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Abstract The increasing fabrication cost of CMOS-based
computing devices and the ever-approaching limits of their
fabrication have led to the search for feasible options with
high device density and low power waste. Quantum-dot cel-
lular automata (QCA) is an emerging technology with such
potential to match the design target beyond the limits of
state-of-the-art CMOS. But nanotechnologies, like QCA are
extremely susceptible to various forms of flaws and varia-
tions during fabrication at nano scale. Thus, the exploration
of ingenious fault tolerant structure around QCA is gaining
high importance. This work targets a new robust QCA tile
structure hybridizing rotated and non-rotated cell together
resulting lesser kink energy. Different QCA logic primitives
(majority/minority logic, fanout tiles, etc.) are made using
such hybrid cell structure. The functional characterization
using the kink energy and the polarization level of such QCA
structures under different cell defects have been thoroughly
investigated. The results suggest that the proposedQCA logic
primitives have achieved high fault tolerance of 97.43 %.
Also, 100% fault tolerance can be ascertained if the proposed
logic circuit drives the correct output with the application of
〈001, 011〉 as a primitive test vector only. A comparative per-
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formance of the proposed logic over existing structure makes
it more reliable.
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1 Introduction

Downscaling of CMOS devices is not possible beyond a cer-
tain limit and may phase out in future due to its inability
to function at nanoscale level [1,2]. Quantum dot cellular
automata (QCA) is intended to be the promising alternative
in this direction that overcomes the limitations of CMOS [3]
as it depends mainly on quantum effects and takes specific
advantage of tunnelling to create a new compute fabric in
nano scale [4,5]. The key aspect of QCA is that interaction
between cells is purely coulombic and there is no transport
of charge between cells.

Two arrangements of quantum-dotwithin in a cell referred
to as the 45◦ (‘×’) normal cell and the 90◦ (‘+’) rotated cell
canbeutilized to compute the binary information.The rotated
cell is identical in all ways to the standard cell except it is
rotated by ‘45◦’ [6,7]. The fundamental QCA logic prim-
itives are the three-input majority gate, wire, and inverter
[4]. In coplanar wire-crossing, the rotated and non-rotated
array of cells are placed together orthogonally to propagate
the signals. Recent studies have also shown the feasibility
of implementing logic gates and computing circuits by QCA
[8–10].

Circuit reliability is an increasingly important design con-
sideration for advanced logic circuits [11]. According to
[12], the predictable huge complexity of nano architectures
enforces the requirement of a high fault tolerance. Most
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important, challenging issues for exploiting the complete
potential of QCA circuits is fault tolerance and design com-
plexity as described in [13]. Besides resolving the critical
manufacturing issues, it has become utmost necessity to
increase the fault tolerance capability of the QCA logic cir-
cuit [14,15].

On the other hand, the cell misplacement (cell misalign-
ment, presence/absence of a cell) has been identified as the
prime source of blockage to achieve reliable QCA logic
circuit [16,17]. The cell misplacement defect has higher pos-
sibility to occur than stray charge defect and rotational cell
defect for QCA because the process of cell deposition is very
sensitive to the fabrication process of self-assembly [18].
Since QCA logic is based on a majority gate primitive, it’s
becoming an extreme necessity to achieve high fault tolerant
structure (≈100%) around themajority logic that is robust to
cell misplacement defect. Several attempts are made to real-
ize fault tolerant structure around majority logic [19–26].

Till date, tile structure in QCA is well recognized as
a reliable inherent fault tolerant architecture by increas-
ing redundant cells and up to 66.67% fault tolerance is
achieved as reported in [19,27–29] with detail characteri-
zation under manufacturing and misalignment defects. Also,
in order to achieve more stability, electrons of QCA cell are
ordered in such a way that it reaches minimum kink energy
[6,30,31]. Molecular QCA tile with hybrid cell (rotated and
non-rotated) can be developed through synthetic chemistry
and patterning [7,18]. At this point, designingQCA is an “in-
principle” activity meant to explore what might be possible
if and when the fabrication issues are resolved [7].

Thus, all these motivate us to design an effective fault tol-
erant QCA architecture with proper analysis of the effect of
kink energy and fault reporting. The issue of fault tolerance
has been so far analysed from an implementation technol-
ogy point of view [12,14] and very few from an architectural
point of view [25,26]. In this paper, we study the issue of fault
tolerance from an architectural point of view. So, without
considering fabrication issues, this work only focuses on the
architectural issues associated with cell deposition defects
which occur during manufacturing of circuits. The remark-
able contributions of thiswork can be summarized as follows:

– Realizationof fault tolerant architecture (majority/minor-
ity) hybridizing rotated and non-rotated cell together.

– Impact of different orientation of quantum-dot and kink
energy on fault tolerance are investigated implementing
majority-minority logic.

– Analysis of robustness with regard to cell deposition
defect.

– Design of two vector testable logic ensuring 100% fault
tolerance.

– Finally, synthesis of high level complex logic circuit
using proposed robust majority is also established.

All the effects are verified based on physical proofs as well
as simulation results using QCADesigner [32].

