
J Comput Electron (2012) 11:405–413
DOI 10.1007/s10825-012-0420-0

Quadruple-valued logic system using savart plate and spatial light
modulator (SLM) and it’s applications

Amal K. Ghosh · Animesh Bhattacharya ·
Amitabha Basuray

Published online: 6 September 2012
© Springer Science+Business Media LLC 2012

Abstract With the demanding scenario of communication
and optical computing technology the trinary and quadru-
ple valued logic systems are the most important ones in the
many valued logic system. Different techniques are being
proposed day-by-day to implement the multi-valued logics
(MVL). In our previous papers we have proposed the mod-
ified trinary number (MTN) systems using savart plates and
spatial light modulators (SLM). In this paper we have com-
municated the quadruple valued logic system using di-bit
concept and their implementations to meet up the tremen-
dous needs of speeds by exploiting the advantages of savart
plates and spatial light modulators (SLM) in the optical tree
architecture (OTA).
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1 Introduction

During the last thirty years due to the needs of tremendous
operational speed and processing a number of data, many
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new ideas are being floated in the field of computing. These
include exploration of implementation of optical processor
for switches in one hand and on the other hand the logical
development from binary to multivalued logic are also being
included in their field of activities. Though the major attrac-
tion for optical processors lies in the parallel operation but
it was also felt that it is possible to implement multivalued
logic in optical system using the polarization states of light
beam along with the presence or absence of light [1]. The
parallelism of optical beam could not be properly utilized
using cascaded single-bit operating units therefore a signed
digit number system was initiated with the pioneering works
of Avizienis [2]. The carry free operation was also suggested
using a modified signed digit [3–5] or modified trinary [6]
system. The demand for implementations of such gates has
also extended the activities in the field [7–12].

However, Lukasiewicz [13] who initiated the use of
ternary logic based on three states has modified it later
[14–17] with an idea that four states logic is a much bet-
ter proposition. This paper is an extension of the modified
trinary system [18–21] to a quadruple-valued logic system
along with its implementation. In the implementation the
different states are represented with a dibit representation
using presence and absence of light of two orthogonal po-
larization states of light beam.

2 Quadruple valued logic representations and the
system

The four-state representations of the quadruple valued logic
system may be classified as the true, partly true, partly false
and the false. In this case we have considered these four
states explicitly as {0,1,2,3} and their di-bit representations
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Table 1 Quadruple-valued
logic system Logical state Represented by Dibit representation State of polarization

False/Wrong information 0 00 No light

Partial information 1 01 Vertical polarization

Partial information
(complement of 1)

2 10 Horizontal polarization

True/Complete information 3 11 Presence of both the horizontal
& vertical polarization

as {00,01,10,11}. It is to be noted here that the four val-
ued system with states {0,1,2,3} does not satisfy the basic
field conditions whereas as a dibit representation of the form
00 → 0, 01 → 1, 10 → 2 and 11 → 3 may be used to repre-
sent a four valued logic where the basic two valued logic are
applicable. As four is not a prime number, it cannot be con-
sidered as a field nevertheless this can be included in Galois
Field GF(kr ), where k is a prime number and r is a positive
integer [22]. The logical states, their representations and cor-
responding dibit representations and the state of polarization
is given in the Table 1.

3 Truth tables based on di-bit representation

The basic logical operations with dibit representation as
mentioned in the earlier section may be expressed in the
following fashion. In the present system the normal logical
gates e.g., OR, AND, NOT, XOR, NAND, NOR and XNOR
may be represented bit-wise. The truth table for these con-
ventional bit wise logic gates are represented in Table 2.

It is interesting to note at this point that the addition and
multiplication are not simple bit-wise XOR and AND oper-
ations, these operations are performed in bit serial fashion.
This is apparent from the truth table given in Table 3. In
binary system the XOR gate is also the modulo-2 gate and
thus gives the addition, which is not true in case of dibit
logic gates based on binary logic for each bit as in such
cases, XOR operation is not the modulo-4 gate. Similarly,
AND gate defined in Table 2 does not represent either the
multiplication logic or generates the carry bit. Then four-
valued logic system calls for a more number of gates and
the mathematical equations are to be developed using bit se-
rial fashion. The most important mathematical gates i.e., the
addition gate and the multiplication gates may be defined in
the following fashion.

