
J Comput Electron (2017) 16:419–430
DOI 10.1007/s10825-017-0967-x

Stochastic model for action potential simulation including ion shot
noise

Beatriz G. Vasallo1 · Fabio Galán-Prado1 · Javier Mateos1 · Tomás González1 ·
Sara Hedayat2 · Virginie Hoel2,3 · Alain Cappy2,3

Published online: 15 March 2017
© Springer Science+Business Media New York 2017

Abstract Development of bioinspired devices for energy-
efficient computing requires numerical models that can
reproduce the global electrical behavior of neurons. We
present herein a stochastic model based on the Monte Carlo
technique that can reproduce the steady state and the action
potential in neurons in terms of the probabilities for differ-
ent ions to cross the cell membrane. Gating channels for
sodiumand potassiumcations and leakage channels are taken
into account following the Hodgkin–Huxley equations in a
first stage. We then expand the model to include the time-
dependent ion concentrations in the intra- and extracellular
space and the related Nernst potentials, and the existence of
ion pumps to equilibrate the steady-state currents. Themodel
allows monitoring of the random passage of ions across a
biological membrane, and thus includes the influence of ion
shot noise. For small membrane areas, results evidence that,
when considered alone, shot noise has a discernible effect
on spiking in a wide range of excitation currents, not only
by leading to the onset of spikes but also by inhibiting their
appearance.
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1 Introduction

While current energy-hungry computing technology [based
on binary coding, von Neumann architecture, and comple-
mentary metal–oxide–semiconductor (CMOS) technology]
is reaching the limits of scaling-down rules [1], bioinspired
paradigms for analog computing and adaptive information
processing, which together could enable a drastic reduction
of energy consumption as well as performance enhancement,
are being considered.Wet living systems are naturally energy
efficient [2,3]; in particular, the human brain, composed of
about 1012 neurons interconnected by around 1015 synapses,
has a massively parallel and reconfigurable architecture and
can perform cognitive tasks while consuming around 20W
[4], that is, 104 times less than multicore-based supercom-
puters. Great efforts are being made to develop electronic
devices and circuits that mimic brain functionality by means
of bioinspired devices and neuromorphic architectures [5–
9]. In this context, generation of signals that resemble the
response of neurons for use as input excitations in the design
of such bioinspired electronic systems is necessary.

The key physical properties of neurons and axons are
related to their biologicalmembrane [10–12].ExistingMonte
Carlo (MC) molecular models are suitable for analysis of
biomembrane properties and neuron–axon electrical charac-
teristics [13–18], but the overdetailed computation of such
molecular simulators results in unacceptable computation
times and mainly focuses on a single ion channel, thus not
being especially appropriate for direct translation to elec-
tronic systems. In contrast, deterministic neuron models
[19,20] are usually made up of differential equations and
allow for relatively short simulation times; however, they do
not accurately describe the underlying stochastic response
properties arising from the microscopic correlation of neu-
ronal excitability. The main goal of this work is to develop
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an efficient stochastic numerical solution of such equations
based on the MC technique to assist with the design of
neuroinspired hardware by means of efficient generation of
signals emulating cell responses. The novelty of the pro-
posed stochastic model is that it includes in a natural way
the statistics of the random passage of ions through the cell
membrane (shot noise) and the associated fluctuations in
different characteristic quantities (ion current and concentra-
tion, Nernst potentials, membrane voltage, etc.), hence more
closely describing biophysiological processes.

Essentially, the biological membrane is an insulator sepa-
rating the intracellular and extracellular spaces. Both spaces
are electrolytes, being globally neutral but containing both
negative and positive ions. Three main types of ions must
be considered: sodium and potassium cations, Na+ and K+,
and chloride anions, Cl−. Ion channels through the mem-
brane connect the intra- (ICS) and extracellular space (ECS).
They belong to two categories: leakage and voltage-gated
channels. Voltage-gated channels can be opened or closed
depending strongly on the membrane potential Vm. Themost
widely accepted analytical model for the behavior of gated
channels is the so-called Hodgkin–Huxley (HH) model, as
described in [21], a classical reference for the dynamic behav-
ior of biological membranes. To achieve deep understanding
of neurological behavior in terms of electrical properties
(avoiding the chemistry involved), a straightforward MC
solver of the HHmodel accounting for the gating channels in
terms of the probabilities for ions to cross the membrane has
been developed. Our model reproduces the global electrical
behavior of the cell membrane, including the equilibrium
conditions and action potential, which is a voltage spike
(transporting neural information) consisting of a transient
increase followed by a short inversion of Vm activated by a
sufficient external current [21]. As an extension of the HH
model, we then include pumps into the model and monitor
the ion concentrations in the ICS and ECS to enable cal-
culation of time-dependent Nernst potentials following the
model of Hübel et al. [22]. The innovation in our approach
with respect to the HH and Hübel models is the inclusion of
ion shot noise when solving the system equations. Thus, our
MC code could be used to further evaluate the fluctuations
in the currents and ion concentrations provoked by the ran-
dom dynamics of the crossing ions, and their influence on
the membrane potential and spike generation.

