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Abstract In the literature, the study of electron transport
in quantum devices is mainly devoted to DC properties. The
fluctuations of the electrical current around these DC val-
ues, the so-called quantum noise, are much less analyzed.
The computation of quantum noise is intrinsically linked (by
temporal correlations) to our ability to understand/compute
the time-evolution of a quantum system that is measured
several times. There are several quantum theories that pro-
vide different (but empirically equivalent) ways of under-
standing/computing the perturbation of the wave function
when it is measured. In this work, quantum noise associated
to an electron impinging upon a semitransparent barrier is
explained using Bohmian mechanics (which deals with wave
functions and point-like particles). From this result, the fun-
damental understanding and practical computation of quan-
tum noise with Bohmian trajectories are discussed. Numeri-
cal simulations of low and high frequency features of quan-
tum shot noise in a resonant tunneling diode are presented
(through the BITLLES simulator), showing the usefulness of
the Bohmian approach.
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1 Introduction

Historically, the definition of noise was related to the sound:
A noise is an unwanted, unpleasant and confusing type of
sound.1 However, such definition is ambiguous. What does
it mean unwanted, unpleasant or confusing? An attempt to
provide a more academic definition comes from music: Noise
is a non-harmonious or discordant group of sounds. Again,
however, the definition is not free from ambiguities because
one man’s noise is another man’s music [1].

A more scientific definition closer to our interest in elec-
trical devices comes from communications: A noise is an
electric disturbance that interferes with or prevents recep-
tion from a signal or information. For example, the buzz in
a telephone call. Thus, we realize that once we have a pre-
cise definition of what is a signal, the meaning of what is
noise becomes perfectly clear: It is the difference between
the measured value and the signal.

1.1 Quantum noise in electrical devices from
an experimental point of view

As discussed above, the answer to what is noise in electrical
devices depends on our definitions of the electrical signal.
For most DC applications, the signal is just a time average
value of the current. For frequency applications, the signal
is equivalently defined as a time average value, but using
a shorter time interval (related to the inverse of the operat-
ing frequency). In other applications, mainly digital appli-
cations, the signal is related to a time average value of the
voltage in a capacitor. Hereafter, we will assume that the
electrical signal is the DC value of the current, referenced

1 In fact, the word noise is etymologically derived from the Latin word
nausea, meaning seasickness.
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by the symbol 〈I 〉. All fundamental and practical issues dis-
cussed here for the DC signal (and its noise) can be easily and
straightforwardly extended to those other types of electrical
signals.

What is measured in a laboratory for the DC signal is
the time average value of the instantaneous current I (t) in a
unique device during a large period of time T :

〈I 〉 = lim
T →∞

1

T

∫ T

0
I (t)dt. (1)

Once we have defined the signal 〈I 〉 as the DC value, in
principle, the noise can be quantified by time averaging the
difference between the measured value of the current I (t)
and the signal in a unique device:

�I 2 = lim
T →∞

1

T

∫ T

0
(I (t)− 〈I 〉)2dt. (2)

The square of the difference avoids positive and negative
cancellations.

At this point, it is very important to realize that I (t)
presents very rapid fluctuations that cannot be captured by
the standard laboratory apparatuses. Any experimental setup
that measures the current fluctuations behaves as a low-pass
filter (i.e. the current fluctuations at frequencies higher than
the apparatus cut-off frequency are not measured). Therefore,
the experimentally accessible information about the current
fluctuations is not given by Eq. (2), but by the power spec-
tral density of the fluctuations S(w) (and its related mag-
nitudes). From the Wiener–Khinchine relation, the power
spectral density can be defined as the Fourier transform of
the time average definition of this autocorrelation function
�R(τ ):

�R(τ ) = lim
T →∞

1

T

∫ T

0
�I (t1)�I (t1 + τ)dt1, (3)

where �I (t) = I (t) − 〈I 〉. A straightforward calculation
shows that Eq. (3) can be rewritten as �R(τ ) = R(τ )−〈I 〉2

with:

R(τ ) = lim
T →∞

1

T

∫ T

0
I (t1)I (t1 + τ)dt1. (4)

Then, the Fourier transform of Eq. (3) gives the noise power
spectral density S(w):

S(w) =
∫ ∞

−∞
�R(τ )e− jwτdτ. (5)

It is quite trivial to realize that the definition of the spec-
tral density S(w) in Eqs. (5) and (3) is consistent with the

definition of the total noise2 in Eq. (2):

�I 2 =
∫ ∞

−∞
S(w)dw, (6)

where we have used the definition of the delta function
δ(τ ) = ∫ ∞

−∞ e− jwτdw.
It is very relevant for the rest of the paper to realize that

the measurement of S(w) through the function R(τ ) defined
in Eq. (4) requires the knowledge of the measured value of
the current during all t . Thus, we have to make predictions
about the evolution of the electronic device while being (con-
tinuously) measured. In a classical scenario, such discussion
about measurement is generally ignored. On the contrary, for
quantum systems, it has very relevant implications because
the evolution of a system with or without measurement can
be dramatically different.

If the electronic device satisfies the ergodic theorem [2,3],
a continuous measurement of the system can be avoided
in practical computations. Let us see in what sense ergod-
icity can simplify our noise computations. In general, the
mathematical concept of a random process is used to deal
with noise. A random process requires a sample space. In
our case, we can define an ensemble of identical electrical
devices3, each one labeled by the sample space variable γ .
Then, the (instantaneous) current is labeled by the random
process I γ (t). For a fixed time, t1, the quantity I γ (t1) is a
random variable. For a fixed device γ1, the function I γ1(t) is
a well-defined non-random function of time. Finally, I γ1(t1)
is just a real number. Often the sample space variable γ is
omitted in the notation. The DC value of the current in Eq. (1)
can be alternatively defined for an ergodic system as:

〈I 〉 =
∑

i

Ii (t1)P(Ii (t1)), (7)

where P(Ii (t1)) is the probability of getting Ii at time t1.
These probabilities are defined as the ratio of the number of
devices providing Ii divided by the total number of devices.
It is important to realize that the experimental evaluation of
Eq. (7) requires only one measurement of the current at t1 in
a large number of identical γ -devices. Then, the theoretical
predictions of Eq. (7) do only need to determine the free
(without measuring apparatus) evolution of the electronic

2 Technically, S(w) defined in Eq. (5) is non-negative and symmetric
with respect tow. Then, since only positive frequenciesw are measured
in a laboratory, the measured density includes our S(w) and S(−w), and
the integral of the noise spectrum measured in a laboratory runs from 0
till ∞.
3 At this point, the reader will wonder that, in typical laboratory exper-
iments, only one electronic device is available (not an ensemble of
them). Then, as a practical definition of ensemble, we can define the
instantaneous current measured in different time-intervals: I γ1 (t) for
the instantaneous current measured during the first time interval, I γ2 (t)
for the second interval, and so on.
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device from the initial time t0 till t1. See a detailed discussion
in Appendix 1 about how ergodicity avoids the complications
of the measurement in a quantum system. Obviously, we can
compute the total noise represented in Eq. (2) from a unique
measurement in ergodic systems:

�I 2 =
∑

i

(Ii (t1)− 〈I 〉)2 P(Ii (t1)), (8)

However, the noise measured in a laboratory is not given by
�I 2, but by S(w) in Eq. (5). We repeat the reason explained
in Eq. (2). The amount of noise generated by an instanta-
neous current evolving for example from I (t1) = 5 mA to
I (t2) = 10 mA during a time interval of t2−t1 = τ = 1 fs, is
not captured from the state-of-the-art laboratory apparatuses
(which already have difficulties to capture noise at frequen-
cies higher than a few of Terahertzs). From an experimental
point of view, in fact, it is easy to get S(w → 0), but impos-
sible to get S(w → ∞). We can compute the noise power
spectral density S(w) from the ensemble average version of
the autocorrelation defined in Eq. (4) as:

R(t1, t2) =
∑

i

∑
j

I j (t2)Ii (t1)P
(
I j (t2), Ii (t1)

)
. (9)

In general, we can assume that the instantaneous current
in an electronic device behaves as a wide-sense stationary
random process. Then, 〈I 〉 in Eq. (7) is constant and time-
independent. Identically, then, the autocorrelation function
in Eq. (9) depends only on the time difference R(t1, t1 +
τ) = R(τ ) with t2 = t1 + τ . Finally, we use Eq. (5) with
�R(τ ) = R(τ ) − 〈I 〉2 computed from Eq. (9), to get the
noise power spectral density S(w).