2 Preliminaries

In QCA based design, a single device (QCA-cell) is used
for the construction of all components of an entire circuit
(computational elements and wires). The schematic diagram
of a four-dot QCA cell is shown in Fig. 1a. The cell con-
sists of four quantum dots positioned at the corners of a
square and contains two free electrons [3]. A quantum dot
is a region where an electron is quantum-mechanically con-
fined. Coulombic repulsion will cause classical models of
the electrons to occupy only the corners of the QCA cell,
resulting either in polarization P = −1 (logic 0) or in P =
+1 (logic 1) as shown in Fig. 1a. The rotation of ‘45◦’ in
normal cell causes the dots within the cell to have a verti-
cal and horizontal placement relative to each other (called
rotated cell). Unlike normal cells (×-cell), the polarizations
of neighbouring rotated cells (‘+’-cell) tend to align opposite
each other.

The basic structure realized with QCA is the 3-input
majority gate, MV (A, B,C)=Maj (A, B,C)=AB + BC +
CA (Fig. 1b). Themajority gate can also function as a 2-input
AND or a 2-input OR by fixing one of the three input cells
to P = −1 or p =+1 respectively. Clocking plays a vital role
in signal transition and propagation in QCA circuit. The cas-
caded clocking of four distinct and periodic phases (Relax,
Switch, Hold and Release) as shown in Fig. 1c accomplish
the task of synchronization in QCA [3].

Electrostatic interaction between charges in two QCA
cells, i and j, is-

Em,n = 1

4πεoεr

4∑

i=1

4∑

j=1

qmi q
n
j

|ri, j | (1)

Here ε0 is the permittivity of the free space, εr is the relative
permittivity of the material system, qmi is the charge in ith

dot of cell m and ri, j is the distance between the ith dot of
cell m and the jth dot in cell n as shown in Fig. 1d. The kink
energy is the difference in energy between two cells, which
have opposite polarization and those same two cells having
the same polarization (see Fig. 1d). Kink energy between two
cells depends on the dimension of the QCA cell as well as the
spacing between adjacent cells but not on the temperature.

2.1 Defects in QCA

In QCA, the cells must be precisely aligned at nano scales
to provide correct functionality, so proper testing of these
devices for manufacturing defects plays a major role in the
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Fig. 1 a QCA cell with two different polarization and rotation, b fault free majority gate, c clocking, d Kink energy, e majority gate with missing
cell defect, f majority gate with cell displacement defect, g majority gate with additional cell defect

quality of QCA based circuits. Defects can occur in both
chemical synthesis phases as well as in deposition phases
during the process of manufacturing. Defects are more likely
to occur in the deposition phase than in the chemical syn-
thesis phase, which may result in perfectly manufactured but
imperfectly placed cells. The various defects which are likely
to occur are:

1. Missing cell defect (see Fig. 1e),
2. Cell displacement defect (see Fig. 1f) and
3. Additional cell defect (see Fig. 1g).

To perform the defect characterization of QCA devices and
circuits and study their effects at the logic - level, appropriate
defect mechanisms and models must be considered.

3 Related work

The conventional majority gate (Fig. 2a) provides only 20%
fault tolerance under single cell deposition defect and this
limited capability drastically becomes poor under multi-
ple cell deposition. A new approach was proposed for the
design of QCA-based Majority gate by considering two-
dimensional arrays of QCA cells (tiles) rather than a single
cell in the designof such a fate [27,29].A fully/non-fully pop-
ulated tile structures are investigated to obtain a fault tolerant
design in [13,19,26,27]. Different useful nano structures,
reduced size and efficient design ofNandNor Inverter (NNI),
3×3 tile structures for implementingNNI,AndOrLogic, and
AOI are explored in [19]. Fault tolerance of the redundant ver-
sion of the majority gate (orthogonal tile) achieves 66.67%
fault tolerance [27]. Another attempt to make fault tolerance
architecture couplingmajority ofmajority is explored in [23].
Wire-crossings are one of themost error prone zones inQCA.

To improve the reliability in QCA logic circuit, a XOR (⊕)
logicmodule is also investigated in [33] tominimize thewire-
crossings. This circuit can also be used for implementing as
baseline tile as shown in the block diagram (Fig. 2d). Several
variations of the XOR gate and wire crossing circuit have
been created in order to properly route signals. Recently, two
new fanout with complementary outputs are explored in [34]
for efficient wire crossing in QCA. These are solely useful
wiring in QCA only. But the use of unreliable units for the
logical crossing may decreases its reliability to deposition
defects.

In [27], the fault tolerance properties of PBW (process-
ing by wire) are investigated when tiles are employed using
molecular QCA cells. Based on a 3 × 3 QCA array of cells
(Fig. 2c), with different input/output arrangements, different
tiles are realized [19].However, fault tolerance of this scheme
is limited by the redundancy rate that the overall system can
afford. The functional characterization and polarization level
of these tiles for undeposited cell defects are covered. It is
shown that novel features of PBW are possible due to spa-
tial redundancy and QCA tiles are robust and inherently fault
tolerant.

