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Abstract A recently developed Fourier-transform-based
formulation of the longitudinal optical phonon scattering
rates in heterostructures allows us to separate the wave func-
tions from multidimensional integrals, which depend on the
intersubband transition energy, the chemical potential, and
the electron temperature. Here, we discuss an efficient deter-
mination of these integrals and an automatic fitting procedure
in order to provide a compact table of pre-calculated inte-
grals. As a result, computation times on a scale of minutes
for the scattering rates are achieved for any reasonable set of
parameters.

Keywords Longitudinal optical phonon · Scattering rates ·
Adaptive method · Heterostructures

1 Introduction

The interaction between electrons and phonons plays an
important role for the carrier transport and the optical prop-
erties in semiconductor heterostructures such as quantum-
cascade lasers (QCLs) [1–5]. An efficient determination of
the scattering rates is crucial not only for an understand-
ing of the underlying physics, but also for optimizing the
design strategy and for improving the device performance

B X. Lü
lue@pdi-berlin.de

L. Schrottke
lutz@pdi-berlin.de

H. T. Grahn
htgrahn@pdi-berlin.de

1 Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut
im Forschungsverbund Berlin e. V., Hausvogteiplatz 5–7,
10117 Berlin, Germany

of QCLs. The complexity of the QCL structures leads to a
large computation time for the simulation of the transport and
optical properties. In particular, the design of these devices
requires a balance between accuracy and computation time.
For this balance, a suitable method for the calculation of
electron–longitudinal optical (LO) phonon scattering rates is
necessary. Recently, a method based on the formulation in
the Fourier domain has been shown to facilitate the efficient
simulation of the properties of heterostructures [6–8] by
decreasing the computation time by one order of magnitude
compared to a similar model formulated in real space. For
example, a computation time of about one minute has been
achieved for complete gain maps with 100 values for the
applied field strength using empirical scattering rates based
on an approximation which substitutes the dipole matrix
element for the form factor [7,8]. Although this model
is applicable to various THz QCL structures as shown in
Ref. [9], it fails in some cases, e.g., when transitions between
states of similar parity become important. Therefore, realis-
tic electron–LO phonon scattering rates have to be used. In
the Fourier domain, the expressions for the total intersubband
rates [8], i.e., the rates averaged over the intrasubband distri-
butions, can be separated into (the Fourier components of) the
wave functions and rather complex integrals. In this paper,
we present an efficient numerical method to automatically
create tables of pre-calculated values for these integrals.

2 Determination of the longitudinal optical phonon
scattering rates

The electron–LO phonon scattering rate for the transition
from subband n to subband j in the Fourier domain is given
by
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where e denotes the electron charge, ELO the LO phonon
energy, h̄ Planck’s constant, ε∞(s) the high-frequency (sta-

tic) dielectric constant, λ
ja
m the Fourier components of the

wave functions, a = 1 or 2 the band indices for a two-band
pseudo k · pmodel, andm, l,m′, l ′ the indices of the Fourier
components [8]. FI is a function of the transition energy
Enj = En − E j , where En and E j refer to the energy of the
n-th and j-th states, respectively. Furthermore, it depends
on the chemical potential μn (μ j ), the electron temperature
Tn (Tj ), and the energy uncertainty Ẽ [10]. The form of FI

is rather intricate as shown by Eqs. (15)–(17) in Ref. [8].
However, it can be reduced to two three-dimensional inte-
grals Fν

I I (ν = 0, 1) as discussed in Ref. [8] with the energy
variables normalized by Ẽ , e.g., Ēq = Eq/Ẽ
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fn = 1

1 + e(Ēn0−μ̄n)/ĒTn
, (4)

with kB denoting Boltzmann’s constant, Ēn0 the normal-
ized kinetic energy, fn and f j the Fermi–Dirac distribution

for energies Ēn0 and Ē−/+
j0 , m∗ the electron effective mass,

Lz the size of the simulation cell, ĒTn = kBTn/Ẽ , Ēq =
(h̄q‖)2/(2m∗ Ẽ), Ēem

ab = (Ēn j ∓ ĒLO)/2, Ē−/+
j0 = Ēn0 +

Ēq ∓
√
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2, q‖ the in-plane component of the phonon wave
vector, and φn the angle between the in-plane electron and
the phonon momentum. The negative and positive signs
in the definitions of Ēem

ab and Ē−/+
j0 correspond to phonon

emission (em) and phonon absorption (ab), respectively. For

practical reasons, we include a factor 1/ ln
(
1 + eμ̄n/ĒTn

)
in

the integral Fν
I I as given by Eq. (20) in Ref. [8]. In order to

obtain the scattering rates, we need to determine the integral
Fν
I I .
The determination of Fν