It is important to emphasize (for a posterior discus-
sion) that the probability P

(
I j (t2), Ii (t1)

)
implies a two-

measurement process for each electronic device. The sys-
tem evolves freely (without interaction with the measurement
apparatus) from t0 till t1 when the current is measured, giving
the value Ii . Then, the system evolves freely again until time
t2, when the system is measured again giving I j . In summary,
even if the ergodicity argument is invoked, the noise compu-
tation through the autocorrelation function requires, at least,
two measurements at different times in a single device (and
the average over all γ -devices). We anticipate that our com-
putations with Bohmian mechanics will not assume ergodic-
ity (which is not an obvious property for open systems out of
equilibrium [2]), but the prior expressions requiring a con-
tinuous measurement of the current.

Let us emphasize that the previous discussion is valid for
either classical or quantum devices. The adjective quantum
emphasizes that the signal and the noise are computed or mea-
sured in an electrical device governed by quantum laws [4–7].
If the electronic device is not ergodic, expression (4) requires
a continuous measurement of the current I (t). On the con-

trary, for an ergodic electron device, expression (7) requires
one unique measurement, while expression (9) requires a
two-times measurement when dealing with the power spec-
tral density S(w).

Up to here, we realize that the definition of quantum noise
seems very trivial. Then, why does the concept of quantum
noise have a halo of mystery around it?

1.2 Quantum noise in electrical devices
from a computational point of view

Our previous definition about what is quantum noise does
not answer the question of how we compute it. If we want
to predict the values I (t) used in Eqs. (2) and (4) or the
probabilities P(I ) and P

(
I j (t2), Ii (t1)

)
for Eqs. (7) and (9),

we require a quantum theory.
There are several quantum theories available in the lit-

erature that, by construction, are empirically equivalent
when explaining all quantum phenomena. Among others,
the so-called Copenhagen or orthodox interpretation [8,9],
Bohmian mechanics [10–12] or the many-worlds theory [13].
Any theory has usually two different planes. First, the for-
malism, which is a set of mathematical rules (using elements
such as wave functions, operators, trajectories) that allow us
to make practical computations that reproduce experimental
results. The formalism of a theory provides an answer to the
question: How do we compute quantum noise? The second
plane of a theory is its interpretation. It tries to provide a deep
connection on how the mathematical rules and its elements
explain how nature works. The interpretation of the theory
provides answers to the question: Which is the physical ori-
gin of quantum noise? Each quantum theory will provide its
own answers to both questions.

Many people argue that the only important part of a quan-
tum theory (once we know it is empirically valid) is its for-
malism because it is the only part we need to make computa-
tions. Certainly, one can make noise computations using any
of the available formalisms without worrying about its inter-
pretation. At the end of the day, by construction, each theory
should give the same predictions. Other people argue that
even when one is only interested in computations, a correct
understanding of the interpretational issues of each theory
is fruitful because it provides an enlarged vision about how
correctly apply the theory in unsolved problems (abandoning
the shut up and calculate [14]). We will return to this very
point later, at the conclusions in Sect. 5.

Now, we want to clarify why quantum noise is specially
sensible to fundamental quantum mechanical issues. Any
electrical device (or any experiment) is connected to a mea-
suring apparatus. In our case, an ammeter to get the electrical
current. Quantum noise is sensible to the (ammeter) measur-
ing process. As stated in Eq. (9), in order to obtain the noise,
the quantum system has to be measured, at least, twice. This
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two-time measurement faces directly with one of the most
complex issues in quantum mechanics, namely, which is the
perturbation of the quantum wave function when a measure-
ment is performed. Historically, this perturbation is known
with the somehow scary name of the collapse of the wave
function. Can we ignore it? Definitively not if temporal cor-
relations need to be correctly predicted. See for example, Ref.
[15]:“The fluctuations …are a consequence of a probabilistic
reflection and transmission probability (a wave phenomena)
and are a consequence of the fact that detectors register either
a transmitted or a reflected particle (a particle phenomena)”.
The measurement process is hidden in the word detectors.

We also mention that the fundamental understanding/
computing of the measurement process can be largely relaxed
when dealing with DC predictions. They can be computed
from an ensemble of devices with only one measurement in
each device, so we can ignore the evolution of the quantum
system after the measurement. See Appendix 1 to enlarge
this point.

In this paper, we will provide an explanation to the role of
collapse in quantum noise from a Bohmian perspective. We
emphasize that we are not saying that the Bohmian answer is
the best one. Answers from other theories are equally satis-
factory, and provide the same predictions. We are just defend-
ing that it is a consistent answer that in the authors’ opinion
provides a quite intuitive and understandable explanation of
quantum noise and also a numerically accessible formalism.
In Sect. 2 we explain how the Copenhagen interpretation
explains the multi-time measurement process in a experiment
with a flux of electrons impinging upon a tunneling barrier, by
introducing the notion of operators. In Sect. 3 we provide an
explanation of the same experiment using Bohmian mechan-
ics, without using operators. Then, in Sect. 4 we illustrate
how the formalism of Bohmian mechanics exposed in Sect. 3
can be applied in practical problems to calculate the quantum
noise in electrical devices, including Coulomb and exchange
interactions. Finally, we conclude in Sect. 5 explaining how
the different theories explain the origin of quantum noise.

2 Multi-time measurement with operators

A typical scenario when discussing quantum noise in electri-
cal devices is a flux of electrons impinging upon a partially
transparent barrier (located in the middle of the active region).
Electron transport through the barrier takes place by tunnel-
ing. Electron is either transmitted or reflected, but not both!
[5,16,17] We get a transmitted electron with a probability T ,
while a reflected one with probability R = 1−T . To simplify
the discussion, we consider a constant injection of electrons
(at zero temperature), one by one. Each electron, after mea-
surement at time t1, will appear randomly at the left or at
the right of the barrier. The time averaged number of trans-

mitted electrons will be proportional to T , but the number
of transmitted electrons fluctuates instantaneously because
of the randomness of the transmission. These fluctuations of
the number of transmitted electrons (when compared with
the DC signal) are named partition noise [6,15,17].

There are many other sources of noise in electrical devices,
for example, the 1/ f noise which become very relevant at
low frequencies [6,7]. In this paper, we will only deal with
partition noise due to a tunneling barrier. In Sect. 4, we will
discuss partition noise considering also the injection of elec-
trons at a finite temperature (the so-called thermal noise). The
fluctuations due to both processes simultaneously are known
in the literature as shot noise [1,5,7,18].