For addition gate,

if ajai + bjbi = cj ci,

then ci = ai XOR bi

and cj = (ai AND bi) XOR (aj XOR bj )

where “ + ” stands for addition.

Table 2 Truth tables for (a) OR, (b) AND, (c) NOT,
(d) XOR, (e) NAND, (f) NOR and (g) XNOR gates

Similarly, the multiplication gate

ajai · bjbi = djdi

then di = ai AND bi

and dj = (ai AND bj ) XOR (aj AND bi)

The corresponding truth tables for the addition and mul-
tiplication are given in Tables 3(a) and 3(b) respectively. It
is to be noted that addition is obtained by modulo-4 gate.

Thus the logical and mathematical operations over
GF(2m) field can be subdivided in different classes. Some
operations are bit-wise but for others it is in bit serial fash-
ion, in which some information are carried over from the
results of earlier bit.
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Table 3 Truth tables for (a) addition and (b) multipli-
cation

Fig. 1 Basic building block

4 Implementation of quadruple valued logics using
opto-electronics systems

In optics, using two orthogonal states of polarization as well
as that of absence and presence of light at a time we can
generate four-state logic system using dibit representation.
In this chapter the logic used has been extended to incorpo-
rate dibit representation in quadruple valued system.

4.1 The basic building block

The basic building block to implement the logical operations
in quadruple valued logic system is shown in Fig. 1. Light
from a laser source L after passing through the polarizer P
is polarized at an angle 45° with respect to the two crystal
axes and incident on the savart plate S1 as shown in Fig. 1.
The light incident on S1 is splitted into two orthogonal com-
ponents and comes out of S1 with a spatial shift between
them. The electrically addressable negative SLMs—P1 and
P2 are then used for the controlling of two components of
inputs beam. The nature of the negative SLM is such that it
is transparent when there is no electric voltage applied on it
and it becomes opaque when an electric voltage is applied on
it. The property of positive SLM is just reverse. Hence the
input may be considered as in the form of dibit (two bits)
representation.

The second savart plate S2 is then re-unites the two po-
larized beam for further operations. Various logic gates as
mentioned in Table 2 and Table 3 may be implemented by
combining this very basic module.

4.2 OR gate

The circuit diagram of OR Gate is shown in Fig. 2. The
polarized parallel beam coming from the Laser source L

Fig. 2 OR gate

through polarizer P is incident on the beam splitter BS1—
where it is splitted into two directions as shown. One part is
incident on the savart plate S1 and the other part on the mir-
ror M1. The savart plate S1 splits the beam into two orthog-
onal components—the p-polarization and the s-polarization.
The input A (combination of A1 and A2) controls the pos-
itive SLMs P1 and P2 and accordingly the p-polarization
and s-polarization come out of P1 and P2 and they recom-
bined by the savart plate S2 and incident on the beam split-
ter BS2. On the other hand the ray reflected by the mirror
M1 is incident on the savart plate S3 and by similar process
it is also spatially modulated by the positive SLMs P3 and
P4 depending on the input B (combinations of B1 and B2).
Then the rays are re-united again by S4 and after reflection
by the mirror M2 it is incident on the beam splitter BS2.
The output finally comes out from BS2. We are considering
the beams which are orthogonally polarized to each other so
there will be incoherent superposition of intensity thus phase
shift does not produce any effect.

For example, say A = 00 (i.e. A1 = 0 and A2 = 0), then
the components of the light beam splitted by S1 will be ob-
structed by P1 and P2 and hence the output of S2 will be
dark i.e., absence of p and s-polarizations. Say, the sec-
ond input B = 11 (i.e., B1 = 1 and B2 = 1), then both
the p and s-polarizations will pass through P3 and P4 and
so the emerging ray from S4 will contain both the p and
s-polarizations. Hence the final output from BS2 is 11—
which follows the truth table for OR gate. Similarly, it is
valid for other input combinations also as per Table 2(a).

4.3 AND gate

Figure 3 is the circuit diagram for the AND Gate. The polar-
ized light beam incident on the first savart plate S1 is splitted
into the two orthogonal components with a spatial shift and
modulated by the positive SLMs P1 and P2 by means of the
input A (combination of A1 and A2) and they reunited again
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Fig. 3 AND gate

Fig. 4 NOT gate

at S2. The emerging ray is then incident on the second build-
ing block and modulated again by the positive SLMs P3 and
P4 as per the input B (combination of B1 and B2). Depend-
ing on A and B the output will occur according to the AND
Gate truth table shown in Table 2(b).

