
J Comput Electron (2015) 14:593–603
DOI 10.1007/s10825-015-0695-z

A comprehensive study of popular eigenvalue methods employed
for quantum calculation of energy eigenstates in nanostructures
using GPUs

W. Rodrigues1 · A. Pecchia2 · M. Auf der Maur1 · A. Di Carlo1

Published online: 9 April 2015
© Springer Science+Business Media New York 2015

Abstract In this work, we concentrate on the graphics
processing unit (GPU) implementation of three different
methods that are common among peers in the electronic com-
putational domain. We calculate the energy eigenstates of
GaN/AlGaN quantum dots on GPU using the tight-binding
approach with a sp3d5s∗ + spin-orbit parametrization for
structures ranging from 8039 atoms to 351,600 atoms corre-
sponding to a Hamiltonian matrix size of around 160,780–
7,032,000. We perform an analysis for timing, memory
occupancy and convergence on a multi-GPU workstation
and a high performance computing (HPC) cluster. We also
present comparisons between the multi-GPU system having
4 Nvidia Kepler graphic cards and a HPC cluster where the
algorithms are benchmarked on up to 256 CPU cores.

Keywords Eigensolver · Lanczos · Jacobi–Davidson ·
FEAST · Tight-binding · Atomistic simulation · GPU

B W. Rodrigues
walter.rodrigues@uniroma2.it

A. Pecchia
pecchia@ing.uniroma2.it

M. Auf der Maur
auf.der.maur@ing.uniroma2.it

A. Di Carlo
aldo.dicarlo@uniroma2.it

1 Department of Electronics Engineering, Università degli
Studi di Roma Tor Vergata, 00133 Rome, Italy

2 CNR-ISMN, Via Salaria Km 29,600, 00017 Monterotondo,
Rome, Italy

1 Introduction

Today, the simulation of multi-million atom nanodevices are
a reality due to the advancements in technology that have
madehighperformance computingwidely accessible to com-
putational scientists. Atomistic simulation of nanostructures
using the tight-binding (TB) model involves the calcula-
tions of quantum energy eigenstates of large-scale, sparse
Hamiltonian matrices [1–3]. Such approach can be used, for
example, to calculate the electronic states in a GaN/AlGaN
quantum dot structure (see Fig. 1) which have important
applications in modern nitride-based light emitting diodes
[4]. From the energy eigenstates calculation, we can com-
pute many different properties, thus providing a guide for
device optimization.

Significant efforts put by computational researchers have
resulted in libraries like ScaLAPACK which are collections
of high performance parallelized eigensolvers. However,
most solvers packages based on direct methods like QR,
bisection and inverse iteration, and divide and conquer cannot
be utilized as they are meant for comparatively small sized
dense eigenproblems, that can be stored in the system mem-
ory and are needed to calculate all of the eigenvalues. Hence,
iterative methods have to be engaged for large-scale TB cal-
culations that facilitates the calculation of a few eigenpairs
by projecting the huge problem onto a much smaller search
space.

There are several approaches that can be used to calcu-
late the needed eigen states of the Hamiltonian. Given the
variety of possible methods it is still unclear which one
is more suited and how their performance compares in a
given scenario. However, there are few methods which are
morewidely used given their implementation feasibility, con-
vergence characteristic, accuracy and reliability. Methods,
such as Lanczos, Jacobi–Davidson and conjugate gradient

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10825-015-0695-z&domain=pdf

594 J Comput Electron (2015) 14:593–603

Fig. 1 (Left) Cubical wurtzite
GaN/AlGaN quantum dot
showing the core with 30 %
aluminum. (Right) A central
slice of the cube. Atomistic
description: in yellow
aluminum, in red gallium and in
blue nitride (Color figure online)

are popular and widely utilized in tight-binding calculations
[5–7]. Recently, a new method called FEAST based on the
density-matrix operator is gaining popularity in the compu-
tational community [8,9]. Hence, benchmarking them for
recent HPC architectures is of importance for the given appli-
cation domain.

The Lanczos algorithm is an effective iterative method to
find eigenvalues and eigenvectors of large sparse matrices by
first building an orthonormal basis and then forming approx-
imate solutions using Rayleigh projection. It reduces a large,
complicated eigenvalue problem into a smaller (simpler) one
[10,11], explicitly taking advantage of the symmetry of the
Hamiltonian matrix. However, the Lanczos method diverges
when implemented on a finite precision architecture since
the Lanczos vectors inevitably lose their mutual orthogo-
nality [11,12]. Hence, it needs a full reorthogonalization of
each newly computed vector against all preceding Lanczos
vectors. This, not only greatly increases the number of com-
putations required, but also requires that all the vectors be
stored. For large problems, it will be very expensive to take
more than a few steps using full reorthogonalization; nev-
ertheless, linear independence will surely be lost without
some sort of corrective procedure. Selective orthogonaliza-
tion interpolates between full reorthogonalization and simple
Lanczos to obtain the best of both worlds. Robust linear inde-
pendence is maintained among the vectors at a cost which is
close to that of a simple Lanczos [13,14]. Another way to
maintain orthogonality is to limit the size of the basis set and
use a restarting scheme by replacing the starting vector with
an improved starting vector and computing a new Lanczos
factorization with the new vector.

The Jacobi–Davidson method is another popular tech-
nique to compute a few eigenpairs of large sparse matrices.
It is motivated by the fact that standard eigensolvers often
require an expensive factorization of the matrix to com-
pute interior eigenvalues. Such a factorization is infeasible
for large matrices in large-scale simulations. In the Jacobi–
Davidson method, one still needs to solve inner linear

systems, but a factorization is avoided because the method is
designed so as to favor the efficient use of iterative solution
techniques based on preconditioning [15]. Jacobi–Davidson
method belongs to the class of subspace methods, which
means that approximate eigenvectors are sought in a sub-
space. Each iteration of this method has two important
phases: the subspace extraction in which an approximate
eigenpair is sought with the approximate vector in the search
space and the subspace expansion in which the search space
is enlarged by adding a new basis vector to it trying to lead to
a better approximate eigenpairs in the next extraction phase
[16,17].