In this section we discuss how the partition noise is under-
stood within the orthodox interpretation of quantum mechan-
ics, also known as Copenhagen interpretation [8,9]. Let us
specify that most available formulations of shot noise are
developed within this orthodox interpretation [1,5,6,15–17].
We consider a very simple example, but with a detailed dis-
cussion of the role played by the measuring apparatus (the
ammeter). The Copenhagen interpretation associates a wave
function Ψ (x̄N , t) to a system of N particles. In principle,
such wave function lives in a 3N + 1 dimensional config-
uration space. Within the first non-relativistic quantization
language, the evolution of this wave function is defined by
two laws [19]. The first law, known as Schrödinger equation,
states that (when the system is not measured) the wave func-
tion evolves unitarily and deterministically according to the
following equation

i h̄
∂Ψ (x̄N , t)

∂t
= HΨ (x̄N , t), (10)

where H = [ ∑
i − h̄2

2mi
∇2

i + U (x̄N , t)
]
. With U (x̄N , t) we

denote a generic interaction potential in the position rep-
resentation, with mi the mass of the i-th particle and with
x̄N = (x1, x2, . . . , xN ) the multidimensional vector in the
configuration space. To provide a simple discussion of the
partition noise in a tunneling barrier, let us assume that each
electron in our experiment can be described by a single-
particle wave function (we neglect the exchange and the
Coulomb interaction among electrons). In Fig. 1 we plot the
(unitary) evolution of such wave function solution of Eq. (10).
Is the (unitary) Schrödinger equation alone depicted in Fig. 1
enough to understand quantum noise? No. The orthodox the-
ory has a second law, known as the collapse of the wave func-
tion, that takes into account the effects of the interaction of
a measuring apparatus with the quantum (sub)system. This
second law can be found in many textbooks [19]. It requires
a new non-unitary operator A. This operator is different from
the unitary Schrödinger evolution, which is generated by the
Hamiltonian seen below Eq. (10), and it must be able to
encapsulate all the interactions of the quantum systems with
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Fig. 1 Evolution of the squared modulus of the wave function of an
electron impinging on a tunneling barrier (green solid line). We plot
four different times corresponding to a initial time, b the moment when
the wave function interacts with the barrier, c the time t1 when the
first measurement occurs and d time t2 corresponding to the second
measurement. At time t1 and t2, because of the unitary evolution, the
electron can be detected at both sides of the barrier (Color figure online)

the rest of the particles (including the ammeter, the cables,
the environment, etc). This new operator A is the only tool
provided by the theory to determine the possible results of
a measurement. In principle we do not know anything about
this operator except that it is a (hermitian A = A†) function
whose (real) eigenvalues an of its spectral decomposition are
the possible results of the measurement. Once the system
in Fig. 2 is measured (and not before), the wave function is
projected to one of the eigenstates of the mentioned opera-
tor in a non-unitary evolution.4 After the collapse, the new
wave packet evolves again according to the time-dependent
Schrödinger equation until a new measurement is done.

For simplicity, in our present conceptual discussion let us
assume a reasonable (but ad-hoc) operator (why this operator
is reasonable will be clarified in Sect. 3). Such operator pro-
vides the following perturbation of the wave function. If the
electron is randomly measured as a reflected electron at t1,
the transmitted part of the wave function is eliminated. This

4 The measurement described in most textbooks is called “projective”
(strong) measurement. There exists, for example, another type of mea-
surement known as weak measurement, which is useful to describe
situations where the effects of the apparatus on the measured system is
just a small perturbation.

Fig. 2 a, b, c and d Non-unitary evolution of the wave function for
a reflected electron detected at time t1 at the left side. e, f, g and h
Non-unitary evolution of the wave function for a transmitted electron
detected at time t1 at the right side. Symbols are the same as in Fig. 1
(Color figure online)

measuring process corresponds to Fig. 2c and d where only
the reflected wave function survives after t1. Equivalently,
the measurement process associated to randomly getting a
transmitted electron corresponds to eliminating the reflected
part, as seen in Fig. 2g and h.

Now, by comparing the evolutions of the wave functions
in Figs. 1 and 2, it is obvious that the former is wrong. By
looking at Fig. 1, it could be the case that an electron found at
time t1 at the right (transmitted) can be found in a later time
t2 at the left as a reflected electron (see the evolution of the
probability density in Fig. 1). This sequence of possibilities
is wrong. Experimental results confirm that once, say time
t1, the electron is detected at one side, in a later time t2 it
is always found at the same side. Then, we get a very valu-
able lesson from the Copenhagen explanation: the (unitary)
Schrödinger equation alone is not able to explain completely
quantum noise. It is necessary to include the collapse of the
wave function to understand properly what is quantum noise
(temporal correlations). The popular arguments that “Shot
noise is a consequence of quantization of charge” [7] or
“This is the noise that arises from the graininess of the cur-
rent” [17] emphasize exactly this very point.

All mentioned orthodox formalisms dealing with quantum
noise reproduce experimental results successfully because
they include the measurement process inside [1,5,6,15–18].
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Most of them do not discuss explicitly which is the operator
associated with the ammeter. Over the years, physicists have
identified the operators, by developing instincts on which are
the effects of measurements in the wave function. There are
scenarios (as the one depicted in Fig. 2) where it is quite
obvious which operator is the right one. On the contrary,
for example, when measuring the total (conduction plus dis-
placement) current it is not at all obvious which are the rel-
evant operators. Is this measurement process continuous or
instantaneous? Does it provide a strong or a weak perturba-
tion of the wave function? The answers to these questions
are certainly not simple. The Copenhagen theory itself does
not answer these technical questions about how to find the
right operator. Can other quantum theories provide additional
help?

3 Multi-time measurement without operators

In the previous section, we discussed how the Copenhagen
formalisms can be successfully used to understand quantum
noise in electrical devices. One technical difficulty with this
formalism is the proper definition of the right operator that
determines the collapse of the wave function when, for exam-
ple, the total (conduction plus displacement) current is mea-
sured.

There are alternative theories which account for the per-
turbation of the wave function during a measurement process
in a different way, without operators. The one that we will
develop here is Bohmian mechanics. Let us emphasize again
that both (Copenhagen and Bohmian) theories are empiri-
cally equivalent so that the preferences of one in front of the
other are related to computational abilities, intuitive results,
etc. [11].

