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Abstract The Boltzmann transport equation is commonly
considered to be the best semi-classical description of carrier
transport in semiconductors, providing precise information
about the distribution of carriers with respect to time (one
dimension), location (three dimensions), and momentum
(three dimensions). However, numerical solutions for the
seven-dimensional carrier distribution functions are very
demanding. The most common solution approach is the sto-
chastic Monte Carlo method, because the gigabytes of mem-
ory requirements of deterministic direct solution approaches
has not been available until recently. As a remedy, the higher
accuracy provided by solutions of the Boltzmann trans-
port equation is often exchanged for lower computational
expense by using simpler models based on macroscopic
quantities such as carrier density and mean carrier velocity.
Recent developments for the deterministic spherical harmon-
ics expansion method have reduced the computational cost
for solving the Boltzmann transport equation, enabling the
computation of carrier distribution functions even for spa-
tially three-dimensional device simulations within minutes
to hours. We summarize recent progress for the spherical
harmonics expansion method and show that small currents,
reasonable execution times, and rare events such as low-
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frequency noise, which are all hard or even impossible to
simulate with the established Monte Carlo method, can be
handled in a straight-forward manner. The applicability of
the method for important practical applications is demon-
strated for noise simulation, small-signal analysis, hot-carrier
degradation, and avalanche breakdown.
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1 Introduction

Moment-based approaches for semiconductor device simula-
tions are, despite their deficiencies for scaled-down devices,
still the most popular methods for technology computer-
aided design (TCAD). For example, the drift-diffusion and
hydrodynamic models are still used to predict the device
characteristics of scaled-down devices, even though their
limitations and deficiencies in this regime are well known [1].
These deficiencies could not be addressed through models
obtained by taking higher moments either, as closure con-
ditions are hard to formulate and need to rely on empirical
arguments [2].

Higher accuracy than that provided by moment-based
methods can in principle be obtained by solving the full
Boltzmann transport equation (BTE) for the carrier proba-
bility distribution function f(x, p,t), where x denotes the
spatial coordinate, p momentum, and ¢ time. While moment-
based models only provide information about averaged
quantities such as mean velocity of the particle ensem-
ble centered at a given spatial location x, solutions of the
BTE provide full information about the distribution of car-
riers with respect to their momentum. This allows for a full
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consideration of many details such as scattering processes
and high-energy effects. On the other hand, the additional
momentum coordinates require a numerical resolution of the
momentum space at each spatial discretization element in one
way or another. Therefore, the computational effort for solv-
ing the BTE is considerably higher than for moment-based
models.

The Monte Carlo method was one of the first methods
used to solve the BTE for semiconductors and is still the
most popular method used today. It provides several appeal-
ing advantages for practical use: First, implementations are
relatively easy, hence first results can be obtained quickly.
Second, many complicated physical details such as sophisti-
cated bandstructures can be included with the Monte Carlo
method. Third, the Monte Carlo method is fairly robust
because it does not involve the solution of large systems of
nonlinearly coupled equation, where divergence may occur,
but instead relies on stochastic sampling. On the other hand,
the stochastic nature of the Monte Carlo method is also
responsible for major shortcomings. The first is due to the
inversely proportional relationship of the accuracy with the
square root of the number of particles and thus also processor
cycles [3]: If the distribution function needs to be resolved
over several orders of magnitude, excessive execution times
are required [4]. This is the case if rare events or small
currents need to be resolved, or if small-signal analysis is
performed. Also, the square-root dependence mandates that
scaling Monte Carlo simulations beyond the computational
resources power provided by a single workstation or a sin-
gle cluster yields diminishing returns when considering the
additional resources invested. The second shortcoming of the
Monte Carlo method is the inherent transient nature: Self-
consistent device simulations require time steps on the order
of femtoseconds to resolve plasma oscillations, hence simu-
lations of time intervals in the millisecond regime or beyond
become practically infeasible [5].

To overcome the limited accuracy of moment-based meth-
ods on the one hand, but to avoid excessive execution times
of the Monte Carlo method on the other hand, sophisticated
deterministic methods for solving the BTE were developed.
A full discretization of the (x, p)-space for solving the
transient BTE using a weighted essentially non-oscillatory
(WENO) scheme for stabilization was proposed by Carillo et
al. for one-dimensional simulations [6] and later extended to
two-dimensional device simulations (cf. [7] and references
therein). Spherical coordinates were used in momentum
space in order to better resolve the spherical symmetry of the
analytical band structures employed [8,9]. A related method
was proposed by Galler et al. [10], where the multigroup
equations are solved using a finite element-like decomposi-
tion of the full momentum space into tiny cells.

The most mature deterministic method so far and the focus
of this review is the spherical harmonics expansion (SHE)
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method. It has been successfully employed for a much wider
range of device quantities than any of the other direct solu-
tion approaches. The SHE method mathematically exploits
the fact that the distribution of carrier momentum in equi-
librium shows a spherical symmetry. As a consequence, the
equilibrium distribution function can be represented exactly
with a zeroth-order expansion. This is in contrast to moment-
based methods, where higher-order moments do not vanish
in equilibrium. Since expansions in spherical harmonics can
be seen as an extension of Fourier series from the circle (i.e.,
one angular component ¢) to the sphere (i.e., two angular
components 6, ¢), a rich mathematical foundation is avail-
able [11-13].

First numerical applications of the SHE method for solv-
ing the BTE for homogeneous semiconductors can already
be found in the 1960s, for example, in the work of Baraft [14].
However, it took until the early 1990s until the SHE method
was first used for device simulation [15-17]. In these early
works, the SHE method was derived from a perturbation
of the equilibrium state, resulting in a first-order SHE
method for which promising agreement with Monte Carlo
results was obtained. Subsequently, several authors refined
the method: Lin et al. derived a Scharfetter-Gummel-type
stabilization for the first-order SHE method [18], and later
coupled it with the Poisson equation and a hole continuity
equation [19]. Hennacy et al. extended the SHE method to
arbitrary order [20,21]. Schroeder et al. proposed physically
sound boundary conditions [22] to address sharp boundary
layers when forcing the distribution function to equilibrium
at the contacts. Vecchi et al. introduced a methodology to
include full-band effects [23,24]. The same group proposed
an efficient solution scheme with a multigrid-like refinement
near the conduction band edge and observed a decoupling of
the system of linear equations after discretization when using
certain scattering processes [25]. Singh identified a regulariz-
ing behavior of inelastic scattering mechanisms over elastic
ones and used this to construct a positivity-preserving dis-
cretization [26]. Rahmat et al. were the first to observe a
decoupling of spatial and angular terms and presented results
for a third-order discretization using an upwind scheme [27].
The Bologna group proposed a methodology for handling
impact ionization [28], hot electron injections [29], and
electron-electron scattering [30,31] for first-order SHE. In
order to consider certain quantum mechanical effects, Golds-
man et al. applied a first-order SHE to a modified BTE
taking local contributions from the Wigner equation into
account [32]. At about the same time, Ben Abdallah [33,34]
and Ringhofer [35-38] provided important foundations for
a better mathematical understanding of the BTE in gen-
eral and the SHE method in particular. This understanding
was supplemented by the results of Hansen et al., who
used the SHE method for the modeling of plasma physics
[39].
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In the following, we provide a unified presentation of
recent improvements of the SHE method. We focus on contri-
butions since the work of Jungemann et al. in 2006 [40], who
introduced a sound mathematical stabilization and demon-
strated the need for higher-order expansions for nanoscale
devices. Section 2 introduces the SHE method at the con-
tinuous level with some details on the choice of boundary
conditions. The inclusion of additional physical processes
and application scenarios of the SHE method are presented
in Sect. 3. Section 4 discusses the current state-of-the-art dis-
cretization and summarizes various techniques developed for
further reducing overall simulation times. Rather than pro-
viding a separate results section, we present results directly
at the respective point of discussion to preserve a coherent
flow of discussion. Finally, we draw a conclusion and discuss
possible future research directions worthwhile to pursue.