However, no such architecture in QCA is found which
have high (≈100%) fault tolerance. In [35], different fault
tolerant schemes to implement robust QCA, such as TMR
(Triple Modular Redundancy), NAND- multiplexing and
Maj-MUX, are analysed in terms of fault tolerance capac-
ity and signal propagation speed. A TMR system generates a
correct result at the output when at most onemodule is faulty.
But it requires more number of cells and with its increased
cells results in more deposition defects. Also, it will require
at least two clock zones to obtain the output which will
increase the delay. TMR will also have some wire-crossing
and L-shaped tiles which will decrease the fault tolerance of
the structure. Similarly, such redundancy exists in NAND-
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multiplexing and Maj-MUX. On the other hand, an analysis
of howQCAsystem reliabilitymay be impacted by using var-
ious N-modular redundancy (NMR) schemes are reported in
[36]. Experimental results describe that NMR in QCA can
improve reliability in some cases, but can harm reliability in
others [36]. All the earlier attempts mostly addressed the dif-
ferent scheme to enhance the defect tolerance in QCA logic
circuit. However, the inherent architecture associated with
the cell layout of logic primitives, considering fault tolerance
in QCA has received less attention. Hence, all these factors
motivate more research work on fault tolerant architecture
around QCA logic primitives.

4 Impact of kink energy on QCA cell

It has already been identified that QCA tile structure has an
inherent property of fault tolerance, which enables design-
ing of more efficient circuits. In search of a more stable tile
architecture with higher fault tolerance capability, we have
designed a hybrid tile structure, placing alternately cross (×)
and plus (‘+’) orientation cells (Fig. 3c). Following premises
are considered for all of the calculations:

– The model involves 18 × 18 nm2 cells with inter cel-
lular separation of 2 nm. The quantum dot diameter is
5 nm. The centre-to-centre distance of two quantum dots
is taken as 9 nm.Using this definition other geometric dis-
tance between inter cellular quantum dots is calculated.

– Two or more cells in the same clock zone do not change
the last outcome as per simulation output.

c

d

c

d

a

b

c d
c

db

a

Eop

Eop Esp

Esp
(c)

(b)

Eop Esp(a)

a

b

a a

b b

c c

d d

b

a

Fig. 3 Kink energy of QCA cells a with same orientation ×× b with
same orientation ++ c with hybrid orientation

– In all figures, squares illustrate a QCA cell and the circles
describes the electron position inside the cell.

The electrostatic energy between two electron charges is
computed using Eq. (2). In this equation, Ei, j is kink energy
between i and j electron, k is fixed constant, q1 and q2 are
electric charges, and ri j is the distance between two electric
charges i and j. By putting the values of k and q, we obtain
the Eq. (2); where, Kq1q2 = 9 × 109 × (1.6)2 × 10−38 =
23.04 × 10−29.

Ei, j = kq1q2
r

= 23.04 × 10−29

r
; (2)

Total electrostatic energy for a given orientation of a cell
is then given by E = ∑

Ei, j . Kink energy is then calculated
as Ekink = Eopp. − Esame.

For two cells with same orientation i.e. cross-cross and
plus-plus adjacent cells (Fig. 3a, b) kink energies are esti-
mated as described in Table 1. Exy is the kink energy existing
between electrons x and y. Also, rxy is the distance between
two electron charges. Then we calculate the total kink energy
(E) in both states (opposite and same) using Eq. 2. Here, Eop

means kink energy between two cells having opposite polar-
ization states and Esp means kink energy between two cells
having same polarization states. Table 1 summarizes the kink
energy for QCA cell with similar and different orientations
(Fig. 3). Kink energy for QCA cell of same orientation is
reduced to lesser kink energy using cell with different orien-
tation.

It is evident from Table 1, cell orientation in Fig. 3a and b
will be less stable than in Fig. 3c due to higher kink energy
value. In the following section we have synthesized a new
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Table 1 Estimation of kink
energy for different
cell-orientation

Distance (rxy) Electrostatic energy, Exy = 23.04×10−29

r

QCA ××-cell with similar orientation (Fig. 3a)

rac = 2 × 10−9 E1 ≈ 11.52 × 10−20( j)

rad = 26.9 × 10−9 E2 ≈ 0.856 × 10−20( j)

rbc = 26.9 × 10−9 E3 ≈ 0.856 × 10−20( j)

rbd = 38 × 10−9 E4 ≈ 0.606 × 10−20( j)

Eop = ∑4
i=1 Ei = 13.838 × 10−20( j)

rac = 20 × 10−9 E1 ≈ 1.152 × 10−20( j)

rad = 18.11 × 10−9 E2 ≈ 1.272 × 10−20( j)

rbc = 42.04 × 10−9 E3 ≈ 0.548 × 10−20( j)

rbd = 20 × 10−9 E4 ≈ 1.152 × 10−20( j)

Esp = ∑4
i=1 Ei = 4.124 × 10−20( j)

Ekink = Eop − Esp = 9.714 × 10−20(J )

QCA ++-cell with similar orientation (Fig. 3b)

rac = 14.21 × 10−9 E1 ≈ 1.621 × 10−20( j)

rad = 30.36 × 10−9 E2 ≈ 0.759 × 10−20( j)

rbc = 14.21 × 10−9 E3 ≈ 1.621 × 10−20( j)

rbd = 30.36 × 10−9 E4 ≈ 0.759 × 10−20( j)

Eop = ∑4
i=1 Ei = 4.760 × 10−20( j)

rac = 20 × 10−9 E1 ≈ 1.152 × 10−20( j)

rad = 26.9 × 10−9 E2 ≈ 0.856 × 10−20( j)

rbc = 26.9 × 10−9 E3 ≈ 0.856 × 10−20( j)

rbd = 20 × 10−9 E4 ≈ 1.152 × 10−20( j)

Esp = ∑4
i=1 Ei = 4.016 × 10−20( j)

Ekink = Eop − Esp = 0.744 × 10−20(J )

