate the electronic structure of a
[JPCI-E Device [JPCI-E Device . . .
_ 1os 16 nm x43nm x43 nm cuboid [100] Si:P QD, is ~1165KJ
g = in a single computing node with KNC 7120 coprocessors
) < and ~680KJ in a node with Tesla K40 devices. As shown
j(;’eez g in Eq.(2), for the same workload, the energy efficiency
§ 5 % is inversely proportional to the consumed energy. Conse-
% - quently, by assuming the energy consumed by CPUs and

w/ KNC 7120 w/ Tesla K40
Device Category

w/ KNC 7120

w/ Tesla K40
Device Category

Fig. 5 Power-usage and energy consumption associated with the tar-
get simulation. a Power-usage of a single computing node with KNC
7120 coprocessors at a 65% load, and b with Tesla K40 devices at a
70% load of multiplications are shown as a function of elapsed time.
During the runtime of simulations, power-usage of host is not much
affected by PCI-E devices. Tesla K40 devices, however, use much less
power than KNC 7120 coprocessors. ¢ Real-time power-usage is time-
averaged, where we find Tesla K40 devices use ~ 158 W to perform
70% of multiplications, while KNC 7120 coprocessors use ~351 W
for 65% of multiplications. Host uses ~200W in both cases. d With
Tesla K40 devices, a computing node consumes ~58% of the total
energy consumed for the end-to-end simulation with KNC 7120 copro-
cessors. Focusing on the energy consumption of PCI-E devices, we find
KNC coprocessors consume ~ 754 KJ to perform 65% of multiplica-
tions, while Tesla devices consume ~ 300 KJ to perform 70%

of Tesla K40 devices. Figure 5c, which shows time-averaged
power-usage of host and PCI-E devices, reveals KNC 7120
coprocessors and Tesla K40 devices use ~351 and ~ 158 W,
respectively, while host uses ~200W in both cases. The
energy consumed by the simulation, which can be obtained
by multiplying the time-averaged power-usage by the wall-
time, is shown in Fig. 5d. When the simulation runs in a single
computing node with KNC 7120 coprocessors, host and two
PCI-E devices consume ~ 411 kilojoule (KJ) and ~ 754 KJ,
respectively, while corresponding values become ~ 380 and
~300K]J with Tesla K40 devices.

As addressed, the energy efficiency is defined as the rate
of computation performed for power consumption of 1 W.
If we introduce a new quantity, the total number of float-
ing point operations that a single job processes (NF), the
energy efficiency (FLOPS /W) can be extracted since FLOPS
is effectively equivalent to NF divided by the time taken until
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memory can reasonably approximate the energy consumed
by host computing resource, we find Tesla K40 devices
increase the energy efficiency by a factor of ~1.7 com-
pared to the case when KNC 7120 coprocessors are used. As
Tesla K40 devices and KNC 7120 coprocessors perform 70
and 65 % of total multiplication consuming 754 and 300 KJ,
respectively, the energy efficiency of Tesla K40 devices (o
70-+-300) becomes ~ 2.7 x against that of KNC 7120 copro-
cessors (o< 65+711). We note that the superiority of Tesla
K40 devices retrieved here (2.7 x) becomes more remark-
able that the one (1.5 x) obtained with the official efficiencies
known for the two PCI-E devices [33,34].

4 Conclusion

We have investigated the practicality of general-purpose
graphics processing unit (GPU) devices for empirical tight-
binding (TB) simulations of extremely large-scale electronic
structures, which target multi-million atomic systems and
involve sparse Hamiltonian system matrices of 107 or
larger degrees of freedom (DOFs). Major technical strate-
gies used to exploit the strength of GPU-based offload-
computing, which are data-transfer via asynchronous streams
and WARP-based parallelization, have been explained in
detail with short but clear descriptions of the numerical
method employed to solve large-scale Schrodinger equa-
tions in parallel. The gain of performance obtained by
offload-computing with Tesla K40 devices has been care-
fully analyzed for simulations of a phosphorus quantum dot
encapsulated by large silicon (Si) layers (Si:P QD), which
has 1.536 million (M) atoms involving a Hamiltonian matrix
of 15.36 M DOFs.

The wall-time of end-to-end simulations fluctuates as
the GPU portion of matrix-vector multiplications, which is
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the core numerical operation of electronic structure calcu-
lations, is varied, and reaches its minimum when Tesla K40
devices perform ~ 70% of multiplications so ~ 1.46 x speed-
up is observed with respect to the wall-time measured in
CPU-only nodes, which is mainly due to ~2.93 x speed-up
of multiplications. Compared to the case when Intel Xeon
Phi Knights Corner (KNC) 7120 coprocessors are used to
offload matrix-vector multiplications similarly as what is
done in this work, [32] Tesla K40 devices save ~ 10% of the
wall-time due to the speed-up of data-transfer, consuming
~ 58% of the total energy to complete the target simulation.
Although the purpose of this work is to present the details
of technical approaches for the performance improvement of
large-scale electronic structure simulations with GPU com-
puting, it should be noted that Tesla GPU devices are not
cost-competitive. We thus encourage readers to carefully
examine the benefit that can be obtained even at the expense
of additional costs, particularly before writing codes for GPU
computing. Readers, who are interested in the related analysis
for this work, may want to refer to Table S2 in the supple-
mentary document.
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