In the Bohmian theory, the complete description of a
quantum system of N particles is given by the (same)
wave function, Ψ (x̄N , t) mentioned in Sect. 2, and by
the actual positions of the point-like particles, X̄ N (t) =
(X1(t), X2(t), . . . , X N (t))5 (see Appendix 2 and Refs. [11,
12] for a more detailed discussion on this theory). We empha-
size that the evolution law for the wave function Ψ (x̄N , t) is
the same as in standard quantum mechanics: the Schrödinger
equation (Eq. 10). The wave function guides the movement
of the actual positions of the particles in time, according to
the so-called guidance equation, which defines the velocity
of the i-th particle as

5 We denote with capital letter X the actual position of the particle,
while the lower case letter x is used to indicate generic positions. With
the barred letter we refer to a multidimensional vector in the configura-
tion space, while a letter without bar denotes the 3-dimensional vector
in physical space.

vi (t) = Ji (x̄N , t)

|Ψ (x̄N , t)|2
∣∣∣
x̄N =X̄ N (t)

= h̄

mi
Im

∇iΨ (x̄N , t)

Ψ (x̄N , t)

∣∣∣
x̄N =X̄ N (t)

, (11)

where Ji (x̄N , t) is the usual probability current density,
defined as Ji (x̄N , t) = i h̄

2mi
(Ψ∇iΨ

∗ − Ψ ∗∇iΨ ), associated

to the i-particle, |Ψ (x̄N , t)|2 is the usual probability distribu-
tion and Im denote the imaginary part. We note that Eq. (11)
describes the velocity field for the i-particle and depends on
the actual position of all particles of the system X̄ N (t). Each
particle follows a definite trajectory which can be obtained
integrating in time the velocity field

Xi (t) = Xi (0)+
∫ t

0
vi (t

′)dt ′, (12)

where Xi (0) is the initial position of particle i .
A proper ensemble of these trajectories (proper means

that the initial position of each trajectory of the ensemble is
selected according to the initial squared modulus of the wave
function, see Eq. (23) in Appendix 2) reproduces the time-
evolution of the many-particle wave function at any later
time.

In Sect. 2, we saw that in order to reproduce the experimen-
tal results, we have used the notion of operators to describe
how the wave function of a measured system is modified
under a measurement process. In the Bohmian theory, we
simply consider the apparatus as another (big and complex)
quantum system interacting with our measured system. The
interaction among them is then included in the Hamiltonian
of Eq. (10) as any other interaction. Then from the unitary
evolution of the many-particle wave function (system plus
apparatus) we can look at the behavior of the wave func-
tion of the measured system. The latter is called conditional
wave function (an exclusive concept belonging to Bohmian
mechanics) and it is defined from the many-particle wave
function in the configuration space, fixing all the actual parti-
cles positions excluding that of our subsystem (see Appendix
2 for more details).

Let us provide a quite realistic (in particular, non-
instantaneous, but in some ways schematic) example in
which we can numerically track the behavior of the con-
ditional wave function during the measurement process of
the partition noise discussed in Sect. 2. The quantum system
is an electron labelled as X1 impinging on an external tun-
neling barrier. Behind the barrier there is a measuring device,
that we call “transmitted charge detector” modeled as a single
degree of freedom X2 (thought as the center of mass of a com-
plex system), which can detect the successful transmission
of an electron. First, we have an interaction of the electron
with the potential barrier and, subsequently, an interaction
with the transmitted charge detector. It is important to stress
that both interactions are regarded at the very same level
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Fig. 3 Time evolution of the squared modulus of Ψ (x1, x2, t) at four
different times. The configuration space region where the transmitted
charge detector is present is indicated by a rectangle and the barrier by
a solid line. The + line indicates the modulus of the conditional wave
function |ψR |2 = |Ψ (x1, Xα=1

2 (t), t)|2, while the 
 line corresponds
to |ψT |2 = |Ψ (x1, Xα=3

2 (t), t)|2. Four trajectories {Xα1 (t), Xα2 (t)} with
different initial positions are presented with �, ∗, × and +. The actual
detector position associated with the reflected trajectory (+) with α = 1
does not move because there is no interaction between this trajectory
and the detector (Color figure online)

within Bohmian mechanics. The measurement interaction
introduces a channelling of the wave function in the config-
uration space such that the desired property of the “quantum
system” (here, whether the electron is reflected or transmit-
ted) can be read off from the final position X2 of a particle,
thought of as the pointer of the apparatus. The interaction
between the electron and the pointer can be modeled as:

Hint = λQ(x1)Px2 = −i h̄λQ(x1)
∂

∂x2
, (13)

where Px2 = −i h̄∂/∂x2 is the momentum operator of the
detector andλ = 50 nm/ps is the interaction constant. Q(x1)

is a function that is equal to zero when the electron is out-
side the detector, (x1 < 75 nm in Fig. 3), and is equal to

one when the particle is inside the detector (x1 > 75 nm).6

In Fig. 3 the region in the configuration space in which this
function is different from zero is represented by a rectangle.
The many-particle Schrödinger equation reads

i h̄
∂Ψ (x1, x2, t)

∂t
=

(
− h̄2

2m

∂2

∂x2
1

− h̄2

2M

∂2

∂x2
2

+

+U (x1)− i h̄λQ(x1)
∂

∂x2

)
Ψ (x1, x2, t),

(14)

where m is the effective mass of the electron, M is the mass
of the apparatus pointer and U (x1) is the external potential
energy barrier.

The main feature of a transmitted charge detector is that
the center of mass of the wave function in the x2 direction has
to move if the electron is transmitted and it has to be at rest if
the electron is reflected. We solve Eq. (14) numerically con-
sidering as initial wave function the products of two gaussian
wave packets, i.e. Ψ (x1, x2, 0) = ψ(x1, 0)φ(x2, 0). All
details of this simulation can be found in [20]. In particular
we are considering M = 75, 000 m. In Fig. 3 the numerical
solution of the squared modulus of Ψ (x1, x2, t) is plotted
at four different times. At the initial time t = 0, Fig. 3a,
the entire wave function is at the left of the barrier. At a later
time t0 the wave function has split up into reflected and trans-
mitted parts due to the barrier, see Fig. 3b. Then, because the
electron has not yet arrived at the transmitted charge detector,
the wave function has the following form:

Ψ (x1, x2, t0) = [ψT (x1, t0)+ ψR(x1, t0)]φ(x2, t0). (15)

After that, Fig. 3c and d, the interaction of the detector with
the transmitted part of the wave function appears. For time
t > t0 the transmitted part of the wave function is shifted up in
the x2 direction while the reflected part does not move. The
interaction with the apparatus thus produces two channels
in the configuration space, one corresponding to the electron
being transmitted and the other corresponding to the electron
being reflected, getting an entangled superposition among the
electron and the apparatus.

In Fig. 3 we also plot the actual positions of the system
and detector {X1(t), X2(t)} for four different possible initial
positions {X1(0), X2(0)}, corresponding (say) to four dis-
tinct runs of the experiment (labelled by α = 1, . . . , 4). Of
the four possible evolutions shown, three show the electron
being transmitting (α = 2, 3, 4) and one being reflecting
(α = 1). While the pointer position X2(t) does not move
for the reflected particle, its evolution for the transmitted
ones clearly shows a movement. In conclusion, looking at

6 The transition of Q(x1), from zero to one, is done softly in order
to minimize the perturbation of the “quantum system” as explained in
[20].
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Fig. 4 The + line in a, b, c and d is the time evolution of the squared
modulus of the conditional wave function associated to the trajectory
α = 1 in Fig. 3, i.e.ψR = |Ψ (x1, Xα=1

2 (t), t)|. The 
 line in e, f, g and
h is the squared modulus of the conditional wave function associated
to the trajectory α = 3 in Fig. 3. i.e. ψT = |Ψ (x1, Xα=3

2 (t), t)|. The
actual detector position X2(t) is plotted at each time in order to compare
these results with those in Fig. 3 (Color figure online)

the detector position we can perfectly certify if the particle
has been reflected (X1(t) < −50 nm and X2(t) = 0 nm )
or transmitted (X1(t) > −50 nm and X2(t) ≈ 15 nm). We
hope the reader will realize how trivially we have been able
to explain the measurement, using only a channelized (uni-
tary) time-evolution of 2D wave function plus two Bohmian
trajectories, one for the system and another for the measuring
apparatus.