As occurs in other physical systems, where miniatur-
ization increases susceptibility to noise, in the case of
cell membranes, reduction of their size (membrane area)
enhances the influence of fluctuations [23]. To evidence such
size-related effects, we explore a wide range of realistic val-
ues of membrane area from 1000µm2 (giant axons), for
which ion shot noise is negligible and thus deterministic
behavior is expected, to 1µm2 (brain synapses), where ion
shot noise becomes significant and may affect the membrane

potential dynamics. For areas below 1µm2 (subsynaptic
compartments), the number of ion channels involved is so
small that discrete consideration of the channels becomes
necessary and the present, continuous model starts to lose
validity.

At such small sizes, ion shot noise competes with ion
channel noise, whose influence also increases with decreas-
ing area [24]; despite the relevant role played by ion shot
noise when considered alone, our results show that it can
typically be regarded as negligible in competition with ion
channel noise [25,26]. Nevertheless, analysis of shot noise
in ion channels is of interest in itself, for example, because
of the information it can provide about ion dynamics in cell
membranes [27,28] or because of its possible influence on
gating analysis of open channels with very fast rates (gating
rates reaching the range above 1µs−1) [29].

We also remark that, while the time scale of spiking activ-
ity is in the range of milliseconds, the average time between
ions crossing a single open channel is in the range of nanosec-
onds, as shown by molecular dynamics simulations [28].

Thiswork is organized as follows: In Sect. 2, theMCmod-
els are presented. Section 3 presents the results; initially, we
validate the models by comparison with the direct solution of
the HH and extended model equations, then we analyze dif-
ferent situations of interest. In Sect. 4, the main conclusions
of the work are drawn.

2 Numerical models

Two models were developed: firstly, an MC solver of the
Hodgkin–Huxley (HH) equations [21], traditionally used to
explain the physical behavior of single-neuron dynamics;
then, a secondMC version, additionally including ion pumps
andmonitoring the ion concentrations in the ICS and ECS. In
bothmodels, aMC technique is used to determine the random
times at which ions cross the membrane, and the associated
fluctuations in the ion current are straightforwardly incor-
porated into the solution of the equations. The models were
implemented in FORTRAN.

2.1 MC model based on HH equations

According to the HH model, the evolution of information in
the time domain is described in terms of an electrically active
membrane carrying an electric potential Vm (t) and the so-
called gating variables m (t), h (t), and n (t), which render
the system excitable, since they determine the opening or
closing of potassium and sodium channels. As an electrical
system, the membrane voltage is related to the ion charges
and currents through the membrane.

In our solver, the simulation time is divided into time steps
with duration �t . Following the HH equations [21], at each
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time step �t , we evaluate the new value of the membrane
potential as

Vm (t) = Vm (t − �t)+ 1

Cm
�t

[
Iapp − (IK + INa + Ileak)

]
,

(1)

whereCm = 1µF/cm2 is the membrane capacitance per unit
surface and Iapp is an external current density (here consid-
ered as noiseless), which acts as the system excitation and
can initiate a single voltage spike or spike trains; Iion (with
the suffix ion = K, Na, or leak) is the current density due to
potassium cations, sodium cations, or ion leakage (induced
by chloride and other ions), respectively.

For Iapp = 0, i.e., at equilibrium, the average value of
the membrane voltage is Vr ≈ −68mV, where Vr is the
so-called resting potential. The HH model assumes Vr =
0 for simplicity; however, in Sect. 3.1, we add a shift of
Vr = −68mV for clarity. This model is monostable; once
any applied external current ceases, the membrane potential
recovers to the resting value.

The permeability of the membrane to potassium and
sodiumdepends onVm, thus IK and INa can bemodeled using
voltage-dependent conductances (gated channels), while the
leakage current Ileak is modeled as a regular ohmic current
with constant conductance:

INa (Vm) = gNa (Vm) (Vm − VNa) , (2)

IK (Vm) = gK (Vm) (Vm − VK) , (3)

Ileak (Vm) = gleak (Vm − Vleak) , (4)

where gion denotes the gated conductances and Vion the
so-called reversal potentials (the potentials at which the
ion currents change sign), which take the values VNa =
ENa − Vr = 115mV, VK = EK − Vr = −12mV, and
Vleak = Eleak − Vr = 10, 6mV, where Eion are the so-
calledNernst potentials. Iion > 0whenpositive charge leaves
the cell, and Iion < 0 in the opposite case; This is, positive
(negative) current indicates cations passing through the cell
membrane from the ICS (ECS) to the ECS (ICS) or anions
from the ECS (ICS) to the ICS (ECS).

