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Abstract A deterministic model for electron velocity fluc-
tuations in a non-equilibrium bulk electron–phonon system
is presented. The model is based on the spherical harmonics
expansion of the system of the two coupled Boltzmann equa-
tions for electrons and phonons. Bulk GaN at 300 K ambient
temperature is selected as a model system. The Langevin
approach is used for noise calculations, and expressions for
the power spectral density of the electron velocity fluctua-
tions are presented in the paper. Convergence behavior of
the model is discussed in detail. Results of the developed
noise model are verified against a consistent Monte Carlo
model, and excellent agreement is obtained in the range
of frequencies, where the Monte Carlo method yields reli-
able results. Introduction of nonequilibrium phonons sub-
stantially increases the electron noise temperature at frequen-
cies below 100 GHz.

Keywords Langevin-Boltzmann equation · Hot electrons ·
Hot phonons · Electron velocity fluctuations

1 Introduction

Non-equilibrium distributions of carriers are relatively easy
induced in the channels of the modern nanoscale devices [1].
In polar semiconductors the main path of energy dissipation
for electrons is longitudinal optical (LO) phonon emission.
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The power supplied by the electric field is shared between
the coupled nonequilibrium (hot) electron and phonon sub-
systems. The impact of hot phonons on steady state electron
transport under strong external electrical fields is discussed
in [2,3]. The buildup of hot phonons (hot phonon effect)
forms the bottleneck for the electron energy dissipation [4].
Recently the impact of hot phonons on the high frequency
performance of GaN-based HEMT and degradation of power
devices was investigated using the fluctuation technique [5].

Electron velocity fluctuations are an important source of
information about physical processes taking part in the semi-
conductor [6]. The Monte Carlo (MC) method is usually used
to investigate noise properties of semi-classical Boltzmann
systems [7,8]. Due to its stochastic nature, the MC method
allows direct evaluation of the correlation functions in the
time domain. In case of system with different time scales
(e.g. in bulk GaN the LO-phonon emission time is in the
femtosecond range, whereas the hot LO-phonon lifetime is
in the picosecond range), an excessive amount of computa-
tional time is required to obtain correlation functions with
the required accuracy. Alternatives to the MC method are
deterministic methods, dealing with the Boltzmann equation
in the frequency domain.

Spherical harmonics [9] and multigroup [10] approaches
were applied for investigation of electron DC transport
in bulk non-equilibrium electron–phonon systems. In the
present paper, to the authors knowledge for the first time,
a deterministic model for electron velocity fluctuations in
a non-equilibrium bulk electron–phonon system in the fre-
quency domain is presented. The model is based on the
spherical harmonics expansion of system of the two Boltz-
mann equations for electrons and phonons [9]. The Langevin
method is used for the calculation of the power spectral den-
sity (PSD) of the electron velocity fluctuations [11]. The
Langevin method involves the Green’s functions and gives
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more information on physical processes in the system than
the MC method.

2 Theory

In the semi-classical approach the evolution of the non-
equilibrium electron–phonon system in time is described by
two coupled nonlinear Boltzmann equations for the distri-
bution functions of the electrons f (k, t) and LO phonons
n(q, t) in the 6-dimensional space of electron and phonon
momenta {k, q}. If the Pauli exclusion principle and electron-
electron interaction are neglected and a homogeneous bulk
system is assumed, the kinetic equation for the electron dis-
tribution function takes the form:

∂ f (k, t)

∂t
− e

h̄
E∇k f (k, t) + Ik[ f ] + Π

(LO)
k [ f, n] = 0, (1)

where e is the positive electron charge, h̄ Planck’s constant
divided by 2π , and E the applied electric field. A magnetic
field is neglected and the electron distribution function is
defined for a single spin state assuming spin degeneracy. The
scattering rate

Ik[ f ](k, t) = V0

(2π)3

∑

i

∫ {
Wi (k, k′) f (k, t)

− Wi (k′, k) f (k′, t))
}

d3k′ (2)

represents the linear part of the scattering integral (electron
interaction with ionized impurities and intra-valley acoustic
phonons, for which the Bose-Einstein distribution with the
lattice temperature is assumed). Wi (k, k′) is the transition
rate of the i th scattering process and V0 the volume of the
bulk system. The integral runs over all final states. These
scattering processes are described in detail in the literature
(e.g. [12]).