Conjugate gradient method is widely used to solve many
types of problems like the linear algebraic equation, eigen-
value and minimization problem. However, it requires that
the coefficient matrix to be both symmetric and positive
definite. There are implementations of applying conjugate
gradient method to indefinite systems but its stability contin-
ues to remain an issue and is therefore not included in this
scope of our study [18].

Lately, the FEAST algorithm which takes its inspiration
from the density-matrix representation and contour integra-
tion technique in quantummechanics is also being used [19].
The algorithm deviates fundamentally from the traditional
Krylov subspace iteration based techniques. This algorithm
is free from any orthogonalization procedures and its main
computational tasks consist of solving the inner independent
linear systems with multiple right-hand sides. The FEAST
algorithm finds all the eigenpair in a given search interval.
It requires that one provides an estimate for the number of
eigenpair within the search interval which often is not possi-
ble to obtain beforehand.

Today, larger and faster computing systems are widely
accessible. Supercomputers and high-end expensive com-
puting systems are being utilized to accelerate computation
in a parallel distributed, cluster or grid computing set-
ting. The advent of GPUs have grasped the attention of
most of the scientific computation community with its huge

123

J Comput Electron (2015) 14:593–603 595

number of computing cores making massive thread level
parallel computing possible, resulting in high throughput.
Developing algorithms that can ideally scale over such sys-
tem is an important component for transferring the hardware
feature into actual beneficial speedups. In recent times, there
has been an extensive effort being put in translating algo-
rithms initially designed for sequential processors to now
days HPC system which normally deal with either single
instructionmultiple data (SIMD) ormultiple instructionmul-
tiple data (MIMD) scenario. However, a lot of aspects need to
be considered to result in speedupwhile dealing with parallel
computing. Hence, often this sequential to parallel transition
is not straight forward and requires a deeper understanding
of the system architecture and method itself.

There are many challenging questions to be considered
in terms of the choice of method employed. Some of these
questions include: what method takes the least total com-
putation time and is well suited for GPUs given its limited
available resources? Which approach is robust in conver-
gence when used with nanostructure having a dense energy
spectrum? Also, in a multi-GPU scenario where data has to
be shared among GPUs, we need to identify the implemen-
tation that deals well with hardware limitation. For example,
the slow host-to-devicememory transfer and the limited PCI-
E transfer speed. Characteristics of the method like its ratio
of compute to memory intensive operation which are needed
for a good speedup in hybrid implementations also need to
be considered. Finally, we need to find a method that scales
best in a multi-GPU distributed setup.

Having identified the aspects that need to be taken into
account and proposed a design for parallel computing, we
will test and compare each of the above described algorithms
formemoryutilization, execution time, implementation com-
plexity (feasibility) and convergence. We will benchmark a
robust implementation of each of the algorithm on a multi-
GPU system as well on a HPC cluster.

2 Implementation

GPUhave a limitedmemory and the peak bandwidth between
the device memory and the GPU is much higher than the
peak bandwidth between host memory and the device mem-
ory therefore, as already shown in our previous work [20] it
is crucial to minimize the data transfer between the host and
the GPU by keeping the Hamiltonian matrix and the search
subspace on the device memory. For this reason, the TB
Hamiltonian matrix is converted to a single precision format
prior to transfer to GPU’s global memory. The algorithms are
implemented usingmixed single/double precision arithmetic
to ensure highly accurate solutions. For III-V semiconduc-
tors, every atom has 4 neighbors, the TB Hamiltonian matrix
is largely sparse with sp3d5s∗ parameterization [21] having

an average of 40 non-zeros values per row with a standard
deviation ranging from 3.0 to 4.0. Given the large and sparse
nature of the matrix, we employ the compressed sparse row
(CSR) format.

Given an N ×N Hamiltonian matrix (H), its eigenvalues,
λi , and corresponding eigenvectors, vi , are defined by the
relation,

Hvi = λivi (1)

Weare interested infinding inner eigenvalues of the energy
spectrum, near the energy gap of the nanostructure. In the
following subsections, we give a brief overview of the three
methods employed in our work.

2.1 Lanczos method

The Lanczos algorithm converges fast to the extreme eigen-
values. Different spectral transformations are used for the
extraction of the inner eigenpairs, like spectrum folding
or shift-and-invert. We employ the Lanczos algorithm with
a simple restart along with the spectral folding technique
[22,23]. This strategy avoids reorthogonalization that forces
saving of several vectors. So, in general, we compute the
lowest eigenpairs of the operator A = (H − s I)2, where s is
the chosen spectrum shift [24]. Reorthogonalizing the newly
computed vector against all preceding Lanczos vectors takes
a lot of resources and it is not done in our implementation.
In our implementation, we perform the Lanczos iterations
until orthogonality with respect to the initial vector is pre-
served to an error of 10−5. In this way, the typical size of
the tridiagonal matrix becomes of the order of 1000, which
can be diagonalized easily using standard routines, obtaining
the eigenvalues, λ′

i , and corresponding eigenvectors, wi . It
can be proved that the eigenvalues of the tridiagonal matrix
are approximate eigenvalues of A. The projected eigenvec-
tor, vi , can be calculated as vi = Qmwi , where Qm is the
transformationmatrix whose column vectors are recomputed
on the fly by running the Lanczos iteration a second time.
The advantage of this fine-tuned Lanczos algorithm is that it
resides in very little memory. The detail implemented of the
algorithm is described in Ref. [20].