2 The SHE method

In semi-classical transport theory, the spatial and temporal
evolution of particles is described by a distribution function
f(x, p, t). In the following, we use the quantum mechanical
relation p = ik’ with reduced Planck constant  in order to
switch to the wave vector k. The distribution function then
obeys the BTE

9 1
a—{+v-vxf+EF-Vk/f=Q{f}, (1)

where v denotes the group velocity, F = —V, (qi+¢p) isthe
force due to the particle charge q (negative for electrons, pos-
itive for holes), v is the electrostatic potential obtained either
through self-consistent solutions with the Poisson equation
or externally prescribed (frozen field), &y, identifies the band
edge (minimum for electrons, maximum for holes), and Q
refers to the scattering operator. The force term may also
depend on the magnetic field [41], which will be neglected
in this work for the sake of conciseness. In principle, a BTE
needs to be solved for each valley and each carrier type. Inter-
actions between the different valleys and carrier types occur
through intervalley scattering and generation-recombination
processes. For better readability, the subsequent discussion
assumes a single valley for a single carrier type unless noted
otherwise and arguments are suppressed whenever appropri-
ate.

2.1 Spherical harmonics expansion

The SHE method allows for accounting for spherical sym-
metries with respect to momentum. However, common
descriptions of the bandstructure in silicon show elliptical
symmetries. The elliptical symmetries in the original k&’ coor-

dinates are mapped onto spherical symmetries using the
Herring—Vogt transformation [42]

. 0 0
T=|0 T, 0
0 0 T,

via k = Tk'. The BTE (1) after the Herring—Vogt transfor-
mation takes the form

Z—J:—l-Tv-fo—i—%TF-ka:Q{f}. 2)

A SHE can in principle be carried out for constant modulus
k = ||k| of the transformed wave vector, or for constant
kinetic energy €. An expansion with respect to energy has
several advantages: For example, the distribution function is
isotropic on equienergy surfaces in equilibrium and many
scattering rates are in good approximation independent of
the angles [40]. Thus, spherical coordinates (k, 6, ¢) in k-
space are mapped to spherical coordinates (¢, 8, ¢) in energy
space, where we keep the angles unchanged and require the
mapping to be unique in both directions [43]. Such a one-to-
one mapping is naturally fulfilled for the analytical Modena
model, which will be discussed in Sect. 3.1. Moreover, as we
will later see in Sect. 3.1, the requirement of a one-to-one
mapping can be relaxed substantially.

A SHE of an arbitrary function u in energy space reads

l

w(x, ke, 0,9),00 =D > wnx,e,HY""0,9), (3)

=0 m=—I
where Y are the orthonormal, real-valued spherical har-
monics on the unit sphere. Conversely, for any given function
u on the unit sphere with mild regularity requirements, the

expansion coefficients u; ,, are obtained from a projection
onto the respective spherical harmonic [11]:

i = / uym 4 @
082

Here, £2 denotes the unit sphere and d§2 = sin 6 d6 dg. The
description of the BTE in k-space requires a projection of
a function u over the whole Brillouin zone B for a kinetic
energy € as

1 I,m
W/Bsw — e(k) Y™y dk, 5)

resulting after a change to spherical variables in

/ Yimuz ds2, (6)
082
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where the generalized density of states Z is obtained from
the Jacobian of the coordinate transformation as

k2 ok

Z(S,e,(p) = mg

(N

This generalized density of states differs from the conven-
tional density of states by a factor of 47, which is obtained
in the spherically symmetric case by an integration over the
angles 0 and ¢. The important detail in (6) is the generalized
density of states entering the integrand. If the generalized
density of states is modeled as spherically symmetric, i.e.,
Z = Z(g), then (4) and (6) differ only by a constant factor
for fixed kinetic energy . On the other hand, a full angular
dependence of Z will lead to unrelated expansion coefficients
obtained from (4) and (6) in general.

Since the distribution function f is a-priori unknown and
only known to fulfill the BTE, it is not enough to only com-
pute projections of the form (4) or (6). Instead, a system of
equations for the unknown expansion coefficients f; ,,, needs
to be derived from the BTE. Such a system is obtained by
projecting (2) onto the spherical harmonics Y. For details
of the derivation, we refer to the literature [40] and directly
state the resulting set of equations:

agl,m o(F - .;l,m)
ot + ae
—TF - Fl,m = Ql,m{g}y (8)

+VX'}l,m

where we set g := fZ motivated by (6), } is the generalized
current density given by

Jim =/ TogYh™ dg, 9)
052

and

r / g (oyhm L ! aytm
= — e
bm = Joo ik \ 36 7 sing og

with unit vectors eg and e, in the spherical coordinate system
for the 6 and ¢ directions, respectively. The projected scat-
tering operator Q; ,{g} will be discussed below. To better
expose the structure of the equations, we combine V, and
d/d¢ to yield a divergence in (x, )-space:

ew) a2 (10

8gl,m
ot

+Vae Jim—TF-Tpm= 01mlgl (11)

with

~ }1,
Jim =( 2 ) (12)
F '.]l,m
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Fig. 1 Comparison of the relative error in the collector current of a
silicon-germanium heterojunction bipolar transistor (base thickness: 24
nm) for different SHE orders [44]. First-order expansions show an error
of 10% compared to an eleventh-order expansion, hence expansion
orders of three to seven are more appropriate for scaled-down devices

Similar to numerical solution techniques based on Fourier
series, we substitute a SHE truncated at finite expansion order
Imax for g as

loax I
g Y > g ¥ (13)
I'=0m'=—1I'

Typical values for Iiy,« for scaled-down devices are between
three to seven, resulting in practically negligible relative
truncation errors for relevant macroscopic quantities. For
example, the relative error plotted in Fig. 1 for the collec-
tor current of a silicon-germanium heterojunction bipolar
transistor is significant (10 %) when comparing a first-order
expansion to an eleventh-order expansion. In contrast, a third-
order expansion with an error of only one percent is sufficient
for most practical purposes.

With a truncated SHE and Einstein’s summation conven-
tion for repeated upper and lower indices, we obtain

Jim =00 & (14)
Tiw =T} g (15)
with

ﬁﬁ’;f’:/ Toy! ™ ylm 4o, (16)
’ a2

- yl'm' raylm 1 aylm

rim = eo + — e, ) d22.

’ a0 hk a0 sinf dg

(17)

Before applying the truncated expansion to the scattering
operator, we split the scattering operator into contributions
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from in-scattering (a carrier enters the considered trajectory)
and out-scattering (a carrier leaves the considered trajectory)
via

0lg} =D OMgt — 09"(g).
n

where the individual scattering processes are identified
through the index 7. This allows us to separate evaluations
of the distribution function at other energies (in-scattering)
than the energy of the respective trajectory (out-scattering).

Substituting the truncated expansion (13) into the system
of projected BTEs (8) result in

agl,m
ot

in;l’,m’ out;!’,m’
= Z I:Qﬂil’m 8r.m' (X, € F hoy, 1) — Qn;l,m gl’,m/] s
n

~l'.m’ U'm’
+ Vx,s : J[,rn 8U'\m’ — F . F]’m 8r.m'

(18)

where the inelastic energy transfer involved in the scattering
process identified by 7 is iw;. Equation 18 defines a system
of (Imax + 1)2 coupled linear partial differential equations of
first order, where shifted arguments ¢ F /1w, appear in the in-
scattering terms. The system is posed in the five-dimensional
(x, &, t)-space rather than the original seven-dimensional
(x, k, t)-space of the BTE. For stationary simulations, the
solution space further reduces to four dimensions (or three
and two dimensions for two- or one-dimensional device sim-
ulations, respectively). Therefore, solutions for the unknown
expansion coefficients g; ,, are much cheaper to compute in
general than full solutions f of the BTE.