The phenomenological HH model proposed for the
sodium conductance assumes that

gNa (Vm) = gmax
Na m3 (t) h (t) , (5)

where gmax
Na = 120mS/cm2 is the maximal sodium conduc-

tance. The dimensionless gating parameters m (t) and h (t)
can be interpreted as the fraction of activation or inactiva-
tion molecules in the open state. Sodium cations can move
through the membrane if three activation molecules are in
their open state and one inactivation molecule is in its non-
blocking state [21].m (t) and h (t) are calculated in our code
following the HH model as

m (t) = m (t − �t) + �t {αm (Vm) [1 − m (t − �t)]

−βm (Vm)m (t − �t)} , (6)

h (t) = h (t − �t) + �t {αh (Vm) [1 − h (t − �t)]

−βh (Vm) h (t − �t)} , (7)

where the functions αm , βm , αh , and βh are

αm (Vm) = 0.1 (Vm − 25)

exp
[−(Vm−25)

10

]
− 1

, (8)

βm (Vm) = 4 exp

(−Vm
18

)
, (9)

αh (Vm) = 0.07 exp

(−Vm
20

)
, (10)

βh (Vm) = 1

1 + exp
[−(Vm−30)

10

] , (11)

with Vm given in millivolts and t in milliseconds. m (t) and
h (t) are updated through the simulation at each time step
�t .

The HHmodel for the potassium conductance establishes
that

gK (Vm) = gmax
K n4 (t) , (12)

where gmax
K = 36mS/cm2 is themaximal potassiumconduc-

tance.Thedimensionless gatingparametern (t) is interpreted
as the proportion of activation molecules in the open state.
Then, potassium cations can move through the membrane if
four activation molecules are in their open state [21]. n (t) is
also updated through the simulation as

n (t) = n (t − �t) + �t {αn (Vm) [1 − n (t − �t)]

−βn (Vm) n (t − �t)} , (13)

where the functions αn and βn are

αn (Vm) = 0.01 (Vm − 10)

1 − exp
[−(Vm−10)

10

] , (14)

βn (Vm) = 0.125 exp

(−Vm
80

)
, (15)

with Vm given in millivolts and t in milliseconds.
The conductance of the leakage current channels is con-

sidered to be independent of the gating parameters: gleak =
0.3mS/cm2.

In the MC solver, we consider independent probabilities
for each ion to cross the cell membrane and make use of the
Gillespie method to account for their stochastic transmem-
brane kinetics [30,31]. The probability per unit time that
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a given ion crosses the membrane (called an “event” here-
inafter) is calculated from the HH ion current densities in
Eqs. (2)–(4) as

Pion = |Iion| S
q

, (16)

where S is the area of the consideredmembrane patch andq is
the elementary charge. We consider S = 922µm2 as in [22],
which provides an acceptable simulation time.Assuming that
the crossing of ions through the membrane is a memoryless
process, the time between events dte is calculated following
Poisson statistics as

dte = − 1

PTOTAL
ln (r) , (17)

where r is a random number between 0 and 1, and PTOTAL is
the total probability of an event, that is, PTOTAL = PNa+PK+
Pleak. Once dte has been determined, the concrete type of ion
crossing the membrane is randomly determined according
to the respective probabilities. The number of ions of each
type crossing the membrane during a given time step�t , i.e.,
nion, is then recorded to calculate the corresponding current
density as

|Iion| = qnion
�t S

. (18)

The sign of Iion is the same as that of the corresponding
current in Eqs. (2)–(4). The current densities calculated in
this way are then used in Eq. (1) to evaluate the new value
of the membrane potential to be considered in the next time
step. In this way, the ion currents contain the fluctuations
associated with the random passage of ions through the cell
membrane, and such fluctuations are incorporated into the
solution of theHH equations, in particular into themembrane
potential Vm. Note that, while the deterministic solution of
the HH equations is independent of the membrane area S
(indeed, the HH equations are expressed in terms of current
density), for a given current density, the fluctuations become
more pronounced as S decreases, since the current is carried
by a smaller number of ions. The same occurs when the noise
related to the fluctuations in the opening/closing state of the
channel gates, m, n, and h, is included in the solution of the
HH equations [23–25,32,33].

The time step used in the calculations presented herein
was�t = 10µs, short enough to ensure correct update of the
membrane potential. As shown by the results below, applica-
tion of a strong and/or long enough external current density
Iapp leads the system to exhibit a single voltage spike (action
potential) or a train of spikes (multiple action potentials).

Since the probability of events is proportional to the patch
area, larger areas lead to higher computational cost, so that
computation times range from a few seconds to several hours.