2.2 Jacobi–Davidson method

The Jacobi–Davidsonmethod is an iterative subspacemethod
for computing one or more eigenpairs of large sparse matri-
ces. In this method each iteration has two phases: the
subspace extraction and the subspace expansion.

For the subspace expansion phase, given an approximate
eigenpair (θi , ui) close to (λi , vi), with ui ∈ U , where U is
the subspace, and θi = u∗

i Hui/u∗
i ui is the Rayleigh quotient

of ui , taken as approximate eigenvalue because it minimizes

123

596 J Comput Electron (2015) 14:593–603

the two-normof the residual:‖r‖ = ‖Hui−θi ui‖. To expand
U in an appropriate direction, we look for an orthogonal
correction t ⊥ ui such that ui + t satisfies the eigenvalue
equation:

H(ui + t) = λi (ui + t) (2)

We try to find eigenvalues closest to some given target τ ,
initially we consider this be the same as the chosen Lanczos
shift τ = s. In the above equation,

(H − τ I)t = −r + (λi − θi)ui + (λi − τ)t (3)

‖t‖ and | λ − τ | are small and can be neglected. When
multiply both sides of Eq. (3) by the orthogonal projection
I − uiu∗

i . We have the following equation

(I − uiu
∗
i)(H − τ I)(I − uiu

∗
i)t = −r (4)

where t ⊥ ui . We solve Eq. (4) only approximately using
generalized minimal residual method (GMRES) and its
approximate solution is used for the expansion of the sub-
space [25].

To save GPU memory, the process is enhanced by restart-
ing the Jacobi–Davidsonmethodwith a few recently found ui
in this way, we restrict the dimension of the search subspace
[26]. In order to avoid the found eigenvalues from reentering
the computational process, we make sure that the new search
vectors are explicitly orthogonal to the computed eigenvec-
tors.

As stated above, we are interested in interior eigenvalues,
the Ritz vectors represent poor candidates for restart since
they converge monotonically towards exterior eigenvalues.
One solution to this problem is using the harmonic Ritz vec-
tors. The harmonic Ritz values are inverses of the Ritz values
of H−1. Since our matrix is Hermitian the harmonic Ritz val-
ues for the shifted matrix (H − τ I) converge monotonically
towards θi �= τ eigenvalues closest to the target value τ .
The search subspace for the shifted matrix and the unshifted
matrix coincide and hence, it is possible for the computation
of harmonic Ritz pairs for any shift. The harmonic Ritz vec-
tor for the shifted matrix can be interpreted as maximizing
a Rayleigh quotient for (H − τ I)−1. It represents the best
information that is available for the wanted eigenvalue and
hence, is also the best candidate as a starting vector after
restart [27].

The correction equation is solved to an accuracy of just
10−1, it is sufficient enough to keep the number of outer
iterations between 4 and 10 with internal restart set to 10.
GMRES, although a bit more expensive than the other linear
solvers in terms of memory and computation, is chosen as it
is found to be more stable in solving the correction equation
for our TB Hamiltonian [28,29]. We can further improve the

computation by treating the Hamiltonian matrix with a pre-
conditioner. However, the preconditioner will occupy similar
memory as the actual matrix and also increase the crucial
time consuming matrix-vector multiplications per iteration
and hence may not be a wise choice for a GPU-accelerated
solverwhere 10−1 accuracy is sufficient. Its development and
testing is part of future research.

2.3 FEAST method

The aim of the FEAST algorithm is to actually compute the
eigenvectors instead of approximating them, unlike the Lanc-
zos and Jacobi–Davidsonmethod. It yields all the eigenvalues
and eigenvectors within a given search interval [λmin, λmax].
FEAST relies on the Rayleigh–Ritz method [19,30] for
finding the eigenvector space V in some enveloping space
U ⊇ V . Let � be a simply closed differentiable curve
in the complex plane that encloses exactly the eigenvalues
λ1, ..., λm and z be the contour point. Using the Cauchy inte-
gral theorem, it can easily be shown that

VV ∗ = 1

2π i

∫
�

(z I − H)−1dz = Q (5)

Next, choose a random matrix Y ∈ Cn×m0, where m0
is the size of the working subspace which is slightly larger
thanm, the number of eigenvalues within the search interval.
The expression in (5) leads to a new set of m0 independent
vectors Qn×m0 = q1, q2, ..qm0 obtained by solving linear
systems along the contour and form U = QY . It follows
that U = span(U) ⊇ V is a candidate for the space used in
the Rayleigh–Ritz method. The matrix U can be computed,
for our TB Hamiltonian matrix 3 to 8 integration points are
sufficient. Then for each integration point, z, a block linear
system (z I −H)−1Ui = Yi needs to be solved, each withm0
right hand sides. Notice that the matrix keeps on changing
with z throughout the run.

The FEAST algorithm can be parallelized in several ways.
First, the interval [λmin, λmax] can be split, and each part can
be treated separately. Also, for each contour point block lin-
ear system can be solved independently from each other, as
well as each linear system in principal can be solved in paral-
lel [31]. We haven’t parallelized using any of the mentioned
strategies. Instead we have parallelized the solver that finds
the solution for each linear system using our parallel multi-
GPU enhanced techniques since the solution to the block
linear system is the most expensive part of the method.