I I is rather challenging since the
exponential function leads to sharply spiked integrands. This
type of integral requires a large calculation time in order to

achieve an acceptable accuracy. Since Fν
I I is not suitable for

a fast calculation during any self-consistent computation, it is
useful to automatically generate tables containing the values
of Fν

I I for the parameter set (P) = (Ēem
ab , μ̄n, μ̄ j , Tn, Tj , L̄)

in advance to be employed in the self-consistent procedure.
We found that a fitting function Fν

I I can be used to decompose
the scattering rates in parts [8], which allows for a reduced
computation time. By setting y = ln(�̄lm), the rational func-
tion Fν

app as defined by

Fν
app = 1

Aν + Bνey/2 + Cνey
, (5)

can satisfy this requirement [8], i.e.,
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where Aν, Bν, and Cν are the fitting parameters. The fitting
function Fν

app is not only of a rather simple form, but also
helpful to reduce the dimension of the parameter space for
the table of the pre-calculated values of the integrals and
allows for a reduction of the number of summands from
N 4
F [cf. Eq. (6)] to N 3

F [cf. Eq. (7)] with NF denoting the
number of Fourier components of the wave functions.

3 Numerical integration and fitting procedure

In order to generate the table for various combinations of all
the energy-related parameters for Fν

I I , an efficient and auto-
matic evaluation of Fν

I I is crucial. The position and shape
of the sharp features of Fν

I I depend strongly on the specific
parameters. Figure 1 shows exemplarily the integrand G1

as a function of φn . For many parameter combinations, in
particular for larger values of Ēn0, the value of G1 is close
to zero for a wide range of φn , and we clearly observe two
sharp peaks. For the integration of Gν over a large range,
these sharp features require a large number of nodes for a
sufficient accuracy of the multidimensional integrals. For
GaAs, we use Ēmax

q = 8 × 105 and Ēmax
n0 = 7kBTn/Ẽ .

Here, Ēmax
q [= (h̄qmax)2/(2m∗ Ẽ)] is determined by the elec-

tron effective mass (m∗) and the phonon wave vector at the
Brillouin zone boundary (qmax), while Ēmax

n0 is defined by
the value at which the Fermi–Dirac distribution fn ( f j ) is
approximately 10−3. Using conventional methods such as
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(a)

(b)

Fig. 1 Integrand G1 as a function of φn shown for �̄lm = 5 × 10−5,
L̄ = 0.5, μ̄n = μ̄ j = 10, Tn = Tj = 25 K, Ēem

ab = 169, and Ēq =338
with a Ēn0 = 0.1 and b Ēn0 = 10

Simpson’s rule may result in unacceptably long computation
times. For the integrand with sharp features and the large
integration range, an adaptive algorithm is preferred. How-
ever, directly applying a Gauss–Kronrod 15-point method
to nd -dimensional integrals requires 15nd evaluations of the
integrand [11]. For an efficient integration method, we apply
the algorithm introduced by Berntsen et al. [12], which com-
bines product methods with globally adaptive subdivision
schemes. By applying this method to s-dimensional inte-
grals, 2nd + 4nd(nd − 1)(nd − 2)/3 + 6nd2 + 2nd + 1 (77
for nd = 3) evaluations of the integrand are required, which
is much less than the number for the Gauss–Kronrod 15-
point method (3,375 for nd = 3). It is one of the few viable
approaches to obtain a high precision (relative accuracymuch
better than 10−3) for an integral dimension nd ≤ 10 [13].
Here, we use the Fortran code DCUHRE [14], which is also
suitable for parallel computing. Due to a large range of the
parameter space (P), a general Fortran code for an automatic
determination of the integrals for all the possible parameter
combinations is necessary. We use the calculated integrals as
the input for a fitting procedure, which generates the table of
the energy-related terms Aν, Bν , and Cν .