4.4 NOT gate

The output obtained from this gate is simply the comple-
ment of the input. The circuit diagram is shown in Fig. 4.
The savart plate S1 decomposes the incident beam into two
orthogonally polarized beams with a spatial shift. The only
input A (combination of A1 and A2) is applied through the
SLMs P1 and P2 and accordingly the essential components
of the polarized beams are present in the light coming out
of the savart plate S2. Now it is allowed to pass through the
savart plate S3, where, the opto-electrical converters (O/E)
C1 and C2 are used in the path of the rays to convert the light
signal into electric voltage—which are then feed to the posi-
tive SLMs P3 and P4 to control the polarized components of
the beam coming out of the savart plate S4. The savart plate
S5 is then used to re-unite the final components present and
to get the final output, which is simply the complement of
the input A. Here, the output follows the truth table of NOT
Gate as shown in Table 2(c).

For example, suppose A = 01 i.e., A1 = 0 and A2 = 1—
hence, no voltage is applied at SLM P1 but a voltage is ap-
plied at SLM P2. As a result, no p-polarization is present
from the output of P1 but s-polarization is available from
the output of P2 and when they recombine at S2, only
s-polarization is available at the output of S2. As a result

when it is passes through S3 only C2 of the O/E converter
will be activated and correspondingly P4 will be energized
but P3 will remain at zero voltage. So the ray following the
path BS1, M1 and savart plate S4 will be modulated by the
negative SLMs P3 and P4 such that only the p-polarization
is present at the output coming out of S5, which corresponds
to 10. So it is simply the complemented output of the input.
For other inputs also it follows the truth table of NOT gate
as shown in Table 2(c).

4.5 Exclusive-OR (XOR) gate

The circuit diagram for the exclusive-OR (XOR) gate is
shown in Fig. 5. The combination as shown follows the truth
table for XOR Gate shown in Table 2(d). The two inputs are
respectively A (combination of A1 and A2) and B (combi-
nation of B1 and B2).

4.6 NAND gate

The circuit diagram for the NAND gate is shown in the
Fig. 6. The combination as shown follows the truth table for
NAND gate given in Table 2(e).

4.7 NOR gate

The circuit diagram for the NOR gate is shown in the Fig. 7.
The combination as shown follows the truth table for NOR
gate as per Table 2(f).

5 Adder circuit

The adders of quadruple valued logics can also be classified
into two categories—

(i) Half Adder and
(ii) Full Adder.

5.1 Quadruple-valued half adder

A half adder has two inputs and two outputs. The outputs are
called Sum and Carry(Cout) respectively. The Sum output is
the addition of two inputs and Carry is the carry out gener-
ated from the addition. The truth table for the half adder is
given in the Table 4.

5.1.1 Truth tables of quadruple-valued half adder based on
dibit representation

Here we can represent the inputs as well as the outputs in
the dibit form. The dibit representations of the two inputs A
and B and the outputs S and C are given below:

Inputs: A = ajai and B = bjbi

Output: Sum (Sum) = S = sj si

Carry (Cout) = C = cj ci
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Fig. 5 XOR gate

Fig. 6 NAND gate

Fig. 7 NOR gate

The truth tables for the Sum and Carry in the dibit form
are given in Table 5.

5.1.2 Expressions for Sum and Carry

From the truth Table 5 we can write the expressions for the
Sum and Carry as follows:

si = ai XOR bi

sj = (ai AND bi) XOR (aj XOR bj )

ci = (aj AND bj ) OR
[
(ai AND bi) AND (aj OR bj )

]

cj = 0

5.1.3 Block diagram of quadruple-valued half adder

The block diagram of Half-Adder circuit is shown in Fig. 8.
A and B are the two inputs and the outputs are Sum and
Carry (Cout).
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Table 4 Truth table for half adder

Input Output

B A Cout Sum

0 0 0 0

0 1 0 1

0 2 0 2

0 3 0 3

1 0 0 1

1 1 0 2

1 2 0 3

1 3 1 0

2 0 0 2

2 1 0 3

2 2 1 0

2 3 1 1

3 0 0 3

3 1 1 0

3 2 1 1

3 3 1 2

5.2 Quadruple-valued full adder

The truth table for the quadruple-valued full adder is given
in the Table 6. It is clear from the truth table that it is ac-
complished by four half adders and multiplexing their out-
put based on the carry-in. The first half adder is identical to
a normal half adder since the carry-in is 0. The second adder
with carry-in = 1, the third adder with carry-in = 2 and the
fourth adder with carry-in = 3.