We utilize the conjugate gradient squared method (CGS)
to solve the block inner independent linear systems since the
cost per iteration of CGS is cheaper than that of GMRES
in terms of computation and memory [25,32]. The inner
independent linear systems need to be solved to a high accu-
racy of at least 10−6. For non-converged linear system, the

123

J Comput Electron (2015) 14:593–603 597

solver can be stopped after a few hundreds of iteration. Often,
convergence is improved by using an incomplete factoriza-
tion method based on Gaussian elimination like incomplete
LU (ILU) as a preconditioner matrix [33]. However, for TB
Hamiltonian matrix under consideration the ILU factoriza-
tion with 0 level of fill-in is not sufficient for convergence,
if utilized it takes more iterations to converge compared to
the case where a preconditioner is not employed and hence
we need to perform higher level of factorizations. As the
fill-in level in an ILU decomposition increases, the quality
of the ILU preconditioner improves. This also changes the
sparsity of the preconditioner matrix, preliminary tests using
MATLAB implementations have revealed that for good and
faster convergence a higher order factorization that gener-
ates a preconditioner matrix almost 30–35 times denser than
the original TB Hamiltonian matrix is needed. Thus, more
accurate ILU preconditioners require more memory, to such
an extent that eventually the running time of the algorithm
increases even though the total number of iterations in the lin-
ear solver decreases. Also, the parallelization of ILU involves
a lot of data transfers between the nodes since almost the
entire TB Hamiltonian matrix is needed on each node and it
takes a noticeable amount of compute time as a fresh ILU fac-
torization is needed to be computed for each contour point as
the matrix keeps on changing. Therefore, we do not present
a FEAST implementation that utilizes an incomplete factor-
ization based method to generate a preconditioner matrix. To
obtain a higher speedup and low memory foot print, paral-
lel preconditioners that are better suited for GPU parallelism
must be developed and implemented. This is part of our future
research plans.

3 Numerical results and discussion

All benchmarks are performed by analyzing the algorithms to
find the lowest 8 conduction energy eigenstates of atomistic
quantum dots similar to the one shown in Fig. 1. In our pre-
vious work [20], we concentrated particularly on the sparse
matrix-vector multiplication timings and discussed the per-
formance of GPUs to find one energy eigenstate using the
Lanczos method. Here, we compare different methods and
especially focus on their ability to compute multiple eigen-
pairs. For this reason, we report the wall time of different
algorithms to compute 8 energy eigenstates.

The GPU implementation of the algorithms and lin-
ear solvers are done utilizing the TB Hamiltonian splitting
approach, the mixed complex-real arithmetic matrix-vector
multiplication CUDA kernel and all of the parallel GPU
implementation techniques and optimizations discussed in
Ref. [20]. However, in the case of the FEAST method, the
matrix keep on changing with different contour points as
z I − H (or z∗ I − H), therefore, it is not optimal to use the

splitting approach since tests have shown that a significant
amount of time is spent building the splittedmatrix and drop-
ping the zeros.

The Lanczos algorithm has been fully ported to the GPU
and vectorized to scale with MPI parallelization on multi-
GPU workstations. Similarly, also the Jacobi–Davidson
algorithm has been implemented on GPUs, along with
GMRES method which is utilized as a linear solver for the
Jacobi–Davidson correction equation. In order to spare GPU
memory, the subspace vectors have been saved on the host
memory. This strategy enables us to treat larger systems at
the expense of more device–host communication. A compar-
ison between Jacobi–Davidson algorithm with and without
the subspace in the devicememory is shown below. Concern-
ing FEAST, we have ported only the linear solver (CGS) to
the GPU, given that this is the most time consuming part of
the algorithm. In this respect, Lanczos and Jacobi–Davidson
can be considered as pure GPU implementations and FEAST
as a hybrid CPU/GPU, even though 98 % of the total time is
spent on the GPU solving the block liner system.

In order to give a broad perspective, we also compare the
GPU performance with a HPC cluster. The relevant details
of the test hardware are given below:

– Test System 1 (Multi-GPU workstation): Intel Xeon
Processor E5-2620 (6 cores, 2 GHz, Cache 15 MB), 64
GB DDR3 SDRAM (Speed 1333 Mhz) and 2 Nvidia
Tesla K40 (Chip Kepler GK110B GPU, Processor Clock
745 MHz, CUDA cores 2880, Memory Clock 3.0 GHz,
Memory Size 12 GB, Peak performance 1.43 Tflops) + 2
Nvidia Tesla K20 (Chip Kepler GK110 GPU, Processor
Clock 706 MHz, CUDA cores 2496, Memory Clock 2.6
GHz,Memory Size 5GB, Peak performance 1.17 Tflops)
connected on the same PCI-E with an operating system
based on Linux kernel 3.0.85.

– Test System 2 (HPC cluster): 2208 compute nodes, each
node has 2 Intel XeonX5570 (4 cores, 2.93GHz, Cache 8
MB), 24 GB DDR3 SDRAM (Speed 1066 MHz). Nodes
are connected through an Infiniband QDR network with
non-blocking Fat Tree topology with a total Peak per-
formance of 207 Tflops and having an operating system
based on Linux kernel 2.6.32.

3.1 Single and multi-GPU CUDA implementation

As seen from left panel of Fig. 2, on a single GPU Jacobi–
Davidson with subspace in host memory performs almost
2× times faster as Lanczos and 13× faster as FEAST. How-
ever, when we move from one GPU to a multi-GPU scenario
as shown in the right panel, Jacobi–Davidson with a sub-
space in host memory performs only 1.4× times faster than
Lanczos when we search for the first few eigenstates. The
decrease in speedup compared to a single GPU implementa-

123

598 J Comput Electron (2015) 14:593–603

Fig. 2 Time comparison between methods on (left) 1 GPU and (right) 4 GPUs for the calculation of 8 energy eigenstates

tion is attributed to the fact that the sparse, mix complex-real
matrix-vector operations become less significant as seen in
Table 1. Also, since the subspace is saved on the hostmemory
it imposesmore inter host-GPUdatamovement thanLanczos
as seen from Fig. 4, which is also the ultimate speed limit-
ing factor for any parallel implementation. To attain ideal
scaling, there should not be any data dependency or syn-
chronizations between GPUs. Also, there should be enough
data to utilize all the GPU cores efficiently. As noticeable
from Figs. 2 and 5 with regards to Jacobi–Davidson imple-
mentation with subspace stored in device memory, we could
only fit up to 151,472 atom quantum dots on GPUs having
a memory limit of 5 GB therefore, as already stated, it is
crucial to employ the implementation that spares memory
by moving the subspace to the host memory. The rest of the
discussion in the following subsections corresponds to the
Jacobi–Davidson method with subspace stored in the host
memory.