2.2 Boundary conditions

The system of equations (18) needs to be supplemented with
suitable boundary conditions in order to fully specify the
system. Homogeneous Neumann boundary conditions are
imposed at spatial non-contact boundaries. Similarly, homo-
geneous Neumann boundary conditions are applied at the
lower energy boundary at ¢ = 0 and for the upper energy
boundary at ¢ = emax for some user-defined value of enax.
Scattering processes with initial or final energy outside the
considered energy range, including scatter events to or from
the band gap, are invalid and hence ignored.

Early publications imposed Maxwell-Boltzmann distrib-
utions f°4 via Dirichlet boundary conditions of the form

l=m=0,

f= Mexp(kBLT),

. (19)
0, otherwise,

Jim(&) = [

at the contacts, where kg is the Boltzmann constant, T
denotes temperature, and M is a suitable normalization fac-

tor in order to obtain the correct contact carrier density.
This is in some sense similar to contact models often used
for moment-based models, where a known value of the
carrier density is prescribed as a Dirichlet boundary con-
dition. At closer inspection, however, Maxwell-Boltzmann
distributions as Dirichlet boundary conditions for SHE are
problematic: While such a thermal equilibrium assumption
is reasonable at the inflow contacts, it leads to steep gra-
dients (so-called boundary layers) at the outflow-contact at
higher bias [22]. In other words, a heated carrier distribution
is forced to thermal equilibrium at the outflow-contact.

Generation/recombination processes solve the issues with
boundary layers at Dirichlet boundaries. For example, Junge-
mann et al. imposed the volume rate

_ 7, fe
Vim = _8Lm Tol,mf ’ (20)

as volume sources at the contacts, where Z; ,, is the spherical
harmonics expansion coefficient of the generalized density
of states, feq is the equilibrium (Maxwell-Boltzmann) distri-
bution as in (19), and 7 is the recombination time [22,40].
Here, 7o provides control over the difference between thermal
equilibrium and the computed solution. In the limit 79 — O,
the Dirichlet boundary condition (19) is recovered.

Hong et al. proposed a parameter-free improvement of
(20) [41]. The new model is based on a surface generation
rate of the form

Y K) = =[f 0,00 (=T - )
+ fLio,00)(Tv-m)]Tv-n 21)

with outward-pointing unit normal vector n at the con-
tact and the Heaviside step function 1o . Here, the first
term describes carriers in thermal equilibrium entering the
device (YA“v needs to point into the device), while the second
term describes the annihilation of heated carriers leaving the
device. Such a boundary condition corresponds to a thermal
bath contact as used in Monte Carlo simulations [3].

2.3 Stabilization and H-transform

The partial derivatives with respect to the spatial variable x
and the kinetic energy ¢ describe the motion of carriers in
free flight. In the absence of scattering mechanisms, car-
riers solely gain or lose kinetic energy in reaction to the
force term F'. Therefore, the trajectories of carriers in free
flight in (x, €)-space mirror the potential profile through-
out the device. Regular discretizations with respect to the
kinetic energy ¢ are unable to trace these trajectories accu-
rately, because particles in free flight gain and lose kinetic
energy in response to the externally applied field. As a con-
sequence, numerical instabilities develop in regions of high

@ Springer
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electric field, unless numerical stabilization leading to a
stable discretization as discussed in Sect. 4 is applied. Rah-
mat et al. used a semi-empirical upwind scheme to stabilize
the SHE equations for device simulation in the micrometer
regime [27]. Jungemann et al. applied the maximum entropy
dissipation scheme (MEDS) [37] and obtained good numer-
ical stability for devices of about 100nm length [40]. They
multiplied the equations obtained for odd [ with

- (s +ep + qw(x)) (22)

ksT

in order to address the exponential decay of the distribution
function with kinetic energy and to better follow the tra-
jectory of carriers in free flight. This ultimately results in a
Scharfetter-Gummel-like stabilization of the discrete system.

Ballistic transport becomes increasingly dominant for
smaller devices, so in addition to MEDS the so-called H-
transformation [16] was applied in [41] and used in all sub-
sequent publications. The essence of the H-transformation
is to apply a change of coordinates from kinetic energy ¢ to
total energy H = ¢ + &, + q¥ (x), through which the deriv-
ative with respect to energy in (18) vanishes. Overall, one
obtains

081, 0g1.m Oy NN N Um!
arm 1 81;1 o TVedim 8rw —TE: L, 8w

in;l’,m’ out;l’,m’
= E I:QU;IJn gllym/(x, H F ha)n, t) — Qn;l,m gl/’m/:l .
n

(23)

For simplicity, all variable names were reused in (23), even
though all quantities are now a function of (x, H, t) instead of
(x, &, t). It is important to note that the variable transforma-
tion results in an additional term containing the derivative of
the SHE expansion coefficients with respect to total energy
H and the time derivative of the potential. While the term
does not contribute for stationary solutions, it is important to
consider the term for small-signal analysis as well as noise
simulations [45].

After applying the H -transformation, the carrier trajecto-
ries in free flight, which are given by constant total energy
H, are well resolved when using a regular grid with respect
to the total energy coordinate, cf. Fig. 2. The price to pay
for the improved numerical stability is the dependence of the
band edge on the potential; simulation regions for the con-
duction and valence band edges must be recomputed after
each change of the potential, resulting in stability issues
for transient simulations, cf. Sect. 6.3. MEDS applied to
the H-transformed equations results in the multiplication of
equations for odd / by a constant, hence this constant can
also be omitted without changing the solution of the system.
As discussed by Hong et al. favorable numerical properties

@ Springer

Conduction Band M

o T
S

Band Gap

- Izl

< 9 ©

N
Valencje/\lB(and

Fig. 2 Carrier trajectories (dotted horizontal lines) in free flight are
given by constant total energy H. Scattering mechanisms couple the
individual trajectories (vertical arrows). The shape of the band edge is
determined by the material configuration and the electrostatic potential
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are obtained when using the adjoint equations for the dis-
cretization instead [41,46]. The adjoint equations can also
be obtained through direct manipulation and read

agl,m agl,m % Al m!
or " VoH gr ' Jim

in;l’,m’ out;//,m’
= Z [Qn;l,m g (¥, H F hawy, 1) = Q' gz',m'] ’
n

A 1.
. ngl’,m/ +TF-T /?,Zn/gl’,m’

(24)

where compared to (23) the divergence of the generalized
current density was transformed to a gradient of the gener-
alized distribution function coefficients g ,, the sign of the

term involving the force F is flipped, and the indices of 1“1{;;1m/

I,m
are changed to [ e

3 Modeling

In this section, we discuss material-specific properties and
physical details to extend the general description of the SHE
method in Sect. 2. These details are essential for predic-
tive device simulation and require a careful modeling of the
underlying material. While most of the discussion is cen-
tered around silicon and germanium, the concepts are likely
to be applicable to other materials as well, even though other
processes such as polar-optical phonon scattering may play
a much more important role.