The nonlinear operator Π
(LO)
k [] defines the electron inter-

action with the non-equilibrium LO phonons. It is based
on the transition rate of the electron–LO-phonon interaction
[13]. For absorption we obtain:

Wabs[n](q, k, k′, t) = πω0e2

q2V0

[
1

ε∞
− 1

ε0

]
n(q, t)

δ(k′ − [k + q])δ(ε(k′) − [ε(k) + h̄ω0]),
(3)

where ε0 and ε∞ are the static and high frequency permit-
tivities of the investigated material. h̄ω0 is the energy of the
LO phonon, which is assumed to be dispersionless, and ε(k)

the conduction band energy. The electron is scattered from
the initial state k into the final one k′ for a given phonon
momentum q. For emission the spontaneous emission has to
be taken into account in addition to the stimulated one:

Wem[n](q, k, k′, t) = πω0e2

q2V0

[
1

ε∞
− 1

ε0

]
[n(q, t) + 1]

δ(k′ − [k − q])δ(ε(k′) − [ε(k) − h̄ω0]),
(4)

and the sign of the phonon energy and momentum changes in
the delta functions compared to the case of absorption. With
the transition rates the operator for scattering of electrons
with LO phonons takes the form:

Π
(LO)
k [ f, n](k, t)= V0

(2π)3

∑

ν

∫ ∫
{Wν[n](q, k, k′, t) f (k, t)

− Wν[n](q, k′, k, t) f (k′, t))}d3k′d3q.

(5)

The sum runs over absorption and emission. The first term in
the integral describes the scattering out of the state k and the
second one into it. The scattering integral is nonlinear due to
the product of the electron and phonon distributions.

LO-phonon absorption and stimulated emission is propor-
tional to the LO-phonon distribution function, which in gen-
eral deviates from the equilibrium one defined by the Bose-
Einstein statistics. The kinetic equation for the LO-phonon
distribution function is given by:

∂n(q, t)

∂t
+ I(th)

q [n] + Π(el)
q [n, f ] = 0, (6)

where the drift term is absent because of the usual assump-
tion of dispersionless LO phonons. The linear operator I(th)

q []
represents the decay of the non-equilibrium LO phonons into
other modes of crystal lattice vibrations (acoustic phonons
and electrically inactive optical phonons). This operator is
usually formulated in the relaxation time approximation [3]:

Π(th)
q [n](q, t) = n(q, t) − neq

τph
. (7)

Here neq stands for the equilibrium Bose-Einstein distribu-
tion for the lattice temperature (temperature of the thermal
bath), and τph is the LO-phonon life time.

By each electron–LO-phonon scattering event an LO
phonon is either created (phonon emission) or annihilated
(phonon absorption) and the net LO-phonon annihilation rate
in Eq. (6) is given by:

Π(el)
q [n, f ](q, t) = 2V0

(2π)3

∫ ∫
{Wabs[n](q, k, k′, t)

− Wem[n](q, k, k′, t)} f (k, t)d3k′d3k.

(8)

The second integral runs over all initial electron states k in
contrast to Eq. (5), where it runs over all phonon momenta
q. The factor of 2 is due to spin degeneracy in the electron
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system. Both Boltzmann equations (1) and (6) are nonlin-
early coupled due to the product of the electron and phonon
distribution functions in Eqs. (5) and (8).

Noise is calculated by the Langevin approach [11]. To
this end the coupled Boltzmann equations (1) and (6) are
linearized in the electron and phonon distribution functions:

Le[n, f ](k, t) = 0 (9)

Lph[n, f ](q, t) = 0 (10)

where Le[] is the linear operator for Eq. (1) and Lph[] for
Eq. (6). The linearized Boltzmann equations are solved for
sources, which describe either the generation of a single elec-
tron:

Le[Ge
ph, Ge

e](k, t) = (2π)3

V0
δ(k − k′)δ(t − t ′) (11)

Lph[Ge
ph, Ge

e](q, t) = 0 (12)

or LO phonon:

Le[Gph
ph, Gph

e ](k, t) = 0 (13)

Lph[Gph
ph, Gph

e ](q, t) = (2π)3

V0
δ(q − q′)δ(t − t ′). (14)

Care has to be taken in the formulation of the linear sys-
tem to avoid double counting due to, for example, spin
degeneracy [14]. Two sets of Green’s functions are obtained.
Ge

e(k, t; k′, t ′) is the response of the electron system in state
k at time t to the generation of an electron in state k′ at
time t ′ and Ge

ph(q, t; k′, t ′) the corresponding response of
the phonon system. In the case of the generation of a phonon
we get Gph

e (k, t; q′, t ′) and Gph
ph(q, t; q′, t ′). Since we are

interested only in velocity fluctuations of electrons in a sta-
tionary system, we can define simpler Green’s functions for
those fluctuations:

Ge
v (t − t ′, k′) = V0

(2π)3

∫
v(k)Ge

e(k, t − t ′; k′, 0)d3k

(15)

Gph
v (t − t ′, q′) = V0

(2π)3

∫
v(k)Gph

e (k, t − t ′; q′, 0)d3k.