Figure 3 shows the scaling of each method over multiple
GPUs. We observe that the Lanczos and the FEAST method
exhibit a strong scaling for large quantum dots. The ample
data movement in the Jacobi–Davidson implementation due
to the subspace being stored in host memory impedes its
scaling performance.

The profiling results from a data movement perspective
for 151,472 atom quantum dot are shown in Fig. 4. These
profiling tests have revealed that given the sequential nature
of the iterative algorithms and the pure GPU implementa-
tion with minimal data transfer, we were unable to obtain
any significant memory copy or compute overlap. Only in
the case of Jacobi–Davidson method, we obtained 3 % of
compute/memory copy overlap since the subspace vectors
are stored on the host memory. We expect this number to
increase as the size of the quantum dot increases.

We can also notice from Fig. 4 that Lanczos is a compute
intensive algorithm as almost 99%of time is used for compu-

tation with minimal data transfer which happens only during
the launch as the matrix is loaded onto the GPU memory.
Whereas, in the case of Jacobi–Davidsonmethod the host-to-
device and device-to-host data transfer account for 15–20 %
of the total effective time since the subspace is stored on
the host memory. The CGS method used to solve the block
linear system within FEAST, imposes an ample amount of
device-to-device data transfer accounting to 10–25 % of the
total computation time. This can be a potential bottle neck if
data transfer has to be performed via the host memory. We
attain a peak bandwidth of 7.45 Gb/s between the host and
the device.

Tables 1, 2, and 3 shows the profiling results for com-
pute operations of the algorithms for 151,472 atom quantum
dot. In all of the three methods, the sparse matrix-vector
multiplication is the most important computation task. How-
ever, when we go from a single GPU to a multi-GPU
implementation for the Jacobi–Davidson method, the dense
subspace-vector multiplication gains significance over the
sparse Hamiltonian matrix-vector multiplication. We notice
in Table 1 that the GPU occupancy for this operation is very
low; hence, it would be best to off load this operation onto
the CPU. Increasing the warp efficiency will maximize GPU
compute resource utilization. The warp efficiency is defined
as the ratio of the average active threads per warp to the
maximum number of threads per warp supported on a mul-
tiprocessor. A low value indicates that there are divergent
branches.

As the size of the nanostructure is increased, usually
more energy states are needed and these states happen to
be closely spaced. This poses a challenge for realistic nanos-
tructure simulations since the eigenvalue happen to be less
distinct. Our investigation has shown that Jacobi–Davidson
happens to be the most robust method in terms of conver-
gence. Even for closely placed energy states, the algorithm
performs fairly well compared to the other methods, typ-

123

J Comput Electron (2015) 14:593–603 599

Table 1 Profiler output for 151,472 atom quantum dot, listing the most significant compute operations within Jacobi–Davidson method with
subspace stored in host memory

Computation profile for single GPU Computation profile for multi-GPU Shared memory Registers

Compute
time (%)

GPU
occupancy

Warp
efficiency (%)

Compute
time (%)

GPU
occupancy

Warp
efficiency (%)

Mix complex-real,
SpM×V product
Mul(Hreal , qcomplex)

45.30 0.991 90.89 32.20 0.972 94.05 4096 28

Vector operations
y = y + αx

15.50 0.976 100.00 12.20 0.942 100.00 0 20

Dense M×V operation 14.70 0.197 89.35 37.40 0.201 89.33 10,240 60

Dot product 13.80 0.497 100.00 8.30 0.482 100.00 1024 28

Shift matrix 3.00 0.998 69.94 1.70 0.997 73.14 0 8

Fig. 3 Scaling of (left) Lanczos, (right) Jacobi–Davidson (subspace in host memory) and (center) FEAST method on 1–4 GPUs respectively

123

600 J Comput Electron (2015) 14:593–603

Fig. 4 Percentage of time taken
for memory and compute
operations on (left) 1 GPU and
(right) 4 GPUs respectively

Table 2 Profiler output for 151,472 atom quantum dot, listing the most significant compute operations within Lanczos method

Computation profile for single GPU Computation profile for multi-GPU Shared memory Registers

Compute
time (%)

GPU
occupancy

Warp
efficiency (%)

Compute
time (%)

GPU
occupancy

Warp
efficiency (%)

Mix complex-
real, SpM×Vproduct
Mul(Hreal , qcomplex)

84.20 0.941 91.14 82.80 0.924 94.13 4096 29

Mix complex-
real, SpM×Vproduct
Mul(Himag, qcomplex)

3.20 0.876 42.02 3.50 0.829 51.87 0 32

Vector operations
y = y + αx

7.80 0.781 100.00 8.30 0.748 100.00 0 14

Table 3 Profiler output for 151,472 atom quantum dot, listing the most significant compute operations within the CGS method (linear solver for
FEAST)

Computation profile for single GPU Computation profile for multi-GPU Shared memory Registers

Compute
time (%)

GPU
occupancy

Warp
efficiency (%)

Compute
time (%)

GPU
occupancy

Warp
efficiency (%)

Complex SpM×V product
Mul(Hcomplex , qcomplex)