QCA cell with different orientation (Fig. 3c)

rac = 29 × 10−9 E1 ≈ 0.794 × 10−20( j)

rad = 34.13 × 10−9 E2 ≈ 0.675 × 10−20( j)

rbc = 21.09 × 10−9 E3 ≈ 1.092 × 10−20( j)

rbd = 11 × 10−9 E4 ≈ 2.094 × 10−20( j)

Eop = ∑4
i=1 Ei = 4.655 × 10−20( j)

rac = 11 × 10−9 E1 ≈ 2.094 × 10−20( j)

rad = 21.09 × 10−9 E2 ≈ 1.092 × 10−20( j)

rbc = 34.13 × 10−9 E3 ≈ 0.675 × 10−20( j)

rbd = 29 × 10−9 E4 ≈ 0.794 × 10−20( j)

Eop = ∑4
i=1 Ei = 4.655 × 10−20( j)

Ekink = Eop − Esp = 0(J )

QCA tile with the target to achieve high fault tolerance using
proposed structure described in Fig. 3c.

5 Fault tolerant majority logic using QCA tiles

Despite the efficiency in design and demonstration, there are
some difficulties in practical application and purpose of a
QCA-basedMajority Gate. Some initial efforts were made in
[13,27] to implement a fault tolerant architecture of majority

logic, but most of them incur either huge size or more latency
ensuring average reliability.

As it is described earlier that hybridizing 90◦ and 45◦
cell together, kink energy can be lowered signifying more
robust structure can be made feasible. Thus, in this work a
new fault tolerant majority gate (called ft-Maj) is designed
based on hybrid (90◦ and 45◦ orientation) cell as shown in
Fig. 4. Three input cells (A, B, C) are connected to the gate at
distinct positions, while an output cell (OUT) is offered at the
remaining side. The design has a cell-count of 43 and covers
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an area of 0.04µm2. The proposed ft-Maj gate has a delay of
one clocking zone (0.25 clock cycle). In the fault-free case,
the production of this gate is Maj (A, B, C) = AB + BC +
CA as shown in Fig. 5.

5.1 Physical verification of ft-Maj gate

In this section, a physical verification of logic/signal propa-
gation in the proposed ft-Maj gate is provided. The proposed
design has total 20 driver cells where signal stability is main-
tained by the 1–6, 12, 16, 17, 23, 24, 28 and 34–39 cells. All
the faults that may occur in driver cells should be checked
properly due to their capability in logic propagation. It has
been found that an application of any input vector, the driver
calls 7, 8, 9, 10, 11, 13, 14, 15, 18, 19, 20, 21, 22, 25, 26,
27, 29, 30, 31, 32, 33 attains the same polarity as that of the
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output. Thus, the polarization of the driver cell 22 is driven
by the same polarity as that of the above mentioned cells.
For instance, application of vector 001 the electrons in the
cells orient themselves as shown in Fig. 6. For establishing
why all these cell attains same polarity we calculate the kink
energy for these mentioned cells’ layout of Fig. 6 as shown
in Fig. 7.

To work out the kink energy for any cell X , we calculate
total electrostatic energy of those cells in its vicinity which
are next to it. Interactions with other cells are considered to
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Table 2 Physical verification for cell 7

Electron x Electron y

Case A (Fig. 8a)

U1 = 0.856 × 10−20 U1 = 0.606 × 10−20

U2 = 1.272 × 10−20 U2 = 1.152 × 10−20

U3 = 1.152 × 10−20 U3 = 1.272 × 10−20

U4 = 0.548 × 10−20 U4 = 0.152 × 10−20

U5 = 0.905 × 10−20 U5 = 0.606 × 10−20

U6 = 1.272 × 10−20 U6 = 1.152 × 10−20

U7 = 1.152 × 10−20 U7 = 1.272 × 10−20

U8 = 0.548 × 10−20 U8 = 1.152 × 10−20

UT = 16.069 × 10−20(J )

Case B (Fig. 8b)

U1 = 1.152 × 10−20 U1 = 0.548 × 10−20

U2 = 11.52 × 10−20 U2 = 0.856 × 10−20

U3 = 11.52 × 10−20 U3 = 0.856 × 10−20

U4 = 0.856 × 10−20 U4 = 0.606 × 10−20

U5 = 0.548 × 10−20 U5 = 11.52 × 10−20

U6 = 0.856 × 10−20 U6 = 1.152 × 10−20

U7 = 0.856 × 10−20 U7 = 11.52 × 10−20

U8 = 0.606 × 10−20 U8 = 0.856 × 10−20

UT = 55.828 × 10−20(J )

3
e2
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Fig. 8 Layout of cell 7 a Case A, b Case B

be very small. Like for cell 7, the total energy for the cells
3, 7, 8, 12, 13 are calculated with two different orientations
of cell 7. The orientation of the electrons having the least
energy is believed to be its target location. The calculations
for cell 7 is shown in Table 2. From the table, it is evident
that cell 7 will orient as a Fig. 8a due to its king energy.

Similar calculations are shown for cell 8 and 29 in Tables 3
and 4 which verifies the correct orientation for the cells. The
main reason for showing the kink energy of cell 7, 8 and 29 is
that it formalizes an idea how electrons are arranged in these
cells.