5.2.1 Block diagram of quadruple-valued full adder

The block diagram of quadruple valued full-adder circuit is
shown in Fig. 9. A and B are the two normal inputs and Cin
is the other input and the outputs available from the full-
adder circuits are Sum and Carry (Cout). This full adder cir-
cuit can be constructed from the half adder circuit and by
using the logic gates as discussed earlier in this chapter.

6 Subtractor circuit

The subtractor of quadruple valued logics can also be clas-
sified into two categories—

(i) Half Subtractor and
(ii) Full Subtractor.

6.1 Quadruple-valued half subtractor

A half subtractor has two inputs and two outputs. The out-
puts are called Difference (D) and Borrow (Bout) respec-
tively. The Difference output is the diffence of two inputs

Table 5 Truth tables for (a) Carry and (b) Sum

Fig. 8 Block diagram of quadruple-valued half adder

Table 6 Truth table for full adder

Input Output

Cin B A Cout Sum

0 0 0 0 0

0 0 1 0 1

0 0 2 0 2

0 0 3 0 3

0 1 0 0 1

0 1 1 0 2

0 1 2 0 3

0 1 3 1 0

0 2 0 0 2

0 2 1 0 3

0 2 2 1 0

0 2 3 1 1

0 3 0 0 3

0 3 1 1 0

0 3 2 1 1

0 3 3 1 2

1 0 0 0 1

1 0 1 0 2

1 0 2 0 3

1 0 3 1 0

1 1 0 0 2

1 1 1 0 3

1 1 2 1 0

1 1 3 1 1

1 2 0 0 3

1 2 1 1 0

1 2 2 1 1

1 2 3 1 2

1 3 0 1 0

1 3 1 1 1

1 3 2 1 2

1 3 3 1 3
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Table 6 (Continued)

Input Output

Cin B A Cout Sum

2 0 0 0 2

2 0 1 0 3

2 0 2 1 0

2 0 3 1 1

2 1 0 0 3

2 1 1 1 0

2 1 2 1 1

2 1 3 1 2

2 2 0 1 0

2 2 1 1 1

2 2 2 1 2

2 2 3 1 3

2 3 0 1 1

2 3 1 1 2

2 3 2 1 3

2 3 3 2 0

3 0 0 0 3

3 0 1 1 0

3 0 2 1 1

3 0 3 1 2

3 1 0 1 0

3 1 1 1 1

3 1 2 1 2

3 1 3 1 3

3 2 0 1 1

3 2 1 1 2

3 2 2 1 3

3 2 3 2 0

3 3 0 1 2

3 3 1 1 3

3 3 2 2 0

3 3 3 2 1

Fig. 9 Block diagram of quadruple-valued full adder

and Borrow is the barrow out generated from the subtrac-
tion. The truth table for the half subtractor is given in the
Table 7.

Table 7 Truth table for half adder

Input Output

B A Bout Difference (D)

0 0 0 0

0 1 1 3

0 2 1 2

0 3 1 1

1 0 0 1

1 1 0 0

1 2 1 3

1 3 1 2

2 0 0 2

2 1 0 1

2 2 0 0

2 3 1 3

3 0 0 3

3 1 0 2

3 2 0 1

3 3 0 0

Table 8 Truth tables for (a) borrow and (b) difference

6.1.1 Truth tables of quadruple-valued half adder based on

dibit representation

Here we can represent the inputs as well as the outputs in

the dibit form. The dibit representations of the two inputs A

and B and the outputs D and Br are given below:

Inputs: A = ajai and B = bjbi

Output: Difference (D) = D = djdi

Borrow (Bout) = Br = brj bri

The truth tables for the Difference and Borrow in the dibit

form are given in Table 8.
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Fig. 10 Block diagram of quadruple-valued half subtractor

6.1.2 Expressions for sum and carry

From the truth Table 5 we can write the expressions for the
Difference and Borrow as follows

Bri = (b̄j AND b̄i AND ai) + [
bj OR (b̄i AND ai)

]
AND aj

Brj = 0

Di = b̄i XOR ai

Dj = bi AND (bj XOR aj ) + (bj AND āj AND āi )

+ [(
b̄i AND (bj XNOR aj )

)
OR (bj AND aj )

]

AND ai

6.1.3 Block diagram of quadruple-valued half subtractor

The block diagram of Half-Subtractor circuit is shown in
Fig. 10. A and B are the two inputs and the outputs are Dif-
ference and Borrow (Bout).