85.50 0.993 89.83 83.80 0.976 93.07 4096 31

Vector operations
y = y + αx

11.70 0.973 100.00 13.60 0.923 100.00 0 16–21

Dot product 2.70 0.497 100.00 2.40 0.491 100.00 1024 28

ically 300–600 iteration are sufficient to find the first few
energy states. Experience shows that in Jacobi–Davidson
for fast convergence the minimum dimension of the sub-
space can safely be restricted to 4 more than the number of
wanted energy states and the maximum dimension needs to
be at least 10 more than the number of wanted energy states,
i.e. in our case minimum = 8 + 4, maximum = 8 + 10
since we look for 8 energy states. In the case of the Lanczos
method, the convergence is drastically lowered for a dense
eigenvalue spectrum. The convergence rate falls as the size
of the quantum dot is increased. Usually for big systems

around 10,000–20,000 Lanczos iteration are needed to find
each energy state. Similarly, in the case of FEASTmore con-
tour points and a bigger search space is needed to improve
convergence, which also translates into more work and more
memory utilization for each FEAST iteration. This is evident
from Fig. 2 where for the largest nanostructure the contour
points had to be increased from 3 to 5 and the search space
from 12 to 14. Typically, 10–25 number of FEAST iteration
are sufficient for a good accuracy. Comparing the accuracy of
the methods with the direct diagonalization carried out on a
small nanostructure, we found that FEAST delivered results

123

J Comput Electron (2015) 14:593–603 601

Fig. 5 Memory consumption between methods on (left) 1 GPU and (right) 4 GPUs respectively

to an absolute accuracyof 10−11.While, Lanczos and Jacobi–
Davidsonmethods delivered to an absolute accuracy of 10−6.
Stopping convergence criteria in all the three methods were
set to 10−5 eV.

Regarding memory occupancy as shown in Fig. 5, a sin-
gle GPU Lanczos implementation occupies the least amount
of memory since we do not store any subspace vectors.
Whereas, the slightly highermemoryoccupancyofCGSused
in the FEAST method can be attributed to the original com-
plex TB Hamiltonian matrix since we didn’t use the splitting
technique. For the Jacobi–Davidson method a subspace of
8+10 is needed for basis vectors and another additional space
of 8 + 10 vectors is needed for the projection of the Hamil-
tonian matrix onto this subspace, if the subspace is stored on
the GPU the feasible simulation size of the quantum dot is
reduced by half. In a multi-GPU system, the TBHamiltonian
is divided equally among GPUs. As the Hamiltonian size is
reduced on each node, the subspace and temporary vectors
required in the implementation scheme tend to gain impor-
tance and takes over the Hamiltonian as the chief memory
consumption entity.

One advantage of the Lanczos method over other methods
is that since each eigenstate is calculated one at a time, it is
possible to calculate the degenerate energy state with just
one matrix-vector multiplication, once found this eigenpair
is projected out and other unique energy states are calculated.
However, Jacobi–Davidson is also found to be robust in this
case since it happens to find the degenerate state within a few
iterations, in most cases using the harmonic extraction.

3.2 MPI/OpenMP benchmarking on a HPC cluster

AHPCcluster is normally themachine of choice of computa-
tional scientists for large scale calculations. Our multi-GPU
implementations of the algorithms are developed for a dis-

tributive computing environment using MPI and thereby,
facilitates the performance benchmarking of the methods
on the HPC cluster with a few modifications. As previ-
ously described, in Test System 2 each node has a dual
quad-core CPU with 23 GB of main memory. We have
utilized a hybrid MPI/OpenMP (multi-process/multi-thread)
implementation for each of the methods. The benchmark
calculations have been performed for 4, 8, 16 and 32 MPI
processeswith a constant of 8OpenMP threads on each nodes
corresponding to 32, 64, 128 and 256 CPU cores in usage
(Fig. 6).

To summarize our findings for small systems Jacobi–
Davidson performs on an average 10.2× times faster than
Lanczos which further increases to 17.2× with the increase
in the system size given the slow convergence nature of Lanc-
zos for closely spaced energy states in large quantum dot.
Whereas, in the case of FEAST method, it executes on aver-
age 1.6× times slower than Lanczos for small system which
increases to 9.3× for large systems sincemore contour points
are needed for convergence. In all three methods, one thing
that is common is the trend of speedups when we double the
number of nodes employed which is 1.5× for 4–8 nodes,
1.3× for 8–16 and 1.15× for 16–32 nodes. The decrease in
speedup with increase in nodes is mainly due to process syn-
chronization and limitations in inter-node communications.
Atomistic simulation software like NEMO-3D and OMEN
that uses a similar TB parameterization, matrix distribution
scheme and a Lanczos method have reported close to ideal
scaling on Ranger and Cray XT4 supercomputers using only
MPI technology to parallelize [34]. We also can expect a
similar scaling on these machines, as the speedups strongly
depend on the underlying machine and network architecture.

Memory analysis shows that there is no significant dif-
ference in memory consumption when the Hamiltonian is
split on 4 nodes or 32 nodes. This is because the size of the

123

602 J Comput Electron (2015) 14:593–603

Fig. 6 Time comparison between Jacobi–Davidson, Lanczos and FEAST method on 4, 8, 16 and 32 nodes of the HPC cluster for the calculation
of 8 energy eigenstates

subspace and temporary vectors overplay the importance of
the TB Hamiltonian matrix which has been highly memory
optimized using the single precision storage and splitting
technique. Out of the three methods considered, Lanczos
is most memory efficient given that we do not store any
subspace because of our choice of more flops over bytes
[20]. It is followed by the FEAST method using CGS as lin-
ear solver, which requires 3.2× times more memory than
Lanczos mainly because we need a search space bigger than
the number of eigenpairs in the given interval. The Jacobi–
Davidson method is found to be the most memory expensive
given its requirement to save an adequate subspace and find a
solution to the complex algebra correction equation. Jacobi–
Davidson requires 5× times more memory than Lanczos and
hence, we can fit only up to 699,399 atom quantum dots on
the test hardware.