As the proof method is similar for all cells, all the other
cells can also be verified in a similar fashion. In this way all
the cells 7, 8, 9, 10, 11, 13, 14, 15, 18, 19, 20, 21, 25, 26, 27,
29, 30, 31, 32, 33 drives the logic of the cell 22 i.e. the driver
cell.

Table 3 Physical verification for cell 8

Electron x Electron y

Case A (Fig. 9a)

U1 = 1.152 × 10−20 U1 = 0.548 × 10−20

U2 = 11.52 × 10−20 U2 = 0.856 × 10−20

U3 = 1.621 × 10−20 U3 = 0.759 × 10−20

U4 = 0.743 × 10−20 U4 = 0.759 × 10−20

U5 = 1.152 × 10−20 U5 = 0.548 × 10−20

U6 = 1.272 × 10−20 U6 = 1.152 × 10−20

U7 = 1.152 × 10−20 U7 = 1.272 × 10−20

U8 = 0.548 × 10−20 U8 = 1.152 × 10−20

U9 = 0.815 × 10−20 U9 = 0.605 × 10−20

U10 = 0.605 × 10−20 U10 = 0.814 × 10−20

U11 = 0.815 × 10−20 U11 = 8.419 × 10−20

U12 = 0.429 × 10−20 U12 = 0.815 × 10−20

UT = 39.253 × 10−20(J )

Case B (Fig. 9b)

U1 = 0.905 × 10−20 U1 = 0.606 × 10−20

U2 = 1.272 × 10−20 U2 = 1.152 × 10−20

U3 = 1.621 × 10−20 U3 = 0.759 × 10−20

U4 = 1.621 × 10−20 U4 = 0.581 × 10−20

U5 = 0.606 × 10−20 U5 = 0.856 × 10−20

U6 = 0.856 × 10−20 U6 = 11.52 × 10−20

U7 = 11.52 × 10−20 U7 = 0.856 × 10−20

U8 = 0.856 × 10−20 U8 = 0.606 × 10−20

U9 = 0.536 × 10−20 U9 = 1.146 × 10−20

U10 = 0.536 × 10−20 U10 = 1.146 × 10−20

U11 = 1.146 × 10−20 U11 = 1.146 × 10−20

U12 = 0.536 × 10−20 U12 = 0.536 × 10−20

UT = 42.921 × 10−20(J )
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Fig. 9 Layout of cell 8 a Case A, b Case B

5.2 Characterization of fault tolerance of ft-Maj tiles

The different cell position of ft-Maj are pointed in Fig. 11.
The exhaustive simulation is performed for the singlemissing
and additional cell deposition defect on ft-Maj which are
summarised in Table 5. The first part of the Table 5 shows the
simulation results when at most one cell is undeposited from
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Table 4 Physical verification for cell 29

Electron x Electron y

Case A (Fig. 10a)

U1 = 1.152 × 10−20 U1 = 0.548 × 10−20

U2 = 1.272 × 10−20 U2 = 1.152 × 10−20

U3 = 1.621 × 10−20 U3 = 0.790 × 10−20

U4 = 1.621 × 10−20 U4 = 1.621 × 10−20

U5 = 1.152 × 10−20 U5 = 1.272 × 10−20

U6 = 0.548 × 10−20 U6 = 1.152 × 10−20

U7 = 0.856 × 10−20 U7 = 11.52 × 10−20

U8 = 0.548 × 10−20 U8 = 1.152 × 10−20

UT = 27.977 × 10−20(J )

Case B (Fig. 10b)

U1 = 0.856 × 10−20 U1 = 0.606 × 10−20

U2 = 11.52 × 10−20 U2 = 0.856 × 10−20

U3 = 0.759 × 10−20 U3 = 0.790 × 10−20

U4 = 0.799 × 10−20 U4 = 1.621 × 10−20

U5 = 11.52 × 10−20 U5 = 0.856 × 10−20

U6 = 0.856 × 10−20 U6 = 0.606 × 10−20

U7 = 1.152 × 10−20 U7 = 1.272 × 10−20

U8 = 0.606 × 10−20 U8 = 0.856 × 10−20

UT = 35.491 × 10−20(J )
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Fig. 10 Layout of cell 29 a Case A, b Case B

the ft-Maj tile. Once undeposited cell defects are present,
the three input signals may also interact, such that different
functions can be generated at the output, i.e., the relation
between the inputs and placement of the cells for tile may be
changed. In particular, variants of themajority function (with
complemented input variables) are expected due to possible
input inversion through the cells of the tile. The variants of
the majority function are referred to as MV-like functions.

The following observations can be established from the
Table 5:

(i) In all cases of missing cell defect, ft-Maj gate results into
MV/MV-like function.

(ii) Almost all (97.43%) cases of single missing-cell depo-
sition defect does not change the logic function of the

1 2

3 4 5 6

7 8 9 1110
12

13 14 15
16 17

18 19 20 21 22
23 24

25 26 27
28

29 32 333130

34 35 36 37

38 39

A

B

C

F

I II

III IV

Fig. 11 ft-Maj gate with different cell position

proposed ft-Maj gate, thus conforming defect-tolerant
(robust) design of a majority voter.

(iii) Whenever only cell 22 is undeposited, the output of ft-
Maj gate gets inverted with respect to the fault- free
output.

(iv) Single additional cell at positions II, IV has no effect on
the output of ft-Maj gate.

(v) For additional cell at position I and III only, ft-Maj gate
becomes faulty.