2.2 MC model considering ion concentrations

Beyond the HHmodel, a more complete treatment of spiking
phenomena in cells involves temporal monitoring of the ion
concentrations inside and outside the membrane [22,34–37],
and requires the inclusion of ion pumps (in the form of a
pump current density Ipump) and a dynamic description of
the Nernst potentials (in terms of the ion concentrations).
Our stochastic approach for the HH model described in the
previous subsection, which monitors the individual passage
of ions through the membrane, is well suited to be extended
to account for the time evolution of the ion concentrations in
the ICS and ECS. To this end, we follow the model described
in [22], but instead of including the time evolution of the ion
concentrations in a deterministic way (as done in thatmodel),
we retain the stochastic determination of the time at which
ions cross the membrane and the associated fluctuations in
the ion concentrations, currents, and related quantities. As
in the Hübel model, to monitor the ion concentrations, apart
from including the sodiumand potassiumcontributions to the
leakage current, we attribute to chloride anions the otherwise
unspecified extra leakage contribution.

The ion pumps help stabilize the ion concentrations in
the ICS and ECS in the resting state. They account for the
exchange of ICS sodium with ECS potassium (at 3/2 ratio)
that compensates diffusion of sodium and potassium cations
from the ECS and ICS, respectively, through the gated and
leakage channels. Chloride anions are not pumped. Ipump can
be expressed as [22,34,35]

Ipump
(
NNai , NKe

) = ρ

[
1 + exp

(
25 − NNai

3

)]−1

[
1 + exp

(
5.5 − NKe

)]−1
, (19)

where ρ = 5.25µA/cm2 is the maximum pump current, and
Nioni(e) is the ion concentration in the ICS (ECS), denoted by
subscripts “i” and “e”, respectively. In Eq. (19), ion concen-
trations are given in mMol/l.

Apart from Ipump, the expressions for the other ion currents
are

INa (Vm) =
(
glNa + ggNam

3 (t) h (t)
)

(Vm − ENa) , (20)

IK (Vm) =
(
glK + ggKn

4 (t)
)

(Vm − EK) , (21)

ICl (Vm) = glCl (Vm − ECl) , (22)

where gl,gion denote the leakage and gated conductances,
indexed as “l” and “g”, respectively. The model parame-
ters are similar to those employed in the HH model: glNa =
0.0175mS/cm2, ggNa = 100mS/cm2, glK = 0.05mS/cm2,
ggK = 40mS/cm2, and glCl = 0.05mS/cm2. The gating
parameters m (t), h (t), and n (t) follow the expressions in
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Eqs. (6), (7), and (13), while the functions αm , βm , αh , βh ,
αn , and βn use a nonzero value for Vr, in this model given by
[22]

αm (Vm) = 0.1 (Vm + 30)

1 − exp
[−(Vm+30)

10

] , (23)

βm (Vm) = 4 exp

(− (Vm + 55)

18

)
, (24)

αh (Vm) = 0.07 exp

(− (Vm + 44)

20

)
, (25)

βh (Vm) = 1

1 + exp [−0.1 (Vm + 14)]
, (26)

αn (Vm) = 0.01 (Vm + 34)

1 − exp
[−(Vm+34)

10

] , (27)

βn (Vm) = 0.125 exp

(− (Vm + 44)

80

)
, (28)

with Vm in millivolts. The reversal Nernst potentials Eion are
calculated in terms of the ion concentrations as [22]

Eion = kBT

q
ln
Nione

Nioni
, (29)

where kB is the Boltzmann constant and T is the absolute
temperature.

According to [22], at equilibrium, N eq
Nai

= 27mMol/l,

N eq
Nae

= 120mMol/l, N eq
Ki

= 130.99mMol/l, N eq
Ke

=
4mMol/l, N eq

Cli
= 9.66mMol/l, and N eq

Cle
= 124mMol/l. The

simulation is initialized with Vm (0) = Vr = −68mV and
these values for the ion concentrations, fromwhich the initial
Nernst potentials and ion currents are calculated, including
the additional term Ipump. The corresponding probabilities
for each of the possible events are evaluated using Eq. (16),
and the time between events dte is determined by means of
Eq. (17) considering PTOTAL = PNa + PK + PCl + Ppump.
Once dte has been determined, the concrete type of event
taking place is chosen randomly according to the respective
probabilities. In case the events related to PNa, PK or PCl
are selected, the passage of one ion of the selected type
in the direction corresponding to the sign of the current is
registered. If the selected event is associated with Ppump,
according to the pump dynamics, the passage of three Na+
cations from the ICS to ECS and two K+ cations from the
ECS to ICS is registered. In this way, we determine the net
number of ions of each type, nion, crossing the membrane
from the ICS to ECS during each time step with duration�t ,
at the end of which we update the ion concentrations as

Nioni(e) (t) = Nioni(e) (t − �t) ∓ nion
ωi(e)

, (30)

where ωi(e) is the ICS (ECS) volume. We consider here the
typical values ωi = 2160µm3 and ωe = 720µm3 used in
other works [22,34]. From these values of the ion concen-
trations at the end of each time step, the new value of the
membrane potential is calculated as

Vm (t) = Vm (0)

+
q

(
NNai (t) − N

eq
Nai

+ NKi (t) − N
eq
Ki

− NCli (t) + N
eq
Cli

)
ωi

CmS
.