3.1 Band structure

From the dispersion relation ¢ (k), one can fully describe the
ballistic transport of carriers in a device. More precisely, both
the group velocity v = V¢ /7 and the density of states (7) are
directly obtained. During the derivation of the SHE method it
is required that the mapping from ¢ to k is one-to-one, hence
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Fig. 3 Comparison of the density of states Z and the group veloc-
ity v for different dispersion relations commonly used with the SHE
method [47-51]. The original parameter set for the many-band model

the term (k)1 in (10) can be evaluated directly. For com-
mon analytical bandstructure models, namely the parabolic
bandstructure

272

hk
ek) = — (parabolic) (25)
2m*

with effective mass m* and the non-parabolic modifica-
tion [47,49]

272

e(l+ae) = gy (nonparabolic) (26)

also known as Modena model or Kane model, these one-to-
one mappings are obtained directly. Similarly, Brunetti et al.
proposed to invert the dispersion relation for each band of the
many-band model for silicon [48]. These models typically
reproduce the density of states as well as the group velocity
fairly well at energies below 1 eV, but fail to provide good
approximations at higher energies.

A better approximation of the dispersion relation can in
principle be obtained from a SHE of the inverse dispersion
relation

k
lmax

!
ke 09y =2 > k¥ @7)
=0 m=—I
for some maximum expansion order /X . Such an approach
was pursued by Kosina et al. for the valence band [43] up to
an energy of 1.27 eV and later refined by Pham et al. [52].
A fitted band structure based on the SHE for the conduction
band was developed by Matz et al. [50,51]. However, a sys-
tematic error cannot be avoided because of the requirement

945
2.5 T T T T T T T
Parabolic --------
Modena ------- : : : :
5> L Many-Band —-—- ]
Fitted-Band -+-+- : : ‘ ’
@ Full-Band
£ : :
5 : ‘
[se]
o
=
©
ko)
(]
>

0 0.5 1 1.5 2 25 3 35 4
Energy (eV)

from [48] is based on different full-band data than the full-band data
plotted here, which explains the relatively large deviations

of a one-to-one mapping between kinetic energy ¢ and the
modulus of the wave vector k.

Additional full-band effects can be considered by relaxing
the requirement of a one-to-one mapping for the modulus
of the wave vector k and the density of states Z. Vecchi et
al. found that for a first-order SHE the equations can be recast
such that the term I'; ;, as defined in (10) does not contribute
and hence an explicit form is not required for k [23]. Thus,
even though such a one-to-one mapping is formally required
for the derivation of the SHE method, full-band data without
an explicit one-to-one mapping such as in Fig. 3 can be used
directly. Jin et al. extended this approach to expansions of
arbitrary order [53]. They observed that under the assumption
of spherically symmetric dispersion relations one can write

Z_BUZ

nk — oe 28
and eliminate the explicit dependence on k in (10). With this,
Jin et al. showed that full-band data can directly be used for
the group velocity v and the generalized density of states
Z. They demonstrated good agreement of the distribution
function obtained from one-dimensional device simulations
using the SHE method with results from full-band Monte
Carlo simulations.

Hong et al. proposed a further refinement of the approach
by Jin et al. by postponing the isotropic valley approxima-
tions in earlier approaches until the last stage of the model
derivation [46]. The proposed method is to use a general-
ized coordinate transformation to construct a model of the
first conduction band for increased accuracy, while higher
conduction bands are approximated using the isotropic
model. This hybrid approach constitutes a good compromise
between higher accuracy and lower computational cost.
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3.2 Pauli principle

The scattering operator for events other than carrier-carrier
scattering is often written in the low-density approximation
as

1 * *
o1f) = W/Bs(x’k R f k)
—s(e, k, k) £ (x, K, 1) Ak (29)

with scattering rate s (x, k™! gfinal) for 3 scattering process
from an initial state k™% to a final state k™. The first
term in the integrand refers to in-scattering, while the second
term in the integrand denotes out-scattering. The low-density
approximation is justified whenever the term (1 — f) at the
final state, i.e., the probability of the final state being vacant,
can be approximated by 1. However, this approximation can
no longer justified at medium to high carrier densities and
the Pauli exclusion principle needs to be considered via the
full scattering operator:

1 * *
Q{f}= W/Bs(x’k ’k)f(x7k 7t)(1_f(xakat))

— s,k k) f e, ke, (1 — £, k¥, 1)) dE* (30)

Thus, the linear system of SHE equations in the low-density
approximation becomes nonlinear if the Pauli exclusion
principle is included. This weak nonlinearity, however, is
only a mild concern for simulations with frozen field; self-
consistent simulations need to account for the nonlinear
coupling of the SHE equations to the Poisson equation.
Hong et al. investigated the influence of Pauli’s exclusion
principle and found a notable difference only for doping
concentrations above 10'® cm™3 [54]. Figure 4 depicts
the influence of Pauli’s exclusion principle on the electron
distribution function in a highly doped silicon-germanium
heterojunction bipolar transistor. Considerable influence of
Pauli’s exclusion principle is only observed at energies below
0.2 eV. Without Pauli’s exclusion principle, values higher
than unity are obtained, which do not make sense from a
mathematical and physical point of view.

A practical evaluation of the influence of Pauli’s exclu-
sion principle is given in Fig. 5, where the simulated cutoff
frequencies for a silicon-germanium heterojunction bipolar
transistor are compared. Even though there is a high doping
level of 2 x 102%cm ™3 in the emitter region of the device, the
difference in the computed cutoff frequency of only two per-
cent shows that the influence of Pauli’s exclusion principle is
small. The difference is small because macroscopic quanti-
ties such as the electron density remain essentially unchanged
whether or not Pauli’s exclusion principle is considered. In
this case, the cutoff frequency is mainly determined by the
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Fig. 4 Comparison of the electron distribution function for a silicon-
germanium heterojunction bipolar transistor at room temperature with
a maximum doping level of 2 x 102° cm~3 in the emitter region [54].
If the Pauli principle is not considered, the distribution function obtains
values higher than unity at such extreme dopings

300

No Pauli Principle ——
550 With Pauli Principle ---@--- ‘

200

150

100

Cutoff Frequency (GHz)

50

0.1 1 10

Collector Current (A/cm)

Fig. 5 Comparison of the cutoff frequency in a silicon-germanium
heterojunction bipolar transistor computed with and without Pauli prin-
ciple for a collector—emitter bias of 1.2 Volt [54]. The difference is at
most two percent, which is negligible for most practical applications

electron distribution function just above the energy barrier
in the base region, where the impact of the Pauli principle
is negligible. Consequently, it is often acceptable to ignore
Pauli’s exclusion principle for simulating device character-
istics.

3.3 Carrier-carrier scattering

In addition to Pauli’s exclusion principle, the scattering
operator in (29) also becomes nonlinear if carrier-carrier
interaction is considered. Using a low-density approxima-
tion, the scattering operator becomes
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Fig. 6 Left Comparison of the electron distribution with and with-
out electron-electron scattering in a bulk semiconductor at 100 kV/cm
including a convergence plot of the electron distribution function at 2
eV when including electron-electron scattering. Right Exemplary num-

1 * * * *
o{f} = W/Bs(x,k e K k) f (e K f (e, KL 1)

—s(e, k k¥ ko, k3) f (e k1) f (x Ko, 1) d(K™, ko, Kk3).
3D

This quadratic nonlinearity in the distribution function of
the scattering operator becomes a forth-order nonlinearity if
Pauli’s exclusion principle is considered as well. The scat-
tering rate s (x, k, k*, ko, k;‘ ) for simultaneous transitions of
two carriers from k to k* and k» to k; needs to account for
both energy and momentum conservation, i.e.,

s(x, k, k", ko, 3)

~8k+ky—k* —k})3(e+ex—&* —¢3) (32)
with Dirac distribution §. This dual conservation property
induces additional complications when compared to e.g.,
phonon scattering processes, where only energy needs to
be conserved. Moreover, the strong angular anisotropy of
the scattering rate needs to be resolved appropriately. Ven-
tura et al. developed a technique for simulating carrier-carrier
scattering using a first-order SHE method [30,56]. Rupp et
al. refined the method to arbitrary SHE order and verified the
approach for bulk silicon through comparison with Monte
Carlo results [55]. A rigorous calibration for device simu-
lation is, however, extremely difficult, since measurement
data for the carrier distribution function are not available for
comparison.