Further, the statistical results in the presence of up to two
undeposited cells are summarized in Table 6. Due tomultiple
cell deposition defect, the three input functions interact to
form a new output function which may be like the MV-like
function or some wire like function. It also generates some
partially polarized or polarization, less than 0.1 as output,
which we consider as undefined states. The probability of
generating different majority functions versus the number of
undeposited cells is shown in Table 6.

A relative performance on different orthogonal tiles is
reported in Table 7 which shows the high quality of the
proposed tiles over conventional tiles. The probability of gen-
erating different functions successfully signifying the fault
tolerance capability shown in Fig. 12. It is evident from the
Fig. 12 that even with multiple undeposited cell, in atleast
80% of the cases ft-Maj can still function as a majority
logic whereas the conventional tiles degrades performance
with increase of cell deposition. This is done by its spa-
tial redundancy, therefore, an excellent point of resilience
in functionality is attained.
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Table 5 Impact of missing cell and additional cell defect

Missing cell defect

Missing cell Output Missing cell Output

None MV 11 MV

1 MV 12 MV

2 MV 13 MV

3 MV 14 MV

4 MV 15 MV

5 MV 16 MV

6 MV 17 MV

7 MV 18 MV

8 MV 19 MV

9 MV 20 MV

10 MV 21 MV

21 MV 31 MV

22 MV ′ 32 MV

23 MV 33 MV

24 MV 34 MV

25 MV 35 MV

26 MV 36 MV

27 MV 37 MV

28 MV 38 MV

29 MV 39 MV

30 MV

Additional cell defect

Additional Output Additional Output

cell cell

I C II MV

III A IV MV

Here, MV=AB+BC+CA and
MV ′ =Inverse of MV

Apart from the tabulated result, the following observations
have been made from the simulation results of the ft-Maj:

– Average polarization of the correct output function is in
the range of ±0.86 to ±0.89.

– Highest polarization of ±0.93 is observed when the cell
no 15 and 27 is missing.

– Faulty outputs resulting from cell undeposition have an
average polarization of ±0.77 to ±0.79 and a minimum
of±0.59 is observed when cells (15, 22) and (22, 27) are
missing.

– Inputs A and C that is the vertical inputs generates more
wire like function than input B which indicates signal
propagation in horizontal direction is much stronger than
in vertical cases.

The faulty behaviour of ft-Maj gate in the presence of all
possible input vector of length three is reported in Table 8.

Table 6 Functional characterization of ft-Maj tile with multiple cell
defects

Function # Cell deposition defect

1 2

A 0 40

A′ 0 1

B 0 5

C 0 40

C′ 0 1

Undefined 0 11

Maj (A′, B, C) 0 1

Maj (A, B′, C) 0 2

Maj (A, B, C′) 0 1

Maj (A′, B′, C′) 1 25

Maj (A, B, C) 38 614

Total 39 741

From Table 8, it is evident that missing cell at position 22
generates an inversion of the fault-free production for any
input vector. Hence, this defect can be discovered by any
input test vector. Once more, for additional single-cell defect
at positions I and III, the faulty outputs becomes C and A
respectively. For input vector 001, additional cell deposition
at position I produce output 1 whereas the expected output
is 0. Thus, it can be detected by this input vector {001}. The
test vectors that can detect all these faults are summarized in
5th and 7th column of Table 8. If the proposed ft-Maj gate
operates correctly during application of the test vector {001,
011}, it can be assured that there is at least no additional cell
deposition and cell 22 is not missing. If cell 22 and no addi-
tional cell deposition occur, the ft-Maj will work properly
in all other cases even in the presence of any cell deposition
fault. Hence, it follows that the test vectors {001, 011} can be
a minimal test set for discovering all possible (100%) single
cell deposition defects in the proposed ft-Maj gate. So, if the
ft-Maj gate work properly for input vector {001, 011}, we
can ensure/ascertain that it will provide 100% fault toler-
ance under any single missing and additional cell deposition
faults. In the following subsection, the various tiles that can
be synthesized from the proposed ft-Maj tile and a relative
comparison has beenmadewith the corresponding structures
in [27].

5.3 Double fan-out tile

The double fan-out tile is shown in Fig. 13. It has one input
cell B and two output cells F1 and F2. In fault free condi-
tion, both F1 and F2 have the input value B. Table 9 shows
defect pattern when a single cell is missing. Table 10 shows
functional characterization of double fan-out tile when 1 and
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Table 7 Comparative analysis
of different fault tolerant
majority logic

Observations Results

Orthogonal tile [27] Proposed ft-Maj (Fig. 4)

No. of undeposited cells 1 2 1 2

No. of defective patterns 9 36 39 741

Occurrence of wire func. 0 4 0 85

Wire func. (%) 0 11.1 0 11.47

Occurrence of INV func. 0 4 0 2

INV func. (%) 0 11.1 0 0.27

Occurrence of MV func. 6 13 38 614

MV func. (%) 66.7 36.1 97.44 82.86

Occurrence of MV like func. 3 11 1 29

MV like func. (%) 33.3 30.5 2.56 3.91

Occurrence of undefined state 0 4 0 11

Undefined state (%) 0 11.1 0 1.48
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Fig. 12 Fault tolerance capability of different tiles under a single cell
b double cell deposition

Table 8 Test vector for missing and additional cell defect

IV EO FO FO TV FO TV
Cell 22 Cell I Cell III

000 0 1 0 001 0

001 0 1 1 0

010 0 1 0 0

011 1 0 1 0 011

100 0 1 0 110 1 100

101 1 0 1 1

110 1 0 0 1

111 1 0 1 1

IV input vector, EO expected output, FO faulty output, TV test vector

B F1

F2

Fig. 13 Double fan-out tile

2 cells are missing as well as a relative comparison is made
with that of [27]. The simulation result is shown in Fig. 14.