Once we have solved the complete problem of the mea-
surement in (2D) configuration space, we can describe the
same measurement in (1D) physical space with the help of
the conditional wave function. The key point illustrated here
is that the collapse of the one-particle wave function for the
electron, which collapse is of course postulated through the
second law seen in Sect. 2 in ordinary quantum theory, instead
arises naturally and automatically in Bohmian mechanics. It
is simply a consequence of slicing the unitary-evolving (2D)
wave functionΨ along the (moving) line x2 = X2(t), result-
ing ψ1(x1, t) = Ψ (x1, X2(t), t). In Fig. 3 we have plotted
two solid horizontal lines corresponding to a slice of the wave
function at two different values of X2(t). In Fig. 4 we report
the evolution of these (time-dependent) slices of the many-
particle wave function, the conditional wave function for the
electron, for the trajectories α = 1 and α = 3 from Fig. 3.
We clearly see that if the particle is reflected, as it is the

case for α = 1, the position of the pointer does not change
with time and, after the interaction with the detector has been
performed, the electron’s conditional wave function includes
only a reflected part. See Fig. 4c and d. On the other hand,
when the particle is transmitted (e.g.,α = 3), it is the reflected
part of the conditional wave function which collapses away,
leaving only the transmitted packet. See Fig. 4g and h. Note
in particular that the 1D evolution ofψ1(x1, t) (the electron’s
conditional wave function) is not unitary, even though the 2D
evolution of Ψ is.

While a wave function formulation of quantum mechan-
ics provides only statistical information about the experi-
mental results, with the help of the Bohmian trajectories,
we have been able to recover the individual result of each
experiment. In fact, for each experiment the pointer of the
detector is either moving (corresponding to a transmitted
electron) or not (reflected electron), while an ensemble of
repeated experiments (where the initial positions of the par-
ticles, both the electron X1(0) and the detector X2(0), are
selected according to the squared modulus of the wave func-
tion at the initial time |Ψ (x1, x2, 0)|2) reproduce the same
statistical results.

Thus with the previous numerical example we have repro-
duced the collapse-behaviour of the wave function of a trans-
mitted (or reflected) electron. This allows us to conclude that
the same results of standard formalism (explained in Sect. 2)
are obtained within Bohmian mechanics (see [11,21] for a
formal derivation of the empirical equivalence of the two the-
ories). Apart from irrelevant technicalities (related to how
we define the measuring apparatus) the results in Figs. 2
and 4 are conceptually identical. We emphasize that, the col-
lapse in Bohmian theory is naturally derived. Such a natural
derivation of the collapse behavior demystifies the measure-
ment process (and the quantum noise). We underline that we
achieve the non-unitary evolution of the wave function of a
measured system simply slicing the enlarged wave function
(which includes the apparatus) in the configuration space.

Let us return to the questions posed at the end of Sect. 2
about the measurement of the total (conduction or displace-
ment) current. Is this measurement process continuous or
instantaneous? Does it provide a strong or a weak pertur-
bation of the wave function? The Bohmian theory does not
provide simple answers to these questions, but it clearly indi-
cates the path. We need to include (somehow) the measuring
apparatus in the Hamiltonian. Here, the electrostatic inter-
action between the electrons in the system and those in the
contacts, cables, etc. See a preliminary work in this direction
in Ref. [22].

A powerful simulator which uses Bohmian mechanics to
compute DC and quantum noise is the BITLLES simulator
[23,24]. This simulator allows us to work with a lot of flexi-
bility, being able of introducing any sort of potential, includ-
ing Coulomb correlations and exchange interaction. The next
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Section is dedicated to expose the fundamental ideas of the
simulator and an example of the calculation of noise with it.

4 Practical application

We have previously exposed the main features of Bohmian
mechanics explaining in a quite trivial way the partition noise
in a tunneling barrier. However, as it occurs for all theo-
ries, there is a huge step between its general formulation and
its practical application. In fact, it happens many times that
the practical problem we want to solve is unsolvable both
analytically and numerically, and some kind of approxima-
tions are required. The paradigmatic example of the need of
approximations in quantum theories is the well-known many-
body problem that reminds us that the celebrated Schrödinger
equation in Eq. (10) (or any alternative formulation) can only
be solved exactly for very few (one, two, three,…) degrees
of freedom.7

In principle we have seen in Sect. 3 that to reproduce
the collapse of the wave function in Bohmian mechanics
we have to include a suitable interaction with an external
apparatus. Then we can write down the Schrödinger equation
for our complete system including all the electrons in the
active region of the device plus all the particles composing the
detector. But solving numerically this problem is obviously
impossible. Again, the many-body problem appears. Then
we should look for suitable approximations able to reduce
the complexity of our problem. Let us emphasize that the
(technical) approximations that we will show, do not alter
the general framework we have previously presented.

4.1 An approximation for the interaction between
the electron and the measuring apparatus

The first kind of approximation regards the inclusion of the
apparatus in our simulations. It seems that its inclusion is
unavoidable in order to provide the collapse of the wave func-
tion. And this is true, but in the particular case of quantum
noise in electrical devices, the fact of playing with (Bohmian)
trajectories will greatly simplify the problem. In “Computa-
tion of mean value of an operator” section in Appendix 2, we
have reported how any experimental value is calculated in
Bohmian mechanics. The important thing is that any expec-
tation value of a given operator is simply calculated as a
function of the actual particles positions over an ensemble
of repeated experiments (see Eq. (24) in Appendix 2). Thus

7 As Dirac stated: “The general theory of quantum mechanics is now
almost complete. The underlying physical laws necessary for the math-
ematical theory of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty is only that the exact
application of these laws leads to equations much too complicated to
be soluble” [25].

what really matters in the computation of a property of the
quantum system are only the trajectories of the Bohmian par-
ticles (not the wave functions). Therefore, if the trajectories
without measuring apparatus are enough accurate (this means
if the error on these trajectories due to neglecting the appa-
ratus is reasonably small compared to the exact solution) we
can get accurate results with a minimal computational effort.
In the case of the transmitted charge detector of Sect. 3, it
has been demonstrated [20] that the error due to the exclu-
sion of the apparatus from the simulations is almost negli-
gible for the computation of the trajectories. In this way we
can decrease enormously the computational burden, remov-
ing all the degrees of freedom related to the apparatus from
our computations.

We can provide a more didactic discussion on why the
previous technical approximation for the measuring appa-
ratus works quite well when using Bohmian trajectories. In
Sect. 2, we conclude that the reason why the wave function
evolution in Fig. 1 was wrong is due to the wrong possi-
bility that an electron that is transmitted at time t1 is later
reflected at time t2. This unphysical result simply disappears
when using Bohmian trajectories: the dynamic of a trans-
mitted electron at time t1 will be determined locally by the
guidance law Eq. (11) that only takes into account the trans-
mitted part of the wave function. We can, for all practical
purposes, completely ignore the reflected part of the wave
function. Therefore, at time t2, this electron will remain as a
transmitted electron with full certainty.

Finally, let us emphasize that, in principle, the measuring
apparatus has also a role in the classical simulation of elec-
tronic devices. Such interaction with the apparatus is included
at a classical level, at best, by a proper boundary conditions
for the scalar potential of the Hamiltonian (i.e. the Poisson
equation) ensuring overall charge neutrality. Obviously, this
kind of approximation can also be included here.