For the fitting procedure, we apply the Levenberg–
Marquardt method according to Ref. [15], which is an
efficient method with strong convergence properties. The
shape of the fitting function Fν

app is similar to the sig-
moidal function 1/(1 + e−x ) or the hyperbolic tangent
function tanh(x). However, the scattering rates Tjn cannot
be decomposed using 1/(1 + e−x ) or tanh(x). As discussed

Fig. 2 F1
I I as a function of ln(�̄lm) obtained by fitting Eq. (5) without

the shift (dashed line) and Eq. (8) with the shift (solid line) for Ēem
ab =

66, μ̄n = μ̄ j = 10, Tn = Tj = 50 K, and L̄ = 0.5

in Sec. 2 [cf. Eqs. (5)–(7)], the use of Fν
app as the fitting

function allows us to decompose Tjn and to reduce the num-
ber of the summands necessary for the determination of Tjn .
However, using directly the function Fν

app to obtain a good
fit would require suitable initial guess values of Aν, Bν , and
Cν , which depend strongly on the positions of the inflection
points of Fν

I I . These guess values change over a very wide
range for different parameter sets, which are inconvenient
for an automatic fitting of a large number (>106) of para-
meter sets. Therefore, we introduce the shift s on y, which
is determined by the position of the inflection point of Fν

I I
(minimum of the first derivative of the numerical integral)
so that the inflection points of the functions are shifted close
to zero on the abscissa, while the initial guess values can
be fixed (Aν = Bν = Cν) for all parameter sets. This shift
is beneficial for the automatic fitting of a large number of
integrals with variable parameters. Using the fitting function
with the shift

Fν,s
app = 1

Aν + Bν,se(y−s)/2 + Cν,sey−s
, (8)

we found that the fitting results agree well with the numer-
ical integrals as a function of ln(�̄lm) for all the calculated
parameter combinations. Figure 2 shows exemplarily the
fit for the parameter set Ēem

ab = 66, μ̄n = μ̄ j = 10,
Tn = Tj = 50 K, and L̄ = 0.5. The initial guess values
are set to A1 = B1 = C1 = 1. For the result using Eq. (5)
without the shift s, the shape of the fit is very different from
the actual result (dashed line in Fig. 2). In contrast, the fit
using Eq. (5) with the shift s (solid line in Fig. 2) is rather
good. Since both, the small values of Fν

app and the high-order

Fourier components, i.e., large values of �̄lm , contribute very
little to the scattering rates, we define a normalized error in
order to evaluate the quality of the fit. This normalized error
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is the maximum of the absolute error (|F1
I I − F1

app|) over
the entire range of �̄lm divided by the maximum of the F1

I I -
ln(�̄lm) curve. For the case shown in Fig. 2, the normalized
error is below 0.3%.

To verify the validity of our method, we implemented the
fitting procedure and applied it to a large number of parame-
ter combinations. Figure 3 shows the results of the fit using
F1,s
app for μ̄n = μ̄ j = −20 in comparison to the numerical

integrals for several parameter combinations of Ēem
ab , Tn , Tj ,

and L̄ . Figure 3a depicts the results for Ēem
ab = 3.87 and dif-

ferent values of L̄ , while Fig. 3b shows the results for L̄ = 1
and different values of Ēem

ab . In Fig. 3a, b, the electron tem-
perature Tn = Tj is set to 100 K. Due to the similar shape
of the curves with variable L̄ in Fig. 3a, the value of the
shift is fixed (s = 1.01). Figure 3c shows the temperature-
dependent results for Ēem

ab = 3.87 and L̄ = 1. Figure 3d,
e show the range of the shift s as a function of Ēem

ab and
T = Tn = Tj . In order to create the table to be used for the
determination of the scattering rates for each electron tem-
perature, e.g., Tn = Tj = 25, 50, 75, and 100 K, we apply
the parameter set: |Ēem

ab | ≤ 430, −100 ≤ μ̄n = μ̄ j ≤ 50,
and 0.5 ≤ L̄ ≤ 16, 384. By automatic fitting a large num-
ber of curves in the range defined above, we found that the
fits agree well with the results of the numerical integration
in the range of −9.9 ≤ ln(�̄lm) ≤ 11.5. For |Ēem

ab | > 2,
the normalized error is below 2.3% for all parameter sets and
decreases with the increasing value of |Ēem

ab |. However, when
the energy is close to the phonon resonance (|Ēem

ab | < 2), the
normalized error increases. Since in this case F1

app < F1
I I ,

which coincides with a necessary reduction of the scattering
rates as discussed in Ref. [8], the increase of the normalized
error has a negligible effect on the final result. In the end,
we obtain the table including all the information for a fast
evaluation of Fν

I I using a linear interpolation for the actual
parameters if these lie between the data points of the table.