The following observations has been made from the sim-
ulation of the double fan-out tile (Fig. 15):

– When cell 16 is removed output is A at F1 and when cell
25 is removed it gives A at F2.

– Average polarization of the fault free output is in the range
of ±0.82 to ±0.93.
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Table 9 Single cell undeposited defect in double fan-out tile

Cell removed F1 F2 Cell removed F1 F2

None B B 1 B B

2 B B 3 B B

4 B B 5 B B

6 B B 7 B B

8 B B 9 B B

10 B B 11 B B

12 B B 13 B B

14 B B 15 B B

16 B′ B 17 B B

18 B B 19 B B

20 B B 21 B B

22 B B 23 B B

24 B B 25 B B′

26 B B 27 B B

– When cell 16 and 25 are removed the polarization of
output A is in the range ±0.79 to ±0.80.

– When the cells (9, 16), (16, 21), (24, 25) and (25, 26) are
removed, there is a drop in polarization of the output A
to ±0.52.

– Removal of cell (22,14) gives A of very high polarization
of ±0.94.

– When the polarization level of the output is very low (of
the order of ±0.1) we consider the state as no logic or
undefined state.

A relative performance on different double fanout tiles
is reported in Table 10. The probability of generating dif-
ferent functions successfully signifying the fault tolerance
capability shown in Fig. 16. It is evident from the Fig. 16
that even with multiple undeposited cells due to defects, in
atleast 90% of the cases our proposed can still function as
a wire whereas the conventional tiles degrades performance
with increase of cell deposition.
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F1

max: 8.76e-001
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max: 9.80e-022

min: 3.80e-023

CLOCK 0

Fig. 14 Double fan-out tile simulation result
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Fig. 15 Double fan-out tile with cell position

5.4 Triple fan-out tile

Figure 17 shows the triple fan-out tile. It has one input
cell A and three output cells F1, F2 and F3. The simu-
lation output has been shown in Fig. 18. Table 11 shows
single cell missing defect pattern. Table 12 shows the func-
tional characterization of triple fan-out tile when one and

Table 10 Functional
Characterization of double
fan-out tile

Observations Results

Double fan-out tile of [27] Double fan-out tile of Fig. 15

Output Cells F1 F2 F1 F2

Number of undeposited cells 1 2 1 2 1 2 1 2

Number of defective patterns 9 36 9 36 27 351 27 351

Occurrence of wire func. 7 20 7 20 26 323 26 322

Wire func. (%) 77.78 55.56 77.78 55.56 96.29 92.02 96.29 91.74

Occurrence of INV func. 2 16 2 16 1 22 1 25

INV func. (%) 22.22 44.44 22.22 44.44 3.71 6.27 3.71 7.12

Occurrence of undefined state 0 0 0 0 0 6 0 4

Undefined state (%) 0 0 0 0 0 1.71 0 1.14
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Fig. 16 Fault tolerance capability of double fanout under a single cell b double cell deposition
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Fig. 18 Simulation of triple fan-out tile

two cells are undeposited. The following observations have
been made from the simulation of the triple fan-out tile
(Fig. 19):

Table 11 Single cell undeposited defect in triple fan-out tile

Cell removed F1 F2 F3 Cell removed F1 F2 F3

None A A A 1 A A A

2 A A A 3 A′ A A

4 A A A 5 A A A

6 A A A 7 A A A

8 A A A 9 A A A

10 A A A 11 A A A

12 A A A 13 A A A

14 A A A 15 A A A

16 A A′ A 17 A A A

18 A A A 19 A A A

20 A A A 21 A A A

22 A A A 23 A A A

24 A A A 25 A A A′

26 A A A 27 A A A

– Removal of cell 3 gives A at F1, removal of cell 16 gives
A at F2 and removal of cell 25 gives A at F3.

– Average polarization of the fault free output is in the range
of ±0.82 to ±0.93.

– When cell 3, 16 and 25 are missing the polarization of
output A is in the range ±0.79 to ±0.80.

– When the cell combinations of (2,3), (3,4), (9,16),
(16,21), (24,25) and (25,26) are undeposited there is a
drop in polarization of the output A to ±0.52.

– Removal of cell (6,14) and cell (22,14) gives A of very
high polarization of ±0.94.

– When the polarization level of the output is very low (of
the order of ±0.1) we consider the state as no logic or
undefined state.
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Table 12 Functional characterization of triple fan-out tile

Observations Results

Triple fan-out tile of [27] Triple fan-out tile of Fig. 19

Output cells F1 F2 F3 F1 F2 F3

Number of undeposited cells 1 2 1 2 1 2 1 2 1 2 1 2

Number of defective patterns 9 36 9 36 9 36 27 351 27 351 27 351

Occurrence of wire func. 7 20 7 20 7 20 26 322 26 323 26 322

Wire func. (%) 77.78 55.56 77.78 55.56 77.78 55.56 96.29 91.74 96.29 92.02 96.29 91.74

Occurrence of INV func. 2 16 2 16 2 16 1 25 1 22 1 25

INV func. (%) 22.22 44.44 22.22 44.44 22.22 44.44 3.71 7.12 3.71 6.27 3.71 7.12

Occurrence of undefined state 0 0 0 0 0 0 0 4 0 6 0 4

Undefined state (%) 0 0 0 0 0 0 0 1.14 0 1.71 0 1.14
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Fig. 19 Triple fan-out tile with cell position

The probability of generating different function by triple
fanout tile under single cell deposition is presented in
Fig. 20.