(16)

Fourier transformation with respect to t−t ′ yields the transfer
functions:

Ge
v (k, ω) =

∫ ∞

0
Ge

v (t, k) exp(−iωt)dt (17)

Gph
v (q, ω) =

∫ ∞

0
Ge

v (t, q) exp(−iωt)dt, (18)

where ω is the angular frequency.

There are three sources of noise: the linear scattering
operator of the electron Boltzmann equation, electron–LO-
Phonon scattering and the relaxation term of the phonon
Boltzmann equation. They all describe instantaneous scat-
tering and the corresponding PSDs are white.

The linear scattering operator describes the transition of
an electron from state k into state k′. This can be viewed as
annihilation of an electron in state k and creation of a new
electron in state k′, and the combined transfer function for
the scattering event is given by Ge

v (k′, ω) − Ge
v (k, ω). The

scattering process itself is a Poisson process of which the
white PSD is given by twice the transition probability rate
2

∑
i Wi (k, k′) f0(k), where f0(k) is the stationary distrib-

ution function of the electrons [11,15]. The corresponding
PSD for the velocity fluctuations can be obtained with the
Wiener-Lee theorem [16] and integration over all initial and
final states

Se
vv(ω) = 4V 2

0

N0(2π)6

∑

i

∫ ∫
Wi (k, k′) f0(k)

|Ge
v (k′, ω) − Ge

v (k, ω)|2d3k′d3k. (19)

The factor of four is due to spin degeneracy and the use of
two-sided PSDs. The PSD is normalized to a single electron
and the number of electrons in the stationary state is calcu-
lated by

N0 = 2V0

(2π)3

∫
f0(k)d3k. (20)

Scattering of an electron with an LO phonon yields

Se-ph
vv (ω) = 4V 2

0

N0(2π)6

∑

ν

∫ ∫ ∫
Wν[n0](q, k, k′) f0(k)

|Ge
v (k′, ω) − Ge

v (k, ω) ∓ Gph
v (q, ω)|2d3k′d3kd3q. (21)

n0(q) is the stationary distribution function of LO phonons.
The upper sign is to be used for absorption (annihilation of a
phonon) and the lower one for emission (creation). Eq. (21)
is the straightforward generalization of Eq. (19). An elec-
tron is scattered from state k into the state k′ and in the
case of absorption an LO phonon is annihilated and the com-
bined transfer function is given by Ge

v (k′, ω) − Ge
v (k, ω) −

Gph
v (q, ω). In the case of emission creation is considered by

a plus sign.
The LO-phonon relaxation term involves only creation

and annihilation of LO phonons and the corresponding PSD
is rather simple

Sph
vv(ω) = 2V0

N0(2π)3

∫
n0(q) + neq

τph
|Gph

v (q, ω)|2d3q, (22)

and can be calculated in the same way as noise due to gener-
ation/recombination [17]. The contributions of the involved
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non-polar phonons are neglected and the factor of two
accounts for the two-sided PSD. The total PSD is given by
the sum of the three contributions.

The above equations are solved by numerical means. The
electron distribution function is expanded over the momen-
tum space with respect to the angles of spherical coordi-
nates by spherical harmonics of arbitrary order [18,19]. The
absolute value of the momentum is converted to energy,
which is discretized on an equidistant grid. The phonon dis-
tribution function is treated similarly with the exception that
instead of the energy the modulus of the phonon momen-
tum is used. Care is taken to ensure that the discrete Boltz-
mann equations are particle number conserving. The resul-
tant system of nonlinear equations is solved with the Newton-
Raphson method. The transfer functions (17) and (18) are
CPU efficiently calculated by the adjoint method [20].

3 Results

Due to the strong electron–LO-phonon interaction, bulk
wurtzite GaN at 300 K ambient temperature is selected to
verify the Langevin-Boltzmann equation based approach for
noise calculation. For wurtzite-phase GaN, the conduction
band minimum is located at the Γ point. In the range of the
investigated electric fields, electron transfer into higher val-
leys of the conduction band is expected to be negligible. In
our model electron transport perpendicular to the c axis of
the crystal is simulated, where the simple transverse effective
mass approximation for a single parabolic valley is applica-
ble.