The inclusion of carrier-carrier scattering increases the
computational effort considerably. This is due to the non-
local coupling of the carrier-carrier scattering operator with
respect to energy. In other words, for a fixed spatial coordinate
X, carrier-carrier scattering may occur between two carriers
with arbitrary initial and final energies. In contrast, carrier-
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ber of nonzeros in the system matrix with and without electron-electron
scattering in comparison to the number of unknowns for a MOSFET
simulation. [55]

phonon scattering involves a fixed energy transfer only. As
a consequence, execution times as well as memory require-
ments when considering carrier-carrier scattering increase
by about one to two orders of magnitude depending on the
resolution with respect to energy, cf. Fig. 6.

3.4 Generation and recombination

First publications on the SHE method have considered one
carrier type only. Later, the BTE was coupled with a con-
tinuity equation for the second carrier type (e.g., [19]).
Rupp et al. applied the SHE method to both carrier types
and included transitions between the valence and the con-
duction band. They modeled the coupling of the two BTEs
by generation and recombination processes via trap levels
in the band gap [57], exactly reproducing the Shockley-
Read-Hall model in the macroscopic limit. Other processes
such as impact ionization may also contribute to carrier gen-
eration or recombination [58]. Because of the importance
of Shockley-Read-Hall-like generation and recombination
process in silicon, we will consider generation and recombi-
ation via traps in more detail in the following.

More formally, a BTE is considered for the distribution
functions f™ and fP for electrons and holes, respectively.
The additional term
(= fHIEN'f = fHIRN'Y = fh (33)
in the BTE models the generation (with rate Fé‘) and recom-
bination (with rate I'}) of an electron in the conduction band
via a trap t with trap density N' and occupation probability
f*, cf. Fig. 7. Similarly, the generation and recombination of
a hole in the valence band is modeled through the additional
term
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Fig. 7 Generation or recombination of an electron—hole pair through
a trap in the band gap

(1 — fOFEN'Q = fY — fPIEN' £ (34)

The trap occupation probability f' can be computed explic-
itly from the electron and hole distribution functions [57].

3.5 Quantum mechanical corrections

If the SHE method is used for the simulation of scaled-down
devices in the deca-nanometer regime, the semi-classical
nature of the BTE is not enough to account for quan-
tum mechanical effects. In particular, quantum mechanics
requires that the peak carrier concentration in the channel of
a MOSFET is located a few nanometers away from the inter-
face to the gate oxide rather than at the interface. A solution
of the Boltzmann-Poisson system, however, does not reflect
this fact unless special correction schemes are employed.
The density gradient model is a popular method to capture
quantum mechanical effects to first order by extending the
drift-diffusion model [59,60]. Related approaches for includ-
ing quantum mechanical corrections in other moment-based
methods also exist, see for example [61-63]. Bina extended
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Electron Density (cm_s)
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the first-order SHE method such that quantum mechanical
corrections provided by the density gradient model are con-
sidered [64]. Similar to how the density gradient model is
obtained from the drift-diffusion model, he introduced a cor-
rection potential y (x, ¢), which fulfills

2

)= =
YD) = e T

(Ay + Ay)

with fitting parameter A, Boltzmann constant kg, lattice tem-
perature T1, effective mass m*, and electrostatic potential .
Homogeneous Dirichlet boundary conditions are employed

at the contacts, whereas Robin boundary conditions of the
form

dy
OlJ/‘i‘ﬂ%:f

with constants «, B, f, and outer normal vector n are used
at semiconductor-insulator interfaces.

Simulation results show good quantitative agreement with
solutions of the Schrodinger equation for one-dimensional
simulations of metal-oxide-semiconductor structures, cf.
Fig. 8. In practice, these corrections come at negligible cost,
because the additional numerical effort for computing the
quantum mechanical correction potential is tiny compared
to the numerical effort required for computing the SHE coef-
ficients.

Subband-splitting is another way of considering quan-
tum mechanical effects. A two- or one-dimensional BTE
is solved in transport direction, while the one- or two-
dimensional Schrodinger equation is solved in the perpen-
dicular confinement directions, respectively. Instead of the
SHE method, Fourier expansions for solving the BTE with
a two-dimensional momentum space are sufficient, hence
reducing the computational effort [65,66]. A degenerate BTE
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Fig. 8 Comparison of carrier densities obtained for the simulation of an nMOS structure (/eft) and a pMOS structure (right). Each MOS structure
has a length of 100 nm and acceptor and donor doping densities of 3 x 10'% cm—3, respectively
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with one-dimensional momentum space can even be solved
directly without any problems. As a consequence, we will
not discuss these approaches in more detail, but refer to the
literature for further details [46,67].

4 Numerics

The presentation of the SHE method in Sect. 2 as well as the
various models discussed in Sect. 3 was based on a continu-
ous formulation of the equations. In this section, we outline
the discretization of the H -transformed SHE equations (23),
discuss solution procedures for self-consistency with Pois-
son’s equation, and discuss numerical tweaks to minimize
execution times.

4.1 Discretization

The finite volume method (also known as box integration
method) is an appealing choice for the discretization of the
H-transformed SHE equations in (23), because it ensures
local charge conservation properties similar to moment-
based models. In a naive discretization, all expansion coef-
ficients g ,, are discretized in a conforming manner and the
spatial divergence is converted to a surface integral as usual.
Such a direct discretization, however, suffers from spurious
numerical oscillations and instabilities.

To understand the numerical instability of conforming dis-

! ’
cretizations, consider the coupling nature of the terms j 5 o

and I’ f/f. Because of symmetries of the underlying physical
procesées, these coupling terms vanish whenever / and I are
of the same parity [37,40]. Moreover, due to the derivatives
with respect to the angles in (17), there holds

’

ryr =o, (35)

hence the ballistic flight of carriers is entirely described by
the term Vy - J 1.m Tor a first-order SHE method. Note that
this is in analogy to the drift-diffusion equations, where the
divergence is responsible for the current conservation. Due
to the even-to-odd and odd-to-even coupling structure of
jﬁ/;;,"/, the expansion coefficients g, can be readily iden-
tified with the currents. Even-order expansion coefficients
describe densities, therefore it is advantageous to arrange the
discrete unknowns such that adjacent even-order expansion
coefficients are coupled via odd-order expansion coefficients
describing the flux between the two. In a finite volume
method, even-order unknowns (i.e., g, with [ even) are
thus associated with the discrete control volumes, while odd-
order unknowns are associated with the interfaces between
control volumes. For a discretization based on kinetic energy,
the odd-order unknowns are associated with the corners of
the control volume interfaces in order to account for the

Fig. 9 Schematic of the notation used for the finite volume discretiza-
tion

additional energy derivative [40]. A discretization of the
H-transformed equations, however, directly associates the
odd-order unknowns with each interface at the same total
energy H. The reason is that derivatives with respect to
energy are absent and thus a staggered grid with respect to
energy is not appropriate [68].