4 Discussion and resulting procedure

The energy-related terms Fν
I I are directly obtained from

the table through Eq. (5), which is independent of the self-
consistent procedure, so that the total simulation time is only
increased by a factor of about 6 compared to the empiri-
cal model in the Fourier domain and is still twice as fast as
the merely empirical model in real space [7,8]. Finally,
we discuss the parameter space in detail. Since we mainly
focus on the design of GaAs/AlxGa1−xAs THz QCLs, all
the parameters are related to AlxGa1−xAs. For the effective
electron mass, we use m∗/m0 = 0.067+ 0.083x , where m0

denotes the free electron mass. The conduction band offset
of GaAs/AlxGa1−xAs can be obtained by assuming a 65:35
ratio between the conduction and valence band offsets [16]

(a)

(b)

(c)

(d) (e)

Fig. 3 F1
I I as a function of ln(�̄lm) for a Ēem

ab = 3.87 and Tn =
Tj = 100 K with variable L̄ , b L̄ = 1 and Tn = Tj = 100 K with
variable Ēem

ab , and c Ēem
ab = 3.87 and L̄ = 1 with variable Tn and Tj

obtained by numerical integration (dots) and fits (solid lines). The shift
s as a function of d Ēem

ab and e T = Tn = Tj . The other parameter is
μ̄n = μ̄ j = −20

VCB = (1.109x − 0.934x2 + 0.851x3) eV. (9)

For x = 0.25, the offset is equal to 0.232 eV, while for x =
1, the offset is 1.026 eV. As discussed in Ref. [17], the
height of the injection barriers in GaAs/AlAs THz QCLs is
expected to be less than 80% of the maximum value due to
interface grading [7]. Therefore, we may apply 0.8Vmax

CB as
themaximum of Enj , and the correspondingmaximum value
for Eem

ab [= (Enj ∓ ELO)/2] is about 0.43 eV, which is much
larger than the energy of the LO phonon in GaAs (36 meV
or 8.8 THz). The chemical potential is [3]

μn = kBTn ln

[
exp

(
π h̄2n2Dρnn

m∗kBTn

)
− 1

]
, (10)

where n2D denotes the sheet carrier density and ρnn the
occupation number of the n-th subband. Table 1 gives
the calculated chemical potential for different sheet car-
rier densities and electron temperatures. Here ρnnn2D =
1 × 1011 and 1 × 1012 cm−2 cover the typical range of
values for GaAs/AlxGa1−xAs THz QCLs. The maximum
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Table 1 Chemical potential μn and maximum of the kinetic energy
Emax
n0 for different values of n2D and Tn

ρnnn2D (cm−2) Tn (K) μn (meV) Emax
n0 (meV)

1 × 1011 10 3.6 9.5

50 1.1 30.8

100 −5.7 53.8

300 −49.4 129.2

400 −76.3 161.7

1 × 1012 10 35.7 41.7

50 35.7 65.5

100 35.6 95.1

300 28.2 206.8

400 20.6 258.7

kinetic energy Emax
n0 is defined by the value for which

the Fermi–Dirac distribution is about 10−3. We consider
−100 meV ≤ μn ≤ 50 meV and 10 K ≤ Tn ≤ 400 K.
For L̄ [= Ẽ L2

z/(570 meV nm2)], we assume Lz < 960 nm
and 1 ≤ Ẽ ≤ 10 meV so that we obtain a range for L̄ of
0.5 ≤ L̄ < 17, 000.

Within this range for the parameter set (P) = (Ēem
ab ,

μ̄n, μ̄ j , Tn, Tj , L̄), a number NP for Ēem
ab , μ̄n, μ̄ j , Tn, Tj ,

and L̄ is selected to guarantee a limited storage requirement
for the table files. The steps for μ̄n, μ̄ j , Tn , and Tj are set
on a linear scale, while for Ēem

ab and L̄ we use a logarith-
mic scale. As an example, for a fixed electron temperature,
NĒem

ab
= 40 and Nμ̄n = Nμ̄ j = NL̄ = 16, the generated

table file contains 163,840 triples of Aν, Bν (= Bν,se−s/2),
and Cν (= Cν,se−s) with a size of 8.5 MB, which can be
quickly loaded by the main program for the calculation of
the scattering rates.When performing the interpolation, these
values for NP allow for an error which is of the same order
of magnitude as the maximum normalized error due to the
fitting procedure.