(31)

We consider Cm = 1µF/cm2 and an initial reference value
of S = 922µm2, as in the HHmodel. Note that, when the ion
concentrations take their equilibrium values, the membrane
potential, as expected, coincides with the resting potential
(Vm (0) = Vr = −68mV).

If an external current Iapp is applied to excite the system
and lead to the appearance of voltage spikes, the procedure is
the same but with the current (for the model to be consistent
[22]) summed into any of the ion currents given by Eqs. (20)–
(22); In our case, we sum Iapp into the sodium current.

As in the previous model, the fluctuations associated with
the random passage of ions through the membrane are natu-
rally incorporated into the solution of the equations, in this
case into the ion concentrations, and the fluctuating ion cur-
rents can be evaluated at each time step bymeans of Eq. (18).

As a complement, an additional regulation term I regKe
can

also be considered for extracellular potassium, which can
be interpreted as a diffusive coupling to an extracellular
potassium bath [22]. This leads, at each time step, to an
additional contribution from the external potassium concen-
tration, given by

�N reg
Ke

(t) = I regKe
�t = λ

(
NKreg − NKe (t)

)
�t, (32)

where λ = 2.7ms−1 is a rate constant and NKreg = N eq
Ke

=
4mMol/l is the potassiumdensity of an infinite bath reservoir
coupled to the neuron; it takes the value of the physiological
potassium concentration and hence helps stabilize the phys-
iological equilibrium.

3 Results

3.1 MC model based on HH equations

To validate the MC method, we compared its results with
a deterministic MATLAB solution of the HH equations.
Figure 1 presents the time evolution of (a) Vm, (b) INa,
IK, and Ileak, and (c) m3h and n4, for an excitation of
Iapp = 7µA/cm2 and duration Ts = 5ms starting at 10ms
from the beginning of the simulation,which leads to a spike in
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Fig. 1 Comparison between MC and deterministic time evolution of
a Vm (inset zoom of MC Vm), b Iion (inset zoom of MC INa, IK), and
c m3h and n4, for an excitation of Iapp = 7µA/cm2 and Ts = 5ms
starting at 10ms

Vm, the so-called action potential. The MC results are analo-
gous to those obtained bymeans of the deterministic solution
of the HH equations. As mentioned, the HHmodel considers

Vr = 0; however, Vm was shifted to take the usual refer-
ence value Vr = −68mV for clarity. Iapp is applied at a time
long enough to be in the steady-state equilibrium conditions.
At the onset of Iapp, sodium channels open (m3h increases,
Fig. 1c) to allow sodium ions to enter the cell, resulting in
a negative INa (Fig. 1b), which leads to the increase of Vm
(Fig. 1a). Potassium channels require higher Vm than sodium
channels to open, which occurs precisely due to the enter-
ing of sodium ions (n4 increases, Fig. 1c). This involves the
exit of potassium ions from the ICS to the ECS, so that a
positive IK arises (Fig. 1b). When a maximum membrane
voltage is reached (about +40mV), sodium channels start to
close (m3h decreases, Fig. 1c), and once closed remain so
until Vr is recovered. Thus, no more sodium cations enter
the cell until the equilibrium state is established, and there-
fore no new action potential can occur. The time between
the closing of sodium channels and recovery of equilibrium
is the so-called refractory period, during which the cell can-
not experience any new action potential; this prevents the
possibility for information carried by the spike to propagate
backwards along the membrane [21]. After the maximum of
m3h, potassium channels are still open and potassium ions
leave the cell, leading to the decrease in Vm (Fig. 1a), which
causes at the same time the closing of the potassium chan-
nels. At a given point, one has Vm < Vr due to the excess
potassium ions outside the cell [21], yielding a refractory
period until equilibrium is restored. Throughout the process,
the leakage current Ileak (Fig. 1b) grows slightly, indicating
entrance of anions into the ICS when Vm increases due to the
presence of Iapp.

Comparedwith this deterministic solution of theHHequa-
tions, the MC values seem to be exactly the same, despite
the stochasticity in the model. However, a closer look at the
results, as shown in the inset in Fig. 1b, corresponding to
a zoom of INa and IK, reveals the presence of fluctuations
in the ion currents superimposed on the deterministic solu-
tion. Such fluctuations are more pronounced the higher the
current, as corresponds to shot noise (with current spectral
density equal to 2q I ), and also the lower themembrane patch
area S. In the inset of Fig. 1a, fluctuations of Vm originating
from the fluctuating currents can also be observed. This is the
main novelty of this approach, i.e., the presence of noise asso-
ciated with the random passage of ions through the channels,
which could play a role in some physiological processes, and
is typically disregarded when considering electrical sources
of neural noise [23–25,32,33].We remark that the very small
fluctuations observed in the voltage dynamics in Fig. 1a
would be rather more relevant if a smaller area were consid-
ered, to the extent of affecting the spiking activity, as shown
below.