The most commonly used finite volume scheme for
semiconductor device simulation is vertex-based. Control
volumes (“boxes”) are taken from the dual Voronoi grid of
a Delaunay mesh so that each box can be associated with
a vertex and vice versa. Densities are then associated with
each vertex and fluxes between boxes are associated with
the edge connecting the two vertices, cf. Fig. 9. A drawback
of this vertex-based scheme is the requirement of Delaunay
meshes, which are very challenging to generate [69]. Rupp et
al. proposed a cell-centered discretization scheme, where the
cells (triangles, tetrahedra, etc.) are taken as boxes and hence
the method is suitable for arbitrary meshes [70]. However, to
account for the wide-spread use of vertex-based discretiza-
tions, we will consider a vertex-based discretization of the
SHE equations in the following.

Let B; denote the Voronoi box at vertex i, and B; ; the
box associated with the dual box obtained from combin-
ing the contributions of the boxes B; and B; associated
with the edge joining the vertices i and j, cf. Fig. 10. This
results in a conforming decomposition of the simulation
domain for structured and unstructured grids, i.e., both U; B;
and U; j.;<;B;, ; exactly cover the simulation domain if the
underlying mesh is sufficiently regular. For a discretization
of both the even-order and odd-order equations, the veloc-

ity v and the density of states Z (and thus also };m and
r ﬁ:;:':,) are assumed to be piecewise constant with respect
to the spatial coordinate in each box B; ;. Similarly, the
unknown expansion coefficients gy, are assumed to be
constant over their associated boxes B; and B; ; and energy
interval [H~, H™], respectively. Furthermore, we only need
to focus our attention on the discretization of the free stream-
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ing operator, because the scattering operator does not contain
any spatial derivatives and is thus not affected by the H-
transformation [40,41]. Integration of the free streaming
operator in the even-order equations (23) over the box B;
and the energy range [H~, H™] leads to

Ht
Al m’ A m’
/ / Ve Jim 8w —TF - Fl"n':l gr.w dx dH. (36)
H~ B;

Gauss’ Theorem applied to the first term transforms the diver-
gence into a normal derivative with respect to the surface
dB;. The resulting normal derivative in the surface integral
is approximated by a finite difference approximation with
respect to the edge of length d; ; connecting the box centers
x; and x ; of the boxes B; and B, respectively. Splitting the
integration over B; into the individual contributions B; N B; ;
results in

H+ l/ ’
Al'm
> / gl’,m’"i,j'/ Jim dH dx
j dB;NB; j H-

H+ 4 !’
- Z/ gl/’m/TF-/ ry;" dH dx, 37)
- JB;NB; ; H—
j i i,]

where n; ; is the outward-pointing unit normal vector of B;
at the box interface B; N B; ;. The integrals over energy are
independent of the unknowns and only enter as coefficients
into the discrete system. With the volumes V; ; = vol(B; N
B; ;) and the interface areas A; ; = vol(d B; N B; ;), we thus
obtain the discrete form

Ht Uom
AL ,m
E,Ai,j/ Jim dH -nijgu
j i

H+ ! ’
- ZV,-,,-Tg,,,m,F./ ry;" dH. (38)
. H~
J

Because of the even-odd-coupling of the free streaming oper-
ator, all nonzero coefficients in (38) carry odd I, hence all
g1 are taken from the dual box B; ;.

Integration of the streaming operator for the odd-order
adjoint equations (24) over the adjoint box B; ; and the
energy range [H ~, H "] results after an application of Gauss’
Theorem in

H+ ’\l/ m/
S [ max [ G an
keli, j) dB; jNBy H-

H+
Py / erm TF dx - / r'n am. (39)
keli, j) 7 Bii OB "

Since gy v was taken to be piecewise constant for the dis-
cretization, there holds
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Fig. 10 Unknowns expansion coefficients g; ,, with even / are associ-
ated with vertices (filled circles), while those with odd [ are associated
with the dual boxes centered at an edge connecting two vertices (open
circles)

/ grmmdx = A jgrmnj,i,
0B; jNB;

/ grmndx = A; jgr whi,j
9B; ;NB;

by using the path independence of the surface integral inside
the boxes B; and B;. The discrete form of the odd-order
equations is thus obtained as

H+ ! /
~l'm
Ai,j/[r Jim AH - (nijgrmw|B; +njigrmls)dx

HT
r;", dH.

(40)

+ (Vi,jgl’,m’lBi + Vj,igl’,m’|Bj)fF /

Due to the odd-to-even coupling property, only coefficients
with even /" are nonzero, hence all gy, are well defined on
the boxes B; and B;.

The discrete forms (38) and (40) can be used for structured
as well as unstructured meshes on which a Voronoi-based
finite volume scheme is possible. On structured grids, they
exactly result in the discrete equations derived by Hong et
al. [41] using a dimensional splitting.

4.2 The role of spherical symmetry

The coupling between the projected equations for different
spherical harmonics is primarily determined by the terms
5,,;"/, fi’n'f/, Q;]"ll:nm,, and qult,l’;m/ For isotropic band
structures, i.e., when there is no angular dependence of the
velocity and the density of states, it is possible to factor the

coupling terms (9) and (17) as

Ji = v, Hap 1)
ry" =r b (42)
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U'.m' I'.m'
where a, and bl,m

thus be precomputed. As shown by Rupp et al. aﬁl’n'f/ and

are independent of energy and can

bﬁ/’,:i/ exhibit an interesting coupling structure: For given [
and m, both coupling terms can take nonzero values only
ifl" =1+ 1and m" = £|m| & 1. This greatly simplifies
the coupling structure for isotropic compared to anisotropic
band structures.

Spherical symmetry of the band structure also has a
tremendous impact on the numerical complexity induced by
the scattering operators. For a single scattering process iden-
tified by 7, the contribution to the total scattering rate s in
(29) after a transformation to (g, 8, ¢) coordinates in general
is

sy =sy(x,6,0,0,6,0',¢)

and thus depends on the angles. Consequently, s, needs to
be considered in all spherical projections and may thus result
in an complicated coupling among the individual expansion
coefficients g; ,,. However, if the transition rate s, is approx-
imated as velocity randomizing [3,49], it only depends on
the energies. Therefore, the angular terms can be integrated
directly to obtain

Sp ™~ Sl,l/sm,m’v (43)

where §; ; is zero whenever i # j and unity otherwise. In
such a case, the scattering operator does not couple different
expansion coefficients g; ,, at all, hence the coupling among
expansion coefficients with different index pairs (/, m) and
(I’, m') is solely determined by the free streaming operator.

The decouplings (41), (42), and (43) also induce a Kro-
necker product structure of the system matrix. Kronecker
product structures are common for spectral methods [71] and
can be exploited to reduce the memory requirements of the
system matrix. Rupp et al. have shown that such a Kronecker
product structure allows for a compressed storage of the full
system matrix for the SHE method, resulting in the following
two advantages [72]: First, the memory-efficient represen-
tation based on Kronecker products enables higher cache
utilization, reduces data transfers from global random access
memory, and thus increases performance. Second, one can
quickly change the expansion order for a given electrostatic
potential without traversing the mesh, but by only adjusting
the SHE coupling matrices. However, significant memory
savings can only be seen beyond first order, cf. Fig. 11.
Furthermore, good preconditioners usually require the recon-
struction of the full system matrix, in which case the memory
savings are lost. A possible way to obtain good precondi-
tioners without explicitly storing the full system matrix for
higher-order SHE is to compute the preconditioner for a low-
order SHE system and use this preconditioner to solve the
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Fig. 11 Exemplary comparison of the memory requirements of the full
system and the compressed system when using the Kronecker product
structure of the equations with the memory needed for the storage of
the system unknowns only

high-order system. Such a strategy was successfully used
by e.g., Brown for the solution of the Stokes problem using
nodal finite elements [73].