In the present manuscript we concentrate on electron inter-
action with lattice vibrations, and only the electron interac-
tion with acoustic and LO phonons is taken into account.
Electron scattering by acoustic phonons at room temperature
is usually treated as an elastic process because the energies
of the involved acoustic phonons are small. This approach
restricts the investigation of electron transport in GaN to elec-
tric fields higher than 2 kV/cm (due to the high LO phonon
energy, acoustic phonons take a substantial part in elec-
tron energy dissipation close to equilibrium). The acoustic
phonons are assumed to remain in equilibrium because the
remote heat sink can be easily reached by the excess acoustic
phonons. Acoustic phonon scattering via deformation poten-
tial is considered, where the deformation potential is treated
as a scalar quantity.

The polar LO-phonon scattering is taken into account in
the cubic approximation. Unlike acoustic modes, the excess
LO phonons remain where they are generated. To avoid
electron gas degeneracy the electron gas density is set to
1018cm−3, for which the electron state occupancy is well
below one. The LO-phonon relaxation time is decided by
the vibrational properties of the investigated material. For

Fig. 1 Convergence behavior of the Newton-Raphson solver for the
electron/phonon system for two values of the applied electric field:
open triangles 10 kV/cm and open circles 40 kV/cm

bulk GaN at room temperature, the experimental values of
the LO phonon relaxation time are in the range of 2.5–0.35
ps, depending on the electron gas density [21]. In our calcu-
lations an LO-phonon relaxation time of 1 ps is used. The
electron effective mass, and scattering parameters are the
same as in Ref. [22].

First of all, convergence properties of the solver for the
modeled electron-phonon system have to be discussed. In
the Newton-Raphson method the Jacobian matrix for the full
system of coupled nonlinear equations is constructed and
used to calculate the corrections to the initial guess for the
electron and phonon distribution functions until convergence
is achieved.

The Newton-Raphson loop starts from the equilibrium
electron and phonon distribution functions, and in Fig. 1 typ-
ical convergence behavior of the simulation is shown for two
values of the applied electric field: 10 and 40 kV/cm. Eight
spherical harmonics are used for the electron distribution
function and four spherical harmonics for the phonon distrib-
ution function. For both electrical fields fast quadratic conver-
gence is obtained. At 10 kV/cm (open triangles) five Newton-
Raphson iterations are enough to calculate the electron drift
velocity within the numerical accuracy. At 40 kV/cm (open
squares) displacement of the electron-phonon system from
equilibrium is stronger and the same accuracy is obtained
after eight iterations.

To formulate the system of coupled kinetic equations (1)
and (6) in spherical harmonics, both the electron and LO-
phonon distribution functions are expressed by an infinite
spherical harmonics expansions. To obtain a numerically
manageable system of equations, both expansions for the
electron and phonon distributions are truncated.
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Fig. 2 Error of the electron drift velocity (open squares) and PSD of
velocity fluctuations at 1 GHz frequency (open circles) for different
numbers of spherical harmonics for the electron distribution function.
The error is evaluated relative to the values where eight spherical har-
monics for electrons are included

Figure 2 shows the error of the electron drift velocity and
PSD of velocity fluctuations at 1 GHz frequency for different
numbers of spherical harmonics for the electron distribution
function. The error is evaluated relative to the values where
eight spherical harmonics for electrons are included. Four
spherical harmonics are used in the expansion of the phonon
distribution function.

At least four spherical harmonics for the electron distrib-
ution function are required to obtain an error of the electron
drift velocity below 1 %. The PSD of the velocity fluctuations
is more sensitive to the number of the spherical harmonics
for the electron distribution function, and six or more spheri-
cal harmonics are necessary to obtain an error below 1 %. To
reach sufficient accuracy in the whole range of the applied
electric field, in our calculations eight spherical harmonics
are included for the electron distribution function.