Figure 2 presents the MC time evolution of (a, c) Vm and
(b, d) INa, IK, and Ileak, when considering excitations of
(a, b) Iapp = 7µA/cm2 and (c, d) Iapp = 50µA/cm2, and
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Fig. 2 MC time evolution of a,
c Vm and b, d Iion, for
excitations of Ts = 14ms
(shaded area) and a, b
Iapp = 7µA/cm2 and c, d
Iapp = 50µA/cm2 starting at
10ms
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Ts = 14ms, starting at 10ms from the beginning of the sim-
ulations. The same results (except nonvisible fluctuations)
are obtained from the deterministic solution of the HH equa-
tions. In the case of Iapp = 7µA/cm2, a second minor spike
weakly appears just before the excitation switch-off, while
for Iapp = 50µA/cm2 a full second spike emerges, hav-
ing lower amplitude in comparison with the first one. In this
case, two peaks can be observed in IK and INa, but IK does
not recover the equilibrium state in the time lapse between
pulses. Ileak also shows two-peak behavior, consistent with
the global situation.

3.2 Extended MC model

Beyond the MC solution of the HH equations, the extended
MCmodel explained in Sect. 2.2 offers better understanding
of the time evolution of the electrical quantities of the bio-
logical membrane. The shape of the potential spike resulting
from this ion-based model differs slightly from that derived
from the HH model, mostly due to the different values of the
Nernst potentials and the fact that they change in time accord-
ing to the ion concentrations. At equilibrium conditions,
when Vm = Vr and the ion concentrations take their equi-
librium values, the Nernst potentials are Eeq

Na = 39.7mV,

Eeq
K = −92.9mV, and Eeq

Cl = −68.0mV, considering a
temperature of 310K [31]. Since ECl is practically Vr, ICl
is very small. As occurs in biological systems, it is the
sodium–potassium pump which helps restore the Na and
K ion concentrations and the membrane potential to their
equilibrium values once excitations vanish. Such equilibrium
values are reached by the model in a self-consistent way.

However, for very strong excitations, and in the absence of
the potassium regulation current term I regKe

, within this model
the system can be driven to a second, unphysiological sta-
ble state far from equilibrium [22]. To validate the proposed
extended MC model, we performed a simulation under the
same conditions considered in [22], initially in the absence
of I regKe

, for an excitation leading the system to a second,
unphysiological stable state. Figure 3 presents the long-time
evolution of (a) Vm and Eion, and (c) Nioni(e) , for an exci-
tation of Iapp = 150µA/cm2 and Ts = 500ms starting at
50 s. As observed, the strong excitation drives the system, on
long time scales, to a second stable state where the action of
the pumps is insufficient to recover equilibrium conditions.
Inclusion of the regulation term (Fig. 3b, d) prevents this
behavior by assisting the external potassium concentration
to recover the equilibrium concentration. As observed, the
restoration of equilibrium conditions takes place on a time
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Fig. 3 a, bVm and Eion, and c,
d Nion_i(e) as a function of time
for an excitation
Iapp = 150µA/cm2 and
Ts = 0.5 s starting at 50 s
(shaded area): a, c without
considering the regulation term
IK_reg, and b, d including it
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scale (tens of seconds) much longer than the voltage spikes
(tens of milliseconds). The results obtained in presence and
absence of this regulation term are analogous to those shown
in Figs. 1a and 3a of [22], respectively. We remark that, in
both cases, spike trains occur at the onset and conclusion of
the excitation, not observed on the time scale of the main
figure (enlarged in the insets).

The regulation term plays a significant role when strong
deviations of extracellular potassium from the equilibrium
value are caused by the excitation (more than 60mMol/l in
the case of Fig. 3). However, in cases where such deviation is
small (lower than 5mMol/l), the effect of the regulation term
is nearly negligible compared with that of the ion pumps. In
the following, we operate under such conditions and ignore
the regulation term in the calculations.