3.3 Performance comparison between GPU and HPC
cluster

To examine the advantage of GPUs over an expensive HPC
cluster for tight-binding calculations, we will compare the
performance of 1 and 4 Tesla Kepler GPUs with 256 CPU
cores and also inspect the gain of multi-GPUs over a single
GPU. So comparing the performance of the different method
against different hardware, we can infer that for Lanczos and
FEAST method we get a 3.0× and 2.6× scaling in speedup
when we go from 1 GPU to 4 GPUs for large quantum dots.
Whereas, in the case of Jacobi–Davidson the speedup is lim-
ited to a factor of 1.6× demonstrating that the transfer of the
subspace from the host to the device and vice versa is the
limiting factor as already stated.

When we equate the performance of 256 CPU cores on
the HPC cluster with a single Tesla Kepler GPU, the Jacobi–
Davidson method on the HPC cluster is found to outperform
theGPUby a factor of 1.2×. On the contrary, theGPU imple-
mentation of Lanczos and FEAST methods on 1 GPU beats

the performance of 256 CPU cores by a factor of 5.8× and
4.1×, respectively. Comparing the multi-GPU implementa-
tion on 4 GPUs against 256 CPU cores of the HPC cluster
for Jacobi–Davidson, Lanczos and FEASTmethod themulti-
GPU system outperform the HPC cluster by a factor of 1.5×,
13.7× and 10.8×, respectively.

4 Conclusion

A comprehensive study of Jacobi–Davidson, Lanczos and
FEAST methods for energy eigenstate calculation in nanos-
tructures have been conducted. By creating, testing and
profiling, a GPU based performance enhanced implemen-
tation of the methods we have examined their feasibility and
advantage as an eigensolvers specifically for tight-binding
calculations. Our investigation has shown that Jacobi–
Davidson is the most robust method in terms of convergence
and is fast in terms of execution time. However, it has high
memory consumption and is therefore less suited for calcu-
lating the energy eigenstates of large nanostructures. This
shortcoming can be overcome by moving the subspace vec-
tors to the hostmemory as shown thus enabling us to calculate
the energy states of larger systems. Nevertheless, this type of
GPU implementation of the Jacobi–Davidson does not scale
well as compared to Lanczos and FEAST.

Lanczos on the contrary is most memory efficient method,
but the poor convergence for higher energy eigenstates in
large nanostructures is a primary bottleneckmaking it not the
first method of choice. However, on a multi-GPU system, it
shows a superior scaling trend. FEAST method performs the
worst since we do not use any preconditioner matrix while
solving the block linear system because the construction of
the typical preconditioner based on incomplete factorization
is expensive in terms of both memory and time and is not
ideal for a GPU based implementation.

To conclude Jacobi–Davidson is the best method given its
good convergence even without a preconditoner matrix and

123

J Comput Electron (2015) 14:593–603 603

should be considered as the method of choice on computing
systemswherememory is not a constraint.OnGPUs, it can be
employed to calculate the energy eigenstates of few hundred
thousand atom nanostructures. Lanczos, on the other hand,
is the method of choice when memory usage is the limiting
factor, even though Lanczos is slow in convergence it can be
easily scaled using a multi-GPU implementation to perform
in par with Jacobi–Davidson.

Acknowledgments The authors acknowledge the SOPHIAEuropean
Research Infrastructure for access to the JUROPA HPC cluster at the
Jülich Supercomputing center.

References

1. Di Carlo, A.: Tight-bindingmethods for transport and optical prop-
erties in realistic nanostructures. Physica B 314(2002), 211–219
(2002)

2. Pecchia, A., Di Carlo, Aldo: Atomistic theory of transport in
organic and inorganic nanostructures. Rep. Prog. Phys. 67(8),
1497–1561 (2004)

3. Di Carlo, A.: Microscopic theory of nanostructured semiconductor
devices: beyond the envelope-function approximation. Semicond.
Sci. Technol. 18, R1–R31 (2003)

4. Penazzi, G., Pecchia, A., Sacconi, F., Di Carlo, A.: Calculation of
optical properties of a quantum dot embedded in a GaN/AlGaN
nanocolumn. Superlattices Microstruct. 47(1), 123–128 (2010)

5. Colombot, L., Sawyer, W., Marict, D.: A parallel implementation
of tight-binding molecular dynamics based on reordering of atoms
and the Lanczos Eigen-Solver. MRS Proc. 408, 107 (1995). doi:10.
1557/PROC-408-107

6. Bergamaschi, L., Pini, G., Sartoretto, F.: Computational experience
with sequential and parallel, preconditioned Jacobi-Davidson for
large, sparse symmetric matrices. J. Comput. Phys. 188(1), 318–
331 (2003). doi:10.1016/S0021-9991(03)00190-6

7. Camara,M.,Mauger, A., Devos, I.: Electronic structure of the layer
compounds GaSe and InSe in a tight-binding approach. Phys. Rev.
B 65, 125206 (2002)

8. Levin, A.R., Zhang, D., Polizzi, E.: FEAST fundamental frame-
work for electronic structure calculations: reformulation and solu-
tion of the muffin-tin problem. Comput. Phys. Commun. 183(11),
2370–2375 (2012). doi:10.1016/j.cpc.2012.06.004

9. Laux, S.E.: Solving complex band structure problems with the
FEAST eigenvalue algorithm. Phys. Rev. B 86, 075103 (2012)

10. Lanczos, C.: An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators. J. Res. Nat’l
Bur. Std. 45, 225–282 (1950)

11. Stewart, G.W.: Eigensystems. In: Matrix Algorithms. Chap. 5, vol.
II, pp. 306–367, SIAM, Philadelphia (2001). ISBN 0-470-21820-7