An overall performance of different tiles implementing
majority, double and triple fanout is shown in Fig. 21.
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Fig. 21 Overall performance of the QCA tiles

The Fig. 21 indicates the superiority of the proposed logic
showing enviable ≈100% fault tolerance under single cell
deposition defect.
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Fig. 20 Fault tolerance capability of triple fanout under a single cell b double cell deposition
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Fig. 22 Fault tolerant minority gate (ft-Min)
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Fig. 23 Simulation result of fault tolerant minority gate (ft-Min)

6 Design of fault tolerant minority logic (ft-Min)

The robustness of the fault tolerant structure with hybrid cell
can be extended to other logic circuit also, likeminority logic
(called ft-Min) as shown in Fig. 22. The design has a cell-
count of 37 and covers an area of 0.04µm2. The proposed ft-
Min gate has a delay of the one clocking zone. The simulation
result of ft-Min is shown in Fig. 23.

In all faulty cases, a ft-Min gate results into MV/MV-like
function. Single missing-cell deposition defect on almost all
(96.97%) cases does not change the logic function of the
proposed ft-Min gate, thus conforming fault-tolerant (robust)
design of a minority voter. Whenever cell 19 is undeposited,
the output of the ft-Min gate gets inverted with respect to

-1.00

-1.00 1.00

F

Sel.

A

B

Fig. 24 2:1 Multiplexer using orthogonal tile in [27]

-1.00 1.00

-1.00

F

Sel.

A

B

Fig. 25 2:1 Multiplexer using proposed ft-Maj tile

the fault free output To the best of our knowledge, this is
the first attempt to obtain a minority gate which is robust in
terms of singlemissing-cell deposition defect. The only fault,
resulting frommissing cell at position 19, can be detected by
any test vector at test mode.

7 High level logic synthesis

Until now, the performance of the ft-Maj tile is explored.
To put it into effect, we need to evaluate its performance in
circuit level also. For this purpose, two 2:1 multiplexer is
designed using the orthogonal tile [27] as shown in Fig. 24
and ft-Maj tile (Fig. 4) as shown in Fig. 25. Its simulation
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Fig. 26 Simulation result of 2:1 multiplexer
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Fig. 27 2:1 Multiplexer using fanout and ft-maj tile

result is depicted in Fig. 26 verifies the functionality of the
2:1 multiplexer implemented with ft-maj. Further, the fanout
(for input S, selection line) in 2:1multiplexer is is also imple-
mented using the proposed fanout in this work as shown in

Table 13 Analysis of different 2:1 multiplexer

2:1 MUX in Fig. 24 2:1 MUX in Fig. 25

No of cells missing 1 2 1 2

No of defect patterns 27 108 117 2223

No of correct outputs 13 14 110 1749

No of faulty outputs 14 94 7 474

Fault tolerance (%) 48.14 12.96 94.02 78.68
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Fig. 28 Fault tolerance capability of multiplexer cell deposition defect

Fig. 27. The fault tolerance of the two multiplexer under sin-
gle cell and double cell deposition defects are tabulated in
Table 13. From the results, it is evident that the multiplexer
in Fig. 25 is almost twice more fault tolerant than other one.
This proves the superiority of proposed ft-Maj tile than that
of orthogonal tile in [27]. The overall performance of differ-
ent tiles implementing multiplexer is shown in Fig. 28. The
proposed logic outperforms the conventional tiles showing
high fault tolerance against cell deposition defect.

8 Simulation setup

The tiles and the circuits discussed in this paper are verified
using QCADesigner ver. 2.0.3 [32]. In the Bistable approxi-
mation, we use the following parameters: cell size = 18 nm,
dot size = 5 nm, cell separation = 10 nm, radius of effect
= 65 nm, layer separation = 11.5 nm, number of samples =
128,000 and rest are set as default. In coherence vector, all
the parameter are set as default.

9 Conclusion

In this paper, a fault tolerant architecture of majority logic
in QCA, called ft-Maj, is explored based on hybrid cell
orientation as applied to molecular QCA. The fault tol-
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erance of fault tolerant majority tiles has been analysed
under undeposited cell defects and an enviable fault toler-
ance of 97.43% is achieved. Likewise, with the application
of only two test vectors {001, 011} 100% fault tolerance
can be ascertained. The superiority of the ft-Maj is also
established over existing tiles under multiple cell deposition
defect.

Moreover, in the presence of multiple undeposited cells,
ft-Maj have a high probability of performing some deter-
ministic logic functions, even though it might be a different
logic function (like, wire function, the inverting function, the
majority-like functions) consistently appear at the output(s).
Further, the fault tolerance of ft-Maj tile is extended to circuit-
level by synthesizing double fanout tiles, triple fanout tiles
and multiplexer using as a basic modular block. Finally, a
fault tolerant minority logic has also been explored.
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