4.3 Self-consistency

So far we have only considered the BTE for a given elec-
trostatic potential . An approximation to the electrostatic
potential may, for instance, be obtained from a solution of
the drift-diffusion model. Certain insights can be obtained
in such a setting, most notably the overall shape of the dis-
tribution function at higher energies. However, only a fully
self-consistent solution of the Poisson equation

Ay =|ql(n —p+0) (44)

with electron density 7, hole density p, and net doping C
together with the BTE provides accurate values for quantities
such as the current density.

Similar to moment-based methods, two main methods are
in use for obtaining self-consistency. The first method is the
Gummel method [74]. It relies on an iterated solution of the
Poisson equation and the drift-diffusion equation or the BTE
for each carrier type. For unipolar devices, the second carrier
type may also be ignored. The distribution function obtained
from a solution of the BTE is translated into a carrier density
via the relation

1 o0
n=_—s= 80,0 de (45)
YO,O/O )

for electrons and similarly for holes. An additional damping
is commonly applied in analogy to moment-based methods
to improve robustness of the iteration. Furthermore, the elec-
trostatic potential obtained from solutions of moment-based
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models can be used as an initial guess for the Poisson-BTE
system.

The second method for achieving self-consistency is New-
ton’s method, through which quadratic convergence close to
the solution is obtained. Newton’s method requires the solu-
tion of a system described by the full Jacobi matrix of the
coupled equations in each step. While partial derivatives of
the densities with respect to the SHE coefficients are easily
obtained from (45), additional care needs to be taken when
computing the partial derivatives of the terms in the BTE with
respect to the potential ¥. In a formulation based on kinetic
energy, only the terms involving the force F lead to addi-
tional contributions to the Jacobi matrix. On the other hand,
a formulation based on total energy H needs to account for
the dependence of the total energy H on the potential. In
particular, jé/;f/ and I f/ﬁ/ depend on v through the total
energy H. ’ ’

Since Newton’s method may fail with a poor initial guess,
the initial nonlinear iterations are often carried out using
Gummel’s method. When the current iterate is closer to the
actual solution, Newton’s method is then used, ultimately
resulting in quadratic convergence. In certain scenarios, the
SHE method may also exhibit higher numerical stability than
moment-based methods: Jungemann et al. reported superior
numerical stability of the SHE method during their study of
impact ionization effects [75].

4.4 Adaptive variable-order scheme

The number of SHE coefficients in (13) is (/max + 1)%. Con-
trary to moment-based methods, a SHE truncated after the
zeroth-order term still represents the equilibrium solution
exactly. Moreover, for the non-equilibrium case, it is known
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Fig. 12 Left Comparison of the relative error of the average carrier
energy along a straight line from source to drain in a MOSFET. Right
Plot of the error indicator within the nMOSFET in (x, H)-space. The
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that SHE coefficients decay rapidly according to the smooth-
ness of the underlying function.

From a computational standpoint, it is desirable to use
a small maximum expansion order /max to minimize the
numerical complexity. On the other hand, first-order expan-
sions provide, despite their appealing properties discussed
in Sect. 2, insufficient accuracy for scaled-down devices
under quasi-ballistic transport conditions. Certain regions of
a device, for example deep in the bulk, do not provide any
significant contributions to carrier transport, hence the addi-
tional computational effort for high-order expansions may
not be necessary. Similarly, a high-order expansion may not
be necessary at high energies where the distribution function
takes very small values.

Rupp et al. developed a variable-order scheme to select
appropriate expansion orders across the device [76]. Their
scheme allows for the specification of the maximum expan-
sion order depending on the location in (x, H)-space, i.e.,
Imax = Imax(x, H). Alternatively, the scheme may also be
interpreted as selecting In,x fixed throughout the whole sim-
ulation domain, but certain expansion coefficients are a-priori
set to zero because they are expected (or known) to be
insignificant.

Since the manual specification of expansion orders is
impractical for engineering purposes, Rupp et al. also pro-
posed adaptive schemes for automatically selecting the
expansion order in a bootstrap procedure [76]: Starting from
a first-order SHE, the expansion order is increased to third
order in regions where the SHE truncation error is large
(Fig. 12). Three schemes have been proposed for the detec-
tion of these regions: One is based on the relative weights
for the computation of a target quantity such as the cur-
rent density, the second monitors the decay of the expansion
orders with respect to / for fixed (x, H), and the third is a
residual-based scheme similar to those typically used with

D

error indicator is particularly high in the channel and at the high-energy
tail of the distribution function in the drain
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Fig. 13 Comparison of preconditioner setup time (a), iterative solver time (b), and total solver time (c) for the SHE method for a given electrostatic

potential [77]

finite element methods. After the expansion order is locally
increased, another solution of the Boltzmann-Poisson sys-
tem is computed and the adaption procedure repeated until
convergence.

An adaptive variable-order scheme is particularly benefi-
cial when used with structured grids in two or three spatial
dimensions. The reason is that the tensor construction of
structured grids enforces that high resolutions in one part
of the device also result in high resolution in other, possibly
less important, parts of the device. The adaptive variable-
order scheme will then select a low expansion order in these
less important parts of the device. Conversely, if the savings
in computational cost for unstructured grids instead of struc-
tured grids are already high, the additional savings from an
adaptive variable-order scheme are smaller [77].

4.5 Parallelization

Iterative methods are preferred over direct methods for the
solution of large systems of linear equations such as those
obtained in each nonlinear iteration step when using the
SHE method. At the same time, the use of iterative meth-
ods typically requires good preconditioners to accelerate the
convergence process. Jungemann et al. reported successful
convergence using preconditioners based on incomplete LU
factorizations for a formulation based on kinetic energy [40].
Vecchi et al. observed a decoupling of the H-transformed
SHE equations into several subsystems depending on the
inelastic scattering mechanisms employed and on the grid
spacing in energy direction [25]. Rupp et al. extended these
ideas to a general block preconditioning scheme, where the
preconditioner can be built and applied in parallel for each
discrete total energy [78]. The approach is based on the obser-
vation that scaled-down devices are increasingly dominated
by quasi-ballistic transport. Therefore, the action of the full
system matrix is captured in good approximation by a system
matrix without inelastic scattering events. In the absence of
inelastic scattering, the system matrix decouples into inde-

pendent subsystems for each discrete total energy. Therefore,
Rupp et al. proposed to build a parallel block-preconditioner
from a system without inelastic scattering events in order to
solve the full system including inelastic scattering. Since the
number of discrete energies is in the hundreds, enough par-
allelism is available even for massively parallel architectures
such as GPUs. Performance gains of up to an order of magni-
tude over a single-threaded implementation were reported on
a shared memory system, cf. Fig. 13 [78]. These gains partly
stem from the smaller computational effort in computing the
preconditioner due to the absence of inelastic scattering, and
partly from a better utilization of the underlying hardware.

In principle, the block preconditioning scheme can also be
used on smaller-sized clusters. For large-scale simulations,
preconditioners based on incomplete LU factorizations are
known to scale rather poorly. Hence, better parallel precondi-
tioners, particularly multigrid preconditioners, are desirable,
but have not been investigated for the SHE method yet.

5 Selected applications

In this section, we summarize selected application areas for
which the SHE method has been employed successfully. We
focus on applications where the SHE method provides signif-
icant progress over other methods used in the past. Thus, our
discussion is not meant to be an exhaustive list of possible
application areas for the SHE method.