12. Cullum, J.K., Willoughby, R.A.: Lanczos Algorithms for Large
Symmetric Eigenvalue Computations, vol. 1. SIAM, Philadelphia
(2002)

13. Parlett, B.N., Scott, D.S.: The Lanczos algorithm with selective
orthogonalization. Math. Comput. 33(145), 217–238 (1979)

14. San-Cheng, C.: Lanczos algorithm with selective reorthogonaliza-
tion for eigenvalue extraction in structural dynamic and stability
analysis. Comput. Struct. 23(2), 121–128 (1986). doi:10.1016/
0045-7949(86)90206-3

15. Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi-Davidson iteration
method for linear eigenvalue problems. SIAMJ.MatrixAnal.Appl.
17, 401–425 (1996)

16. Hochstenbach, M.E., Notay, Y.: The Jacobi-Davidson method.
GAMM Mitt. 29(2), 368–382 (2006). ISSN:0936–7195

17. Arbenz, P., Hochstenbach, M.E.: A Jacobi-Davidson method
for solving complex symmetric eigenvalue problems SIAM.
J. Sci. Comput. 25, 1655–1673 (2004). doi:10.1137/
S1064827502410992

18. Fletcher, R.: Conjugate gradient methods for indefinite systems.
In: Lecture Notes in Mathematics, 2nd revised edn, pp. 73–89.
Springer, Berlin (1976)

19. Polizzi, E.: Density-matrix-based algorithms for solving eigen-
value problems. Phys. Rev. B. 79, 115112 (2009)

20. Rodrigues, W., Pecchia, M., Lopez, M.A., der Maur, A., Di Carlo,
A.: Accelerating atomistic calculations of quantum energy eigen-
states on graphic cards. Comput. Phys. Commun. 185, 2510–2518
(2014). doi:10.1016/j.cpc.2014.05.028

21. Jancu, J.M., Bassani, F., Sala, F.D., Scholz, R.: Transferable tight-
binding parametrization for the group-III nitrides. Appl. Phys. Lett.
81, 4838 (2002)

22. Kesheng, W., Simon, H.: Thick-restart Lanczos method for large
symmetric eigenvalue problems. SIAM J. Matrix Anal. Appl.
22(2), 602–616 (2000)

23. Grosso, G., Martinelli, L., Pastori Parravicini, G.: Lanczos-type
algorithm for excited states of very-large-scale quantum systems.
Phys. Rev. B 51, 13033–13038 (1995)

24. Pescetelli, S., Di Carlo, A., Lugli, P.: Conduction band mixing in
T- and V-shaped quantum wires. Phys. Rev. B 56, 1668 (1997)

25. Barret, R., Berry,M., Chan, T.F., Demmel, J., Donato, J., Dongarra,
J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates
for the Solution of Linear Systems: Building Blocks for Iterative
Methods. SIAM, Philadelphia (1994)

26. Sleijpen, G.L.G., Booten, J.G.L., Fokkema, D.R., van der Vorst,
H.A.: Jacobi-Davidson type methods for generalized eigenprob-
lems and polynomial eigenproblems. BIT 36, 595–633 (1996)

27. Hochstenbach, M.E., Sleijpen, G.L.G.: Harmonic and refined
Rayleigh-Ritz for the polynomial eigenvalue problem. Numer. Lin-
ear Algebra Appl. 15(1), 35–54 (2008)

28. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn.
Society for Industrial and Applied Mathematics, Philadelphia
(2003). ISBN 978-0-89871-534-7

29. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM J. Sci.
Stat. Comput. 7, 856–869 (1986). doi:10.1137/0907058

30. Galgon, M., Kramer, L., Lang, B.: The FEAST algorithm for large
eigenvalue problems. PAMM. Proc. Appl. Math. Mech. 11, 747–
748 (2011). doi:10.1002/pamm.201110363

31. Polizzi, E.: A high-performance numerical library for solv-
ing eigenvalue problems: FEAST solver user’s guide (2012).
arxiv.org/abs/1203.4031

32. Fokkema, D.R., Sleijpen, G.L.G., Van der Vorst, H.A.: Generalized
conjugate gradient squared. J. Comput. Appl. Math. 71, 125–146
(1996)

33. Benzi, M.: Preconditioning techniques for large linear systems: a
survey. J. Comput. Phys. 182, 418–477 (2002)

34. Bae, H., Clark, S., Haley, B., Ryu, H., Klimeck, G., Lee, S., Luisier,
M., Saied, F.: A nano-electronics simulator for petascale comput-
ing: from NEMO to OMEN, TeraGrid 2008, Jun 9–13, Las Vegas
(2008)

123

http://dx.doi.org/10.1557/PROC-408-107
http://dx.doi.org/10.1557/PROC-408-107
http://dx.doi.org/10.1016/S0021-9991(03)00190-6
http://dx.doi.org/10.1016/j.cpc.2012.06.004
http://dx.doi.org/10.1016/0045-7949(86)90206-3
http://dx.doi.org/10.1016/0045-7949(86)90206-3
http://dx.doi.org/10.1137/S1064827502410992
http://dx.doi.org/10.1137/S1064827502410992
http://dx.doi.org/10.1016/j.cpc.2014.05.028
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1002/pamm.201110363
http://arxiv.org/abs/1203.4031

	A comprehensive study of popular eigenvalue methods employed for quantum calculation of energy eigenstates in nanostructures using GPUs
	Abstract
	1 Introduction
	2 Implementation
	2.1 Lanczos method
	2.2 Jacobi--Davidson method
	2.3 FEAST method

	3 Numerical results and discussion
	3.1 Single and multi-GPU CUDA implementation
	3.2 MPI/OpenMP benchmarking on a HPC cluster
	3.3 Performance comparison between GPU and HPC cluster

	4 Conclusion
	Acknowledgments
	References