6.2 Quadruple-valued full subtractor

The truth table for the quadruple-valued full subtractor is
given in the Table 9. It is clear from the truth table that it is
accomplished by four half subtractors and multiplexing their
output based on the borrow-in.

6.2.1 Block diagram of quadruple-valued full subtractor

The block diagram of quadruple valued full-Subtractor cir-
cuit is shown in Fig. 11. A and B are the two normal inputs
and Bin is the other input and the outputs available from the
full-subtractor circuits are Difference and Borrow (Bout).

7 Conclusions

In this paper we have discussed the very basic quadruple-
valued logic systems and their practical implementations
by using the Electro-Optic Technique (EOT) with opto-
electronic devices for the fast operation. The dibit repre-
sentation of this logic helps to implement the system in a
simpler manner. In ideal situations the optical devices, mir-
ror, SLM, polarizer etc. in the logic gates have no insertion
losses. However, in realistic situations, these losses are im-
portant. The polarizer used at the input end absorbs much
energy but this polarizer may be avoided if one takes a po-
larized laser. The main losses are at the switches i.e. at the

Table 9 Truth table for full subtractor

Input Output

Bin B A Bout Difference

0 0 0 0 0

0 0 1 1 3

0 0 2 1 2

0 0 3 1 1

0 1 0 0 1

0 1 1 0 0

0 1 2 1 3

0 1 3 1 2

0 2 0 0 2

0 2 1 0 1

0 2 2 0 0

0 2 3 1 3

0 3 0 0 3

0 3 1 0 2

0 3 2 0 1

0 3 3 0 0

1 0 0 0 1

1 0 1 1 2

1 0 2 1 1

1 0 3 1 0

1 1 0 0 0

1 1 1 1 3

1 1 2 1 2

1 1 3 1 1

1 2 0 0 1

1 2 1 0 0

1 2 2 1 1

1 2 3 1 2

1 3 0 0 2

1 3 1 0 1

1 3 2 0 0

1 3 3 1 3

2 0 0 1 2

2 0 1 1 1

2 0 2 1 0

2 0 3 2 3

2 1 0 1 3

2 1 1 1 2

2 1 2 1 1

2 1 3 1 0

2 2 0 0 0

2 2 1 1 3

2 2 2 1 2

2 2 3 1 1

2 3 0 0 1

2 3 1 0 0

2 3 2 1 3

2 3 3 1 2
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Table 9 (Continued)

Input Output

Bin B A Bout Difference

3 0 0 1 1

3 0 1 1 0

3 0 2 2 3

3 0 3 2 2

3 1 0 1 2

3 1 1 1 1

3 1 2 1 0

3 1 3 2 3

3 2 0 1 3

3 2 1 1 2

3 2 2 1 1

3 2 3 1 0

3 3 0 0 0

3 3 1 1 3

3 3 2 1 2

3 3 3 1 1

Fig. 11 Block diagram of quadruple-valued full subtractor

SLMs, the losses incurred is not much as the SLMs are used
in two modes either it allows the beam or not. The losses
incurred are very much comparable to switches used in nor-
mal binary photonics switches. The devices discussed here
are the passive components—so the bandwidth depends on
the switching time of the SLMs and now-a-days very fast
optical switches are also available. Moreover, the operating
wavelength mainly depends on the selection of Savart plates
and SLMs, which are available from visible to IR (Infra-
Red) region, but the light must be highly monochromatic
for proper performance of the optical components.

The purpose of this study is to explore the quadruple
logic system with opto-electronic implementation for the
very explicit potential areas like, grey image processing,
fuzzy logic implementations, fractal formations and any
other emerging areas where the fast operations are needed.
Though in optoelectronic implementations, the optical par-
allelism is sacrificed due to the connections amongst cells,
however, the advantages of four-state implementation make
it possible to handle more information at a time.
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