4.2 An approximation for the Coulomb and exchange
interaction among electrons

Once we have practically eliminated the apparatus from our
computations, a second kind of approximation regards the
interactions among the electrons of our device. The active
region of the electronic device can contain hundreds of
electrons. Also in this case, as we mentioned, the many-
particle Schrödinger equation can be solved only for very
few degrees of freedom. A standard way to proceed con-
sists then on reducing the complexity of the problem by
tracing out certain degrees of freedom. This process ends
up with what is called the reduced density matrix. When
the reduced density matrix is used, its equation of motion
is no longer described by the Schrödinger equation but
in general by a non-unitary operator. The reduced density
matrix is no longer a pure state, but a mixture of states
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and their evolution is in general irreversible [26]. Now we
discuss how Bohmian mechanics allows us to proceed in
a very different way. As it will be seen below, the con-
cept of conditional wave function [21] provides an orig-
inal tool to deal with many-body open quantum systems
[27,28].

As said, once again the key instrument is the conditional
wave function. In order to use the conditional wave func-
tion to reduce the degrees of freedom of a system we must
know how it evolves in time. It can be demonstrated [27]
that the single-particle conditional wave function of particle
1, ψ1(x1, t), for a system of N interacting particles, obeys
the following wave equation:

i h̄
∂ψ1(x1, t)

∂t
=

{
− h̄2

2m
∇2

1 + U1(x1, X̄ N−1(t), t)

+ G1(x1,X̄ N−1(t), t)

+ i J1(x1,X̄ N−1(t), t)
}
ψ1(x1, t). (16)

The explicit expression of the potentials G1(x1,X̄N−1(t), t)
and J1(x1, X̄ N−1(t), t) that appears in Eq. (16) can be found
in reference [27]. However, their numerical values are in prin-
ciple unknown and need some educated guesses. On the other
hand, the total electrostatic potential energy among the N
electrons that appears in Eq. (10), has been divided into two
parts:

U (x1, X̄ N−1(t), t) = U1(x1, X̄ N−1(t), t)

+ UN−1(X̄ N−1(t), t). (17)

The term U1(x1, X̄ N−1(t), t) can be any type of many-
particle potential defined in the position-representation, in
particular it can include short-range and long-range Coulomb
interactions. The other term UN−1(X̄ N−1(t), t) in Eq. (17)
which has no dependence on x1, is contained in the coupling
potential G1 in Eq. (16). The same procedure can be done
for the rest of the N − 1 particles, for example for particle
2 we fix the positions of particle 1, 3, . . . , N obtaining the
analogous of Eq. (16) for ψ2(x2, t). From a practical point
of view, all quantum trajectories X̄ N (t) have to be computed
simultaneously. In order to gather all the above concepts,
let us discuss a practical computation with conditional wave
functions by detailing a sequential procedure:

1. At the initial time t = 0, we fix the initial position of
all i-particles, Xi (0), according to the initial probability
distribution (|Ψ (x̄N , 0)|2), and their associated single-
particle wave function ψi (xi , 0).

2. From all particle positions, we compute the exact value
of the potential Ui (xi , X̄ N−1(0), 0) for each particle. An
approximation for the terms Gi and Ji is required at this
point. We use the simplest one [20].

3. We then solve each single-particle Schrödinger-type
equation, Eq. (16), from t = 0 till t = dt .

4. From the knowledge of the single-particle wave function
ψi (xi , dt), we can compute the new velocities vi (dt) for
each i-particle (see Eq. (22) in “The conditional wave
function” section in Appendix).

5. With the previous velocity, we compute the new position
of each i-particle as Xi (dt) = Xi (0)+ vi (dt)dt .

6. Finally, with the set of new positions and wave functions,
we repeat the whole procedure (steps 1 till 5) for another
infinitesimal time dt till the total simulation time is fin-
ished.

The advantage of the above algorithm using Eq. (16) instead
of the many-particle Schrödinger equation (Eq. 10) is that, in
order to find approximate trajectories, Xi (t), we do not need
to evaluate the wave function and potential energies in the
whole configuration space, but only over a smaller number
of configuration points, {xi ,X̄N−1(t)}, associated with those
trajectories defining the highest probabilities according to
|ψ(x̄N , t)|2 .

The exchange interaction is naturally included in Eq. (16)
through the terms Gi and Ji . Due to the Pauli exclusion
principle, the modulus of the wave function tends to zero,
|ψ(xi , X̄N−1(t), t)| → 0, in any neighborhood of xi such that
|xi − X̄ N−1(t)| → 0. Thus, both terms, Gi (xi , X̄N−1(t), t)
and Ji (xi , X̄N−1(t), t), have asymptotes at xi → X̄ N−1(t)
that repel the i− particle from other electrons. However, in
order to exactly compute the terms Gi and Ji we must know
the total wave function, which is in principle unknown. There
are however a few ways to introduce the symmetry of the
wave function without dealing directly with these two cou-
pling terms [27,29,30]. Clearly, the complexity of the algo-
rithm increases as we go beyond the single-particle quantum
transport scenario mentioned in Sects. 2 and 3.

4.3 Practical example

An electron device is an open system, where many para-
meters can only be estimated from the knowledge of their
statistical (typical) distribution. Apart from the uncertainty
in the initial position in the quantum trajectories (the α
distribution explained in Appendix 2), we also take into
account the uncertainty on the properties of the injected
electrons (initial energies, momentums, etc) which we refer
to the parameter h. The random process I γ (t) mentioned
in Sect. 1.1 is now written as I α,h(t). At finite tempera-
ture, the thermal noise introduces fluctuations on the ener-
gies of the electrons entering inside the device. As dis-
cussed in the introduction of Sect. 2, the study of the noise
in electrical devices due to the partition noise of the bar-
rier plus the thermal noise of the injection are tradition-
ally known as quantum shot noise [1,5,6,15–17]. This is
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the noise studied in this Sect. 4. In many systems, one
obtains the well known Schottky’s result [31] or Pois-
sonian shot noise, SI I shot (0) = 2q 〈I 〉, for the noise power
spectral density defined in Eq. (5) at zero frequency, i.e.
w = 0.

We select a particular (large) set of wave packets with
values α and h for selecting their initial conditions. We refer
to such selection as α1 and h1. We evolve the wave packets
and trajectories as explained in previous paragraphs. Within
the approximation mentioned in Sects. 4.1 and 4.2, the total
current value can be calculated as the sum of the particle or
conduction current plus the displacement current:

I α,h(t) = I α,hc (t)+ I α,hd (t)

=
∫

S

N∑
i=1

qivi (X
α,h
i (t))δ(xS − Xα,hi (t)) · ds

+
∫

S

N∑
i=1

ε(xS)
d E(xS; Xα,hi (t), t)

dt
· ds, (18)

where S is the surface where we want to calculate the current,
xS are the points of the chosen surface, ε(xS) is the dielec-
tric constant in the same surface and E(xS; Xα,hi (t), t) is the
electric field in the surface S which depends on the actual
position of all the electrons.

Once we know I α1,h1(t) for a large interval of time, the
algorithm to compute the current fluctuations is quite simple
following Eqs. (3) and (5). This discussion can be familiar
for those people who works in semi-classical approaches.
In fact, the Bohmian procedure explained here for quantum
transport is very similar to that of, for instance, the Monte-
Carlo simulations of the Boltzmann equation. But instead of
being the electric-field the one who guides the electrons, it
is the wave function, through the guiding velocity field in
Eq. (11).