The determination of the scattering rates is separated
into two parts. Before any self-consistent calculation, the
table of the values for Aν , Bν , and Cν is created once
for all future simulations. First, we calculate the numerical
integrals as functions of �̄lm for all the parameter com-
binations using the adaptive algorithm. Second, we fit the
pre-calculated curves automatically using the Levenberg–
Marquardt method. Third, we obtain the tables for Aν, Bν,

and Cν for different electron temperatures. For the self-
consistent procedure, we assume the same electron temper-
atures in all subbands and combine LO phonon scattering
rates [Eq. (1)] with our self-consistent Fourier domain model
as described in Ref. [7]. For parameter sets which are not
included in the table files, multidimensional interpolation is
applied on the calculated Aν, Bν, and Cν in order to obtain
the actual value of Gν . By applying this method, it is pos-

sible to calculate the influence of electron temperatures and
carrier densities on the transport and optical properties of
complex heterostructures on a time scale of minutes, which
is beneficial for the efficient design of THz QCLs [8].

5 Conclusions

We have presented an efficient method to determine the
wave function-independent component for the longitudinal
optical phonon scattering rates formulated in the Fourier
domain using a numerical determination of the multidimen-
sional integrals and an automatic fit to these pre-calculated
integrals. This method allows us to fully decompose the
energy-dependent component from the self-consistent pro-
cedure in order to achieve computation times for entire gain
maps and current density-applied field strength curves on a
time scale of a few minutes using standard work stations. It
is a powerful tool for a realistic simulation of the properties
and the design of complex heterostructures such as QCLs
with short computation times.
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memory efficient algorithm for adaptive multidimensional integra-
tion withmultiple GPUs. In: 20th Annual International Conference
on High Performance Computing, pp. 169–175 (2013). doi:10.
1109/HiPC.2013.6799120

12. Berntsen, J., Espelid, T.O., Genz, A.: An adaptive algorithm for the
approximate calculation of multiple integrals. ACM Trans. Math.
Software 17, 437–451 (1991). doi:10.1145/210232.210233

13. Hahn, T.: Cuba-a library for multidimensional numerical integra-
tion. Comput. Phys. Commun. 168, 78–95 (2005). doi:10.1016/j.
cpc.2005.01.010

14. Berntsen, J., Espelid, T.O., Genz, A.: Algorithm 698: Dcuhre: an
adaptive multidimensional integration routine for a vector of inte-
grals. ACM Trans. Math. Software 17, 452–456 (1991). doi:10.
1145/210232.210234

15. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.:
Numerical Recipes in Fortran 90: The art of Parallel Scientific
Computing. Press Syndicate of the University of Cambridge, Cam-
bridge (2002)

16. Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters
for iiiv compound semiconductors and their alloys. J. Appl. Phys.
89, 5815–5875 (2001). doi:10.1063/1.1368156

17. Schrottke, L., Lü, X., Rozas, G., Biermann, K., Grahn, H.T.: Ter-
ahertz GaAs/AlAs quantum-cascade lasers. Appl. Phys. Lett. 108,
102102 (2016). doi:10.1063/1.4943657

123

http://dx.doi.org/10.1088/0268-1242/25/4/045025
http://dx.doi.org/10.1088/0268-1242/25/4/045025
http://dx.doi.org/10.1140/epjb/e2009-00363-4
http://dx.doi.org/10.1140/epjb/e2009-00363-4
http://dx.doi.org/10.1109/HiPC.2013.6799120
http://dx.doi.org/10.1109/HiPC.2013.6799120
http://dx.doi.org/10.1145/210232.210233
http://dx.doi.org/10.1016/j.cpc.2005.01.010
http://dx.doi.org/10.1016/j.cpc.2005.01.010
http://dx.doi.org/10.1145/210232.210234
http://dx.doi.org/10.1145/210232.210234
http://dx.doi.org/10.1063/1.1368156
http://dx.doi.org/10.1063/1.4943657

	Efficient numerical procedure for the determination of the wave function-independent terms in longitudinal optical phonon scattering rates formulated in the Fourier domain
	Abstract
	1 Introduction
	2 Determination of the longitudinal optical phonon scattering rates
	3 Numerical integration and fitting procedure
	4 Discussion and resulting procedure
	5 Conclusions
	Acknowledgments
	References