The dependence of the electron drift velocity and PSD of
the velocity fluctuations at 1 GHz frequency and 20 kV/cm
applied electric field on the number of spherical harmon-
ics used for the expansion of the phonon distribution func-
tion is presented in Fig. 3. If only one spherical harmonic is
used in the simulator, an angular independent phonon dis-
tribution function is assumed. Due to applied electric field,
and anisotropic nature of polar LO-phonon scattering rate,
the LO-phonon distribution is anisotropic. To account for
the angular dependence of the phonon distribution function,
at least two spherical harmonics are necessary. Due to the
phonon drag, the introduction of the second spherical har-
monic increases the electron drift velocity (open squares in
Fig. 3). The PSD of the velocity fluctuations is again more
sensitive to the number of the spherical harmonics as the

Fig. 3 The dependence of the electron drift velocity (open squares)
and PSD of the velocity fluctuations (open circles) at 1 GHz frequency
on the number of spherical harmonics used for the expansion of the
phonon distribution function

mean electron velocity (cf. open squares and circles in Fig. 3),
and four spherical harmonics are used for the phonon distri-
bution function to obtain sufficient accuracy for the noise
calculations.

The correctness of the calculated Green’s functions and
validity of the expressions for the PSD of velocity fluctua-
tions (19), (21) and (22) are verified by the comparison of
the deterministic approach with the MC model. The semi-
classical ensemble MC algorithm is employed, and the band
structure, scattering mechanisms and material parameters are
the same as in the spherical harmonics model.

In the MC algorithm each LO-phonon generation or anni-
hilation event due to their interaction with the electrons is
registered in a histogram. The resultant histogram is used to
calculate the time-dependent phonon distribution. To obtain
the steady state, the nonequilibrium LO-phonon interaction
with the thermal bath is included in the hot-phonon relax-
ation time approximation. In order to correctly account for
the velocity fluctuations due to random LO-phonon relax-
ation (Eq. (22)), after each MC time step the LO-phonon
distribution function is updated by the random creation or
annihilation of LO phonons according to the corresponding
probability.

The algorithm subdivides the total simulation time into
equal time intervals, and the time-dependent ensemble aver-
ages for the quantities of interest are calculated. The collected
data on the time-dependent electron drift velocity are used to
calculate the electron drift velocity autocorrelation function.
Fourier transform of the autocorrelation function yields the
corresponding PSD.

In Fig. 4 the PSD of the electron drift velocity fluc-
tuations calculated using the spherical harmonics based
Langevin approach are compared with MC results. Excellent
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Fig. 4 The PSD of the electron drift velocity fluctuations calculated
using the spherical harmonics based Langevin approach (dashed lines)
and the MC method (noisy solid lines)

Fig. 5 Constituents of the PSD of the electron drift velocity fluctua-
tions. The PSD due to acoustic phonon scattering– dashed line, PSD due
to LO-phonon scattering in electron kinetic equation–dash-dotted line,
PSD due to LO-phonon relaxation in phonon kinetic equation–dotted
line. The sum of all constituents is given by the solid line

agreement is obtained between the Langevin and MC
approaches at four different applied electric fields: 5, 10,
20 and 40 kV/cm above the 100 GHz frequency (cf. Fig. 4
dashed and solid lines). At lower frequencies due to the sto-
chastic nature of the MC method the accuracy of the MC
results is questionable. In contrary, the spherical harmonics
approach allows the calculation of the PSD down to zero
frequency.

The PSD of the electron drift velocity fluctuations calcu-
lated by the Langevin approach (solid line in Fig. 5) can be
splitted into separate parts to investigate the influence of the
different scattering mechanisms. The dashed line in Fig. 5
represents the PSD of the electron drift velocity fluctuations
due to acoustic phonon scattering Se

vv (Eq. (19)). The bigger
part of the PSD, however comes from the nonequilibrium

Fig. 6 Spectra of the electron small signal mobility with (solid line)
and without (dashed line) hot phonons for 20 kV/cm

LO-phonon scattering Se−ph
vv +Sph

vv (Eqs. (21) and (22)) (doted
and dash-doted lines in Fig. 5)). The onset of the PSD due
to LO-phonon relaxation term in the phonon kinetic equa-
tion Sph

vv is defined by the inverse of the LO-phonon life time
(doted line in Fig. 5). The PSD due to the LO-phonon relax-
ation is significant, and has to be included for the analysis
of the noise below the frequency decided by the LO-phonon
life time.

Transfer functions contain information on the small sig-
nal behavior of the investigated electron-phonon system. The
velocity transfer functions (17) and (18) necessary for the
calculation of the PSD of the electron drift velocity fluctua-
tions, can be employed in the calculation of the response of
the electron drift velocity to a small variation in the applied
external electric field. Figure 6 shows spectra of the electron
small signal mobility with and without the hot phonons for
20 kV/cm. At high frequencies the influence of hot phonons
is small. However, in the range of frequencies important for
high speed device operation (below 100 GHz), due to hot-
phonon–induced additional friction, the small signal mobility
is significantly reduced (cf. solid and dashed line in Fig. 6).