5.1 Noise

The ongoing interest in further improving the noise perfor-
mance of semiconductor devices is hampered by the inability
of the Monte Carlo method to simulate the noise behav-
ior of devices at technically relevant frequencies in the
lower GHz range [75]. Jungemann has demonstrated that
the SHE method is well suited for the simulation of noise by
solving the Langevin-Boltzmann equation in the frequency
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Fig. 14 Exemplary distribution functions and acceleration integrals
(shaded area) for electrons (left) and holes (right) in the middle of an
artificial short-channel (25 nm) n-channel MOSFET. The high-energy

domain [79,80]. The deterministic nature of the SHE method
also allows for the accurate simulation of rare events and slow
processes, which for example occur in the case of deep traps.
For these reasons, Dinh et al. used the SHE method as a ref-
erence to benchmark a commercial noise solver based on the
drift-diffusion and hydrodynamic models [81].

5.2 Small-signal analysis

Small-signal analysis requires that the BTE is linearized
together with the Poisson equation at the bias point under
inspection, hence fluctuations of the electrostatic potential
play arole [46]. Such fluctuations can be considered directly
through the force term when using a formulation based on
kinetic energy ¢ as in (18), but additional attention is required
when using the H-transformation. Since the location of the
bandedgein (x, H)-space depends on the electrostatic poten-
tial, a naive application of the SHE method for small-signal
analysis yields time-varying coefficients. Lin et al. proposed
to fix the stationary part of the electrostatic potential and to
keep an additional derivative with respect to total energy for
the linearization [82]. This resolves the problems with time-
varying coefficients, but results in an additional coupling of
adjacent discrete energies.

5.3 Hot carrier degradation

High electric fields, as they are common in the pinch-off
region of a MOSFET, lead to a strong acceleration of carri-
ers. A few carriers may reach energies up to several electron
volts, which is sufficient for creating electron—hole pairs or
for surpassing the oxide energy barrier. These so-called hot
carriers are of utmost interest for the study of device degra-
dation phenomena [83,84].
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tail of the distribution function needs to be resolved accurately such that
after multiplication by the collision cross section S(¢) the acceleration
integral (46) can be computed reliably

For the modeling of hot-carrier effects such as impact
ionization or interface state generation, the collision cross
section S(g) typically grows quickly above a threshold
energy ¢, The total rate G (x, 1) is obtained from the accel-
eration integral

G(x,t) ~ /:o f(x,e,1t)S(e) de (46)

and relies on a good resolution of the distribution function at
higher energies, cf. Fig. 14, for which carrier-carrier scatter-
ing and impact ionization are essential [85,86].

The need for a high resolution of high-energy tails has
long- hampered scientific progress because of excessive exe-
cution times obtained with the Monte Carlo method. First
results for a long-channel MOSFET were reported only
recently [87]. As a remedy, simplified versions of the model
are used in practice [83,88]. With the availability of the SHE
method, these simplifications are no longer necessary.

5.4 Avalanche breakdown

The abrupt onset and strong nonlinear behavior makes the
simulation of avalanche breakdown during the switching of
power devices numerically very challenging. Also, the break-
down is not immediate: At typical breakdown voltages of
several tens of Volts, the breakdown may need hundreds of
picoseconds to fully develop. With a time step restriction of
a femtosecond or less, the Monte Carlo method is therefore
not suitable for the simulation of avalanche breakdown.
Jabs et al. developed a continuation method to deal with
these challenges and presented simulation results using the
SHE method for the avalanche breakdown of a 2D vertical
power MOSFET and a pn-diode at a reverse biases of up to
39 Volt [58,89]. They introduced a penalty parameter through
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which they controlled the current and avoided divergence in
the numerical solver. Also, to address the ill-conditioning of
the full system matrix, they introduced a splitting of the sys-
tem matrix into a contribution from the BTE without impact
ionization (matrix B) and a contribution from impact ion-
ization (matrix Q). By using B as a preconditioner for a
Richardson iteration to solve the full system described by
the matrix B — Q, they obtained a robust numerical scheme.

6 Outlook

In the following, we discuss possible future enhancements
and applications of the SHE method. Based on our own expe-
rience, we consider an extension of the SHE method to more
materials, the possibility to run large-scale simulations, and
the solution of the transient BTE using the SHE method to
be the most promising topics for future exploration.

6.1 More materials

The use of the SHE method for semiconductor device
simulations has been focused on silicon and silicon-ger-
manium devices. An exception to this observation is reported
by Ramonas and Jungemann, who investigated the elec-
tron—phonon interaction in gallium-nitride high-electron-
mobility transistors using the SHE method [90,91]. Kargar
et al. reported the use of the SHE method coupled with the
Poisson and Schrodinger equations for gallium arsenide [92].
Extensions to other popular materials or material combi-
nations such as silicon-carbide will increase the overall
attractiveness and versatility of the SHE method.

6.2 Large-scale simulations

The additional energy coordinate implies that the SHE
method requires about two to three orders of magnitude
more memory than macroscopic models such as the drift-
diffusion model. Today’s machines with tens of Gigabytes
of main memory provide enough resources to run spatially
one- and two-dimensional device simulation using the SHE
method. Even fully three-dimensional device simulations
are possible, yet only at moderate resolution and without
carrier-carrier scattering [77]. Consequently, there is clear
benefit of employing the SHE method on distributed mem-
ory machines, including supercomputers. The added benefit
of such large-scale simulations is that devices can not only
be simulated at higher accuracy, but for a given resolution
one can also obtain shorter execution times through the use
of more cores and memory channels. This is particularly
interesting in an engineering environment, where short turn-
around times are of importance.

6.3 SHE for the transient BTE

The SHE method has so far been employed for the stationary
BTE only, yet a solution of the transient case would allow for
a study of the long-time behavior in devices at an unprece-
dented level of detail. While solvers for the transient BTE
are readily available in other application areas such as the
simulation of rarefied gas flows, the BTE for semiconduc-
tors does not allow for a direct application of the techniques
in these other areas. The primary reason is that the external
force term in the BTE vanishes in other application areas.
Therefore, numerical instabilities are less a concern there,
as there is no H -transformation required and thus no depen-
dence of the simulation domain on an external potential is
encountered.

The application of a time discretization to the SHE equa-
tions using the H -transformation requires the transfer of the
current solution at time step k to the next time step k+1. Since
in general the electrostatic potential changes from time step
k to time step k + 1, an interpolation of the current solution is
necessary due to the shift of the band edge. This interpolation,
however, results in interpolation errors, which ultimately pre-
vent charge conservation. It is not yet clear whether and how
these issues can be addressed. A possible path forward is
to relax or even drop the H-transformation and work with
discretizations based on kinetic energy.

7 Summary

The SHE method has reached a level of maturity where it
is not only an attractive alternative to the established Monte
Carlo method, but at the same time allows for conducting
research on phenomena which cannot be simulated with a
stochastic method. The absence of stochastic fluctuations
enables simulations of noise and exact small- signal analysis
at an unprecedented accuracy and for a much larger range
than ever before. While the high dimensionality of the BTE
implies that the SHE method is still very demanding in terms
of memory consumption, the method is considerably less
costly when compared to other direct approaches.

A drawback of the SHE method for wide-spread adop-
tion is the fact that the method is fairly complex in terms
of the mathematics involved. The development of a SHE
solver from scratch easily takes weeks or months of concen-
trated effort. However, the availability of a free open source
simulator (ViennaSHE!) lowers the entry barrier consider-
ably. Also, commercial implementations are available which
enable the use of the SHE method without any coding effort
at all.

! http://viennashe.sourceforge.net/
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While the SHE method provides more insight than
moment-based methods, it is unlikely that the SHE method
will ever fully replace moment-based methods. Instead, the
SHE method provides another method in a full hierarchy
of different solution approaches. For a given application it
is thus advisable to select the fastest method which fulfills
the requirements on accuracy. If the particular application
requires the fast computation of carrier distribution functions
in one way or another, the SHE method is likely to be the best
choice.
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