Figure 4 presents the time evolution for an excitation of
Iapp = 7µA/cm2 and Ts = 5ms (the same as in Fig. 1 for the
HH model) of (a) Vm, (b) Iion and Ipump, (c) NNa_i − N eq

Na_i

and NK_e − N eq
K_e, and (d) EK − Eeq

K and ENa − Eeq
Na. The

extended model produces an overall behavior very similar
to that of the HH model in terms of the membrane poten-
tial and ion currents (Fig. 4a, b, respectively). Note again
the presence of fluctuations in the ion currents in the inset
of Fig. 4b. The ECS potassium and ICS sodium densities
are particularly interesting, because they allow the identifica-
tion of nonequilibrium conditions. In contrast to the previous
case, the small excitation considered here leads to slight

modifications in the ion concentrations. However, NK_e and
NNa_i take a long time to recover to their equilibrium val-
ues, as seen in the inset of Fig. 4c, only assisted by the slow
action of the pumps. Ipump, which increases very slightly
after the potential spike, is insufficient to restore these ion
concentrations in a shorter time. In fact, Ipump remains prac-
tically at its equilibrium value, since the variation in NNa_i

and NK_e is of the order of 0.1mMol/l, which hardly affects
Ipump [see Eq. (19)]. Vm, after a fast spike originated by the
onset of the excitation, reaches a value slightly lower than
the resting potential, which again is recovered after a long
transient (inset of Fig. 4a). The values of the Nernst poten-
tials (Fig. 4d), updated with the ECS and ICS potassium
and sodium concentrations, vary very little with respect to
equilibrium, and exhibit time dependence consistent with the
initially fast then slow evolution of the ion concentrations.

To investigate the electrical behavior of the biological
membrane more deeply and illustrate the generation of
spike trains, Fig. 5 presents the MC time evolution of (a,
c) the membrane voltage Vm, and (b, d) NNa_i − N eq

Na_i

and NK_e − N eq
K_e for (a, b) Iapp = 7µA/cm2 and (c, d)

Iapp = 100µA/cm2, with Ts = 100ms. For both excitations,
spike trains take place despite the fact that the ion concen-
trations do not recover to their equilibrium values between
spikes; on the contrary, they exhibit a stepwise increase at the
rhythm of the spikes. Increasing Iapp accelerates the process
of spike generation and leads to a higher frequency in the
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Fig. 4 MC time evolution of a
Vm, b Iion, and Ipump (inset
zoom of small currents around
the excitation), c NK_e − N eq

K_e

and NNa_e − N eq
Na_e, and d

EK − Eeq
K and ENa − Eeq

Na, for
Iapp = 7µA/cm2 and
Ts = 5ms, starting at 10ms.
Insets in (a), (c), and (d) show
long-time evolution of the
corresponding quantities
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spike trains at the cost of decreasing spike amplitude. This
occurs because the potassium channels are not completely
closed when starting a new spike, leading to partial opening
of the sodium channels, hindering formation of further full
spikes. In the case of Iapp = 100µA/cm2 and Ts = 100ms,
the amplitude and length of the excitation are not high enough
to lead to a new stable state, as in the case of Fig. 3a, c. On
the contrary, for both 7 and 100µA/cm2, once the excita-
tion disappears, Vm quickly adopts a value below the resting
potential (being lower for higher Iapp), then recovers the equi-
librium conditions on a much longer time scale, the same as
for ion concentration recovery (see insets). The values below
Vm originate from the deviations in the ion concentrations
from the equilibrium values, being more pronounced when
Iapp is higher.

Finally, we analyzed the excitation conditions necessary
for the onset of a single spike in the membrane potential and
illustrate how noise can assist/inhibit such onset. In Fig. 6a,
the time evolution of Vm is presented for Iapp = 14µA/cm2

and different values of Ts to evaluate the minimum excita-
tion length leading to spike onset. As observed, Ts must be
at least 1.2ms to produce a complete spike. This excitation
length value corresponds to the case in which Vm reaches
about −53mV, that is, an increase of about 15mV in Vm

[21]. As long as this threshold value for Vm is reached, even
if the excitation disappears, the process leading to spike onset
and evolution takes place, more slowly for excitations with
length just above this limit. Once the potential spike appears,
the time evolution is analogous for all excitations considered.
Initially, a positive maximum of about 40mV is reached,
then, after∼ 3ms, the polarization is inverted up to−92mV,
followed by recovery of the resting value. The total duration
of a single spike is always about 25ms. The results shown in
Fig. 6a were calculated using the same values of surface and
internal and external volumes as above, i.e., S = 922µm2,
ωi = 2160µm3, and ωe = 720µm3. When repeating the
simulation with a different sequence of random numbers, in
no case was an action potential observed for Ts = 1.1ms.
However, if one reduces the surface of the membrane patch
by two orders of magnitude (and the ICS and ECS volumes
accordingly), which, as explained above, implies an increase
in the level of ion shot noise, one obtains the results shown in
Fig. 6b. Twenty cases corresponding to different sequences
of random numbers are shown, each leading to a different
Vm response, which in many cases does not exhibit a spike,
but in some cases does. This behavior is due to the influence
of shot noise in the ion currents, which propagates to Vm
and on some occasions helps the threshold for spike onset
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Fig. 5 MC time evolution of a,
c Vm and b, d NK_e − N eq

K_e and

NNa_i − N eq
Na_i for an excitation

of (a), (b) Iapp = 7µA/cm2 or
c, d Iapp = 100µA/cm2 and
Ts = 100ms, starting at 10ms
from the beginning of the
simulations (shaded area).
Insets Long-time evolution of
the corresponding quantities
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to be overcome. Depending on how much the threshold is
surpassed, the evolution of Vm is faster or slower until reach-
ing the spike. We remark that, in the case of a deterministic
solution of the model, the results would be independent of
the concrete values of S, ωi, and ωe, as long as they maintain
the same ratios, and for Iapp = 14µA/cm2 and Ts = 1.1ms,
no spike would be observed (Fig. 7).