The equivalent electron noise temperature is often mea-
sured in experiments on hot-electron noise in bulk semicon-
ductors. In case of a constant electron density the noise tem-
perature in the direction of the applied electric field is defined
as [6]:

Tn(E, ω) = eSvv(E, ω)

4kBRe{μ(E, ω)} , (23)

here μ(E, ω) is the electron small signal mobility. Both, the
PSD of the electron velocity fluctuations and the small sig-
nal mobility calculated by means of MC simulations contain
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Fig. 7 Spectra of the electron noise temperature with (solid line) and
without (dashed line) hot phonons for 20 kV/cm

stochastic errors, making the evaluation of the electron noise
temperature difficult.

In the Langevin approach the same transfer functions are
used to calculate the PSD of the electron velocity fluctua-
tions and the small signal mobility, thus no additional effort
is required to evaluate the electron noise temperature. Fig-
ure 7 shows the spectra of the electron noise temperature
with and without the hot phonons for 20 kV/cm. Due to
the hot phonons the electron noise temperature substantially
increases at frequencies below 100 GHz.

In the range of the electric field, where the main energy
loss is due to LO-phonon emission, a resonant hot-electron
noise behavior is observed. The resonance is caused by the
streaming motion of electrons, terminated by the LO-phonon
emission. The frequency of the resonance is defined by the
time required for an electron with zero initial energy to reach
the LO-phonon energy [6]:

τr =
√

2melh̄ω0

eE
, (24)

where mel is the electron effective mass. The peak of the res-
onance is obtained at 4,500 GHz frequency (Fig. 7, dashed
line), in reasonable agreement with Eq. 24. If hot phonons are
included, the frequency of the resonance remains the same,
however due to the increase in electron-LO phonon interac-
tion, the strength of the resonance is reduced (Fig. 7, solid
line).

In Fig. 8 the dependence of the calculated electron noise
temperature on applied electric field is presented without hot
phonons (dashed line) and with hot phonons (solid line).
According to the Nyquist theorem, at zero electric field the
electron noise temperature reaches the ambient temperature.
Calculated values of the noise temperature both with and
without hot phonons at low electric field approach the lattice
temperature (Fig. 8, solid and dashed lines).

Fig. 8 The dependence of the calculated electron noise temperature
at 1 GHz frequency on the applied electric field with (solid line) and
without (dashed line) hot phonons at a lattice temperature of 300 K

If acoustic phonon scattering in the elastic approximation
is used, it is not possible to obtain the stationary solution of
the kinetic equations (1) and (6) near equilibrium. To verify
our calculations against the Nyquist theorem, at zero elec-
tric field equilibrium distributions are used for the station-
ary distributions of electrons and phonons in the linearized
equations for the Green’s function calculation and excellent
agreement with the Nyquist theorem is obtained.

An external electric field heats the coupled electron-
phonon system; the energy of the chaotic motion of the elec-
trons increases together with the noise temperature. Due to
the reabsorption of the previously emitted LO phonons, hot
phonons form the bottleneck for the electron energy dissipa-
tion, and noise temperature is increased with respect to the
situation without hot phonons (cf. solid and dashed line in
Fig. 8).

4 Conclusions

A deterministic approach based on the spherical harmonics
expansion of the Boltzmann transport equation to calculate
the power spectral density of the electron velocity fluctua-
tions in a non-equilibrium electron-phonon system is pre-
sented. Expressions for the Langevin noise sources of the
coupled electron-phonon system are given. The resultant
system of nonlinear equations is solved with the Newton-
Raphson method, and fast quadratic convergence is obtained.
Eight spherical harmonics for the electron distribution func-
tion, and four spherical harmonics for the phonon distribu-
tion are enough to include all relevant phenomena for electric
fields up to 45 kV/cm.
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The correctness of the calculated Green’s functions and
validity of the expressions for the power spectral density of
the velocity fluctuations are verified by comparison of the
deterministic approach with the MC model; good agreement
is obtain for electric fields up to 40 kV/cm. In strong elec-
tric fields and in the range of frequencies important for high
speed device operation (below 100 GHz) due to hot-phonon–
induced additional friction the small signal mobility is sig-
nificantly reduced. Due to hot phonons the electron noise
temperature substantially increases at frequencies below 100
GHz.
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