As a practical example of the computation of the fluc-
tuations, we show here the current response to a step input
voltage in the Negative Differential Conductance region of a
RTD. The input signal is the step voltage V (t) = V1u(t) +
V2 [1 − u(t)] where u(t) is the Heaviside (step) function. The
voltages V1 and V2 are constant. Then the current response
can be expressed as I (t) = Itran(t)+ I1u(t)+ I2 [1 − u(t)]
where I1 and I2 are the stationary currents corresponding to
V1 and V2 respectively, and Itran is the intrinsic transient
current.

The results are reported in Fig. 5 where Itran(t) mani-
fests a delay with respect to the step input voltage, due to the
dynamical adjustment of the electric field in the conductors.
After this delay, the current response becomes a RLC-like
response (dot-dashed line RLC response 2) i.e. purely expo-
nential. Performing the Fourier transform of Itran(t) in Fig. 6
and comparing it with the single pole spectra (Fourier trans-
form of the RLC-like responses, dashed and dashed dotted

Fig. 5 Transient current Itran(t) computed analytically and numeri-
cally (Color figure online)

Fig. 6 Fourier transform of Itran(t) of Fig. 5. A logarithmic scale is
used to resolve the cut-off frequency offset (Color figure online)

lines), we are able to estimate the cut-off frequency and the
frequency offset due to the delay [23].

In order to understand how the many-body Coulomb inter-
action affects the noise in RTDs, we also investigate the cor-
relation between an electron trapped in the resonant state
during a dwell time τd and those remaining in the left reser-
voir. This correlation occurs essentially because the trapped
electron perturbs the potential energy felt by the electrons
in the reservoir. In the limit of non-interacting electrons, the
Fano factor will be essentially proportional to the partition
noise, however, if the dynamical Coulomb correlations are
included in the simulations (see Fig. 7) this result is no longer
reached, it shows super-poissonian values. Finally, we are
also interested in the high frequency spectrum S(w) given
by Eq. (5) revealing information about the internal energy
scales of the RTD that is not available from DC transport
(see Fig. 8).
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Fig. 7 Fano Factor F defined as F = S(0)/(2q 〈I 〉), evaluated using
the current fluctuations directly available from the BITLLES simulator
(Color figure online)

Fig. 8 Current noise power spectrum referred to Poissonian shot noise
at different biases (Color figure online)

5 Conclusions

In the present paper we discuss the understanding and the
computation of quantum noise in electrical devices from a
Bohmian perspective. Computations of quantum noise are
quite complex because noise is generally quantified in terms
of temporal correlations. Such correlations must include the
time-evolution of a quantum system during and after a mea-
surement. Usually, many other quantum computations do
only require a final measurement, so that their time-evolution
from the initial until the final time is uniquely determined
by the unitary (Schrödinger like) evolution. As discussed
in Fig. 2, this unitary evolution is not enough to compute
time correlations which require mixing unitary and non-
unitary (the so-called collapse of the wave function) time
evolutions.

There are several (empirically equivalent) quantum theo-
ries. Each quantum theory has its own formalism that is able
to connect the experimental values with some abstract ele-
ments such as wave functions, operators, trajectories, etc. that
are able to satisfactorily reproduce (or predict) experimen-
tal results. We discuss how the Copenhagen (also known as
standard or orthodox) interpretation and Bohmian mechan-
ics give explanation to the partition noise. For a flux of elec-
trons impinging upon a tunneling barrier, we analyze how a
measurement process affects partition noise in a quantum
device. For simplicity, to focus on the importance of the
measurement process, we consider spinless electrons with-
out Coulomb and exchange interaction. In Sect. 2 we explain
how standard quantum theory provides an answer for the
measurement problem by means of the introduction of the
notion of operators. We see that this notion is not always sat-
isfactory even for practical purposes, because the definition
of which is the right operator is not obvious. Then in Sect. 3
we discuss an alternative way to deal with the collapse with-
out introducing the idea of operators. In fact within Bohmian
mechanics, a theory of wave and particles, the collapse is
derived trivially by means of the introduction of the con-
ditional wave function (the wave function of a subsystem),
a tool exclusively belonging to Bohm’s theory. Obviously,
each theory gives a different formalism to compute quan-
tum noise and different interpretation of its origin. In any
case, at the end of the day, the same empirical predictions are
achieved by using the orthodox quantum theory or Bohmian
mechanics.

In Sect. 4, because the Bohmian formulation uses trajecto-
ries to compute experimental results, we see that a very rea-
sonable approximation to include collapse can be achieved
with a very small computational effort. Finally, details of the
simulator named BITLLES based on Bohmian mechanics
and numerical results for low and high frequency noise of
the current in a resonant tunneling diode are presented. We
emphasize that the presented formalism and the procedure
for computing the properties of a system (in our case cur-
rent, noise, etc.) have many similarities with the one used in
semi-classical simulations (for example Monte-Carlo of the
Boltzmann equation [32]). In any case, Bohmian formalism
is not at all a semi-classical approach but a complete quantum
theory that can be applied to study any non-relativistic quan-
tum phenomena, quantum noise and collapse among them.

Finally, we wish to discuss which is the ultimate origin
of the quantum noise according to orthodox and Bohmian
interpretations. Before entering into details, let us recall that
the definition of noise given in Eq. (2) in Sect. 1 is just the
difference between the experimental value I (t) and what we
define as the signal. Therefore, even a sinusoidal current I (t)
provides a value of �I 2 different from zero. What we want
to discuss hereafter are not all the possible sources of fluctua-
tions in I (t), but only if there is any new type of randomness
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in quantum devices that is not present in classical ones and
what is its origin.

Given this last specification, we can provide an answer
to the question: What is the ultimate origin of quantum
noise according to the orthodox interpretation? As we see
in Sect. 2, the transmission or reflection of a single electron
impinging upon a tunneling barrier becomes unpredictable.
This is an example of a new source of randomness present
only in quantum devices. According to the orthodox theory,
this randomness appears because of the collapse of the wave
function due to measurements. Without the collapse (that is
put in by hand as an additional postulate in the orthodox
theory), the wave function follows a deterministic law dic-
tated by the Schrödinger equation. The partition noise in the
tunneling barrier discussed in Sect. 2 is due to the action of
the operator which implements the random collapse of the
wave function (selecting the final wave function stochasti-
cally among the set of available eigenstates).

Alternatively, we can also answer the question: What is
the ultimate origin of quantum noise according to Bohmian
mechanics? The randomness in the values of the current in
I (t) provided by the BITLLES simulator comes from the h
and α distributions mentioned in Sect. 4.3. The h distribution
is due to the uncertainty of the initial energies, momentums,
entering times, etc. of the electrons. This source of “extrin-
sic” randomness can be minimized imagining technological
improvements of the setup (for example, well-controlled sin-
gle electron sources). On the contrary, the α distribution of
the conditional wave function (explained in Appendix 2) is
an unavoidable source of randomness. This randomness of
the α distribution cannot be minimized by any technologi-
cal improvement [33,34]. Therefore, whether the particle is
transmitted or reflected becomes unpredictable in Bohmian
theory too. Thus, though Bohmian mechanics is determin-
istic, an appearance of randomness emerges in the subsys-
tems [21,35]. It is important to notice that the measurement
of the system does not introduce any additional randomness.
The ultimate origin of the unpredictability is the fact that the
uncertainty principle does not allow us to known the (well-
defined in the Bohmian theory) initial position of the particles
in each experiment.