To quantify the importance of shot noise depending on
the membrane area S, Fig. 7 shows the percentage of trials
(all initiated with a different random number) exhibiting a
spike as a function of the applied external current (during
Ts = 1.1ms) for different patch area values within a realistic
range. The deterministic case (no shot noise) is also shown
for comparison, where the threshold current for the onset
of the action potential is found to be Ith = 14.14µA/cm2.
As observed, shot noise not only leads to the onset of peaks
for currents below Ith, but also inhibits their emergence for
currents above Ith. Such excitation/inhibition action is sym-
metrical around Ith. For large S (922µm2), the behavior is
nearly deterministic and the influence of shot noise is limited
to a few hundredths of µA/cm2 around Ith. However, as the
area shrinks, this influence expands to a broader range of val-
ues of applied current: from tenths of µA/cm2 for S = 92.2
and 9.22µm2 to several µA/cm2 for the case of the small-
est area considered (about 4µA/cm2 for S = 0.922µm2,
which could be the case, e.g., of a brain synapse [38]). For

such small cell membranes, shot noise may play a role in
excitation/inhibition of action potentials in competition with
other noise sources, someofwhich alsohave increasing effect
as the membrane area is reduced, e.g., channel noise, com-
pared with which shot noise is typically disregarded [25,26].
Detailed analysis of such competition between noise types,
which lies beyond the scope of this work, should also be
performed.

We finally remark that our model for the inclusion of shot
noise considers, as a first approximation, that the passage of
ions through themembrane is a Poisson process, i.e., that ions
cross the membrane independently of each other. However,
more rigorous studies of single open ion channels, performed
by means of a coupled molecular dynamics–MC approach
with input parameters obtained from atomistic simulations,
indicate the existence of correlations in ion motion within
the channel [28]. Such correlations may lead to values of the
Fano factor higher than one, indicating a level of noise higher
than that for a Poisson process, which would make shot noise
even more relevant for the membrane voltage dynamics than
revealed by our calculations.

4 Conclusions

A stochastic model based on the MC technique for determi-
nation of the time of passage of ions through a cell membrane

123



J Comput Electron (2017) 16:419–430 429

Ts=1.1 ms

S x10-2

(b)

Time (ms)
0 10 20 30 40 50

V m
 (m

V)

-80

-60

-40

-20

0

20

40

60

Iapp=14 μA/cm2
(a)

V m
 (m

V)

-80

-60

-40

-20

0

20

40

60

Ts=1.0 ms

Ts=1.1 ms

Ts=1.2 ms

Ts=1.5 ms

Fig. 6 MC values of Vm as a function of time for excitation conditions
of Iapp = 14µA/cm2 starting at 10ms: a for different Ts, and b for
Ts = 1.1ms in a cell with a surface 100 times smaller than in (a) and
20 different random number sequences

has been developed to simulate action potential generation.
Initially, a model strictly based on the HH equations (not
accounting for ion concentrations) was validated by compar-
ison with the exact deterministic solution. Then, the standard
HH model was extended to include the time-dependent ion
concentrations in the intra- and extracellular space and the
existence of ion pumps to equilibrate the steady-state cur-
rents. An extra regulation term is also considered to take into
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Fig. 7 Percentage of trials (1000 cases initiatedwith a different random
number) exhibiting a spike as a function of the applied current (during
a time interval for Ts = 1.1ms) for different values of the patch area.
The deterministic case (no shot noise) is also shown for comparison

account an external potassium bath. Results from literature
are reproduced by this model, including the evolution of the
system to a second stable state for strong excitations in the
absence of the regulation term, or the generation of spike
trains induced by sufficiently intense external currents.

Our stochastic model captures the essential dynamics of
ions while avoiding the consideration of spatially complex
distributions of channels and cotransporters at a molecular
level. Additionally, by monitoring the random passage of
ions through the cell membrane, the shot noise inherent to
such dynamics is naturally accounted for in the model. We
evidenced that the associated membrane potential fluctua-
tions can not only assist the onset of action potentials for
weak excitation conditions for which spikes would not be
expected, but also inhibit their appearance in cases where
they should be present. In this context, shot noise is typically
ignored when other noise sources, e.g., channel or external
noise [23–25,32,33], are analyzed. Rigorous analysis of the
influence of shot noise as compared with other noise sources
under different excitation conditions should therefore be car-
ried out.
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