In summary, according to the orthodox interpretation,
the partition noise has its origin in the stochasticity of the
orthodox measurement process. On the contrary, Bohmian
mechanics says that the origin of noise is the uncertainty
of the initial position of the trajectory in each realization of
the experiment. Although both theories give the same pre-
dictions, in the authors’ opinion, the latter has a more nat-
ural, common and understandable explanation of the origin
of quantum noise. While following deterministic laws, the
transmission or reflection of a Bohmian electron is unpre-
dictable in a given experiment. A classical dice is a sim-
pler example of a system following deterministic laws that

becomes unpredictable. Collapse in Bohmian mechanics is
so naturally derived that the quantum measurement problem,
in general, and quantum noise, in particular, are somehow
demystified. We underline that Bohmian mechanics achieves
the non-unitary evolution of the wave function of a mea-
sured system simply slicing the enlarged wave function in the
configuration space (without introducing any measurement-
associated randomness).

We accept that preferences between the explanation of the
origin of quantum noise in terms of the orthodox or Bohmian
interpretations are subjective. Therefore, in this paper we
have also developed objective arguments about the compu-
tational advantages of the Bohmian formalism. The facts
that the measuring apparatus, what we call the ammeter, is
directly included into the Hamiltonian of the Schrödinger
equation and that the current values are computed from tra-
jectories (not from the wave functions) allow us to study sys-
tem plus apparatus scenarios (or look for reasonable approx-
imations). This ability is very relevant, for example, in the
computation of high frequency currents where it is difficult
to find the right operator. For all these reasons, we conclude
that quantum noise is easily understood and computed from
a Bohmian perspective in many practical scenarios.
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Appendix 1: The quantum DC current in ergodic
systems

The DC current measured in a laboratory 〈I 〉 can be computed
by time-averaging the measured value of the total current I (t)
from a unique device during a large (ideally infinite) period
of time T as mentioned in Eq. (1). If we can justify the ergod-
icity of electronic devices, we can alternatively compute 〈I 〉
from an ensemble-average of all possible values of the cur-
rent Ii measured, at one particular time t , over an ensemble
of (identical) devices as seen in Eq. (7). For DC quantum
transport computations, Eq. (7) is greatly preferred because it
deals directly with the probabilistic interpretation of the wave
function. It is important to realize that while Eq. (1) implies
measuring the quantum current many times, Eq. (7) involves
only one measurement. We do not need to worry about the
evolution of the wave function after the measurement when
using Eq. (7). Let us discuss this point in more detail. We
can define the eigenstates |ψi 〉 of a particular operator I , as
those vectors that satisfy the equation I |ψi 〉 = Ii |ψi 〉. The
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eigenvalue Ii is one of the M possible measured values in
Eq. (7).8 Since the entire set of eigenstates form a basis of
the Hilbert space, the wave function can be decomposed as
|ψ(t)〉 = ∑M

i=1 ci (t)|ψi 〉, with ci (t) = 〈ψi |ψ(t)〉. Then, we
can rediscover Eq. (7) as follow:

〈I 〉 = 〈ψ(t)|I |ψ(t)〉

=
M∑

j=1

c∗
j (t)〈ψ j |

M∑
i=1

Ii ci (t)|ψi 〉 =
M∑

i=1

Ii P(Ii ), (19)

where we have used the orthonormal property of the eigen-
states 〈ψ j |ψi 〉 = δi j and the definition of the (Born) proba-
bility P(Ii )=|ci (t)|2. We emphasize that 〈ψ(t)|I |ψ(t)〉 does
not require the explicit knowledge of the eigenstates. Only
the free evolution of the state |ψ(t)〉 and the measuring oper-
ator I are needed.

At this point, it is mandatory to provide some discussion
about the use of the ergodic theorem. Strictly speaking, no
ergodic theorem exists for an out of equilibrium system [2].
Indeed, an out of equilibrium system is represented by a dis-
tribution function, or probability function, that is different
from that in equilibrium and arises from a balance between
the driving forces and the dissipative forces. The applied bias
used to measure the DC current of any device implies that the
device is quite likely in a far from equilibrium state. There-
fore, the ergodic connection between Eqs. (1) and (7) has to
be considered as only a very reasonable approximation for
DC transport, but not as an exact result [2].

Appendix 2: Bohmian mechanics

Bohmian mechanics is a version of quantum theory whose
basic elements are waves and point-like particles. The many-
particle wave function evolves according to the Schrödinger
Eq. (10) while particles have definite position at any time with
a law given by Eq. (11), therefore being a fully deterministic
theory. The configuration of the particles, say at time t =
0, is chosen randomly according to |Ψ |2 at the initial time,
known as quantum equilibrium hypothesis [21]. Thanks to
the continuity equation

∂ρ

∂t
= −∇ (ρv) , (20)

where ρ = |Ψ |2 and v the Bohmian vector field. An
important consequence of the quantum equilibrium hypoth-
esis and equivariance is the empirical equivalence between
Bohmian mechanics and orthodox quantum theory for any
kind of non-relativistic quantum experiments.

8 For simplicity we assume that there is no degeneracy. Our qualitative
discussion does not change if degeneracy is considered.

The conditional wave function

Consider a quantum system of N particles and a partition of
it in such a way that its spatial coordinates can be split as
x̄N = {x1, x̄N−1}. Where we denote with x1 the position in
R

3 space of the electron 1, while with x̄N−1 the positions
of the rest of the electrons in a R

3(N−1) space. The actual
particle trajectories are accordingly denoted by X̄ N (t) =
{X1(t), X̄ N−1(t)}. How can one assign a wave function to
the electron 1? In general this is not possible if the two sub-
systems are entangled, i.e. the total wave function cannot be
written as a product Ψ (x̄N ) = ψ1(x1)ψN−1(x̄N−1). How-
ever, we can modify our question and ask what is the wave
function of the electron 1 that provides the exact velocity v1

given a particular configuration X̄ N−1(t) for the rest of the
particles. The answer given by Bohmian mechanics is the so
called conditional wave function [21,28]:

ψ1(x1, t) = Ψ (x1, X̄ N−1(t), t), (21)

which constitutes a slice of the whole multi-dimensional
wave function. The wave function constructed in such a way
gives exactly the same Bohmian velocity

v1(t)= h̄

m1
Im

∇1Ψ

Ψ

∣∣∣
x̄N=X̄ N (t)

≡ h̄

m1
Im

∇1ψ1

ψ1

∣∣∣
x1=X1(t)

. (22)

Computation of mean value of an operator

If needed, Bohmian mechanics can make use of operators,
but only as a mathematical trick. Without any physical or
fundamental role in the operator. We briefly explain how it is
possible to calculate the mean value of a general hermitian
operator with Bohmian trajectories. The quantum equilib-
rium hypothesis at the initial time t = 0 can be expressed in
terms of the trajectories as follows

|Ψ (x̄N , 0)|2 = lim
Mα→∞

1

Mα

Mα∑
α=1

N∏
i=1

δ(xi − Xαi (0)), (23)

where the superindex α takes into account the uncertainty in
the initial position of the particles. It can be easily demon-
strated [11] that the evolution of the above infinite set of quan-
tum trajectories α = 1, 2, . . . ,Mα reproduce at any time t
the probability distribution, |Ψ (x̄N , t)|2.

For computing the mean value of an operator A it can be
demonstrated [11] that

〈A〉Ψ = lim
Mα→∞

1

Mα

Mα∑
α=1

AB(X̄
α
N (t)), (24)

where AB(x̄N ) is the “local” mean value of A.
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