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Abstract We discuss a novel approach to predict non-
radiative multi phonon (NMP) transition rates for oxide de-
fects in semiconductor devices in the context of device reli-
ability. In accordance with NMP theory, the influence of the
atomic vibration on the electronic transition is assumed to be
fully described by the line shape function. This line shape is
calculated from density functional theory for a given defect
structure and then combined with the carrier spectrum from
a non-equilibrium Green’s function model of the semicon-
ductor device. Hole capture rates at different temperatures
and bias conditions are computed for two well-studied de-
fect structures, the oxygen vacancy and the hydrogen bridge,
at different positions in the oxide of an MOS structure.

Keywords Bias temperature instabilities · BTI · Random
telegraph noise · RTN · Non-radiative multi phonon
theory · NMP · Temperature activated hole capture ·
Density functional theory · DFT · Multi scale modeling

1 Introduction

Carrier trapping at defects in insulating oxide layers gives
rise to many reliability issues in semiconductor devices such
as the bias temperature instability (BTI) [1–4], random tele-
graph noise (RTN) and flicker (1/f ) noise [5–9], and stress-
induced leakage currents [10, 11]. The empirically observed
kinetics in all of these effects show a strong temperature ac-
tivation, which is usually attributed to the influence of the
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atomic motion of the defect structure on the charge transi-
tion. Also, a structural relaxation of the defect is required to
follow the charge transitions to explain some of the observed
behavior [5, 6]. The physical foundation of the charge tran-
sitions involved in these effects lies in the theory of non-
radiative multi phonon (NMP) transitions [12, 13].

NMP theory has been used by several authors in the
context of semiconductor devices [6, 14–17] to explain the
observed energy dependent capture cross sections [18, 19].
The transition rate formulas employed are usually based
on linear electron-phonon coupling. Further, it is either as-
sumed that the transition couples to an infinite number of
phonon modes—all having the same oscillator strength—
where each can contribute only one phonon [12, 16, 17], or
that the transition couples to only one mode which receives
or emits an arbitrary number of phonons [13, 14]. Interest-
ingly, for linear coupling modes both assumptions lead to
essentially the same expression for the capture rates. The
model parameters are usually determined by calibration to
measurement data. Especially for the modeling of BTI and
RTN, however, this method is somewhat unsatisfactory as
the measurements show a broad spread in transition rates [8]
and the occurrence of structural reorganization of the defects
[5, 20]. This requires a large set of statistically distributed
parameters that have to be obtained by fitting the model to
experimental data. In order to obtain a clear understanding
of the meaning of these parameters it would be favorable to
interpret the experimental data in terms of a concrete atom-
istic defect model instead of an abstract parameter set.

The present work reports on a multi-scale modeling ap-
proach to the problem, combining state-of-the-art device
modeling with a first-principles density functional theory
(DFT) based description of the defect properties. It is meant
as a proof-of-concept for extracting NMP parameters for de-
vice modeling from DFT and also serves as a benchmark for
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computationally less expensive approximations. This work
builds on our previous investigations of the vibrational cou-
pling in hole capture transitions at oxide defects [21–23] and
is an extended presentation of [24]. It closes the gap be-
tween atomic level calculations and semiconductor device
modeling by directly employing DFT calculated line-shape
functions in an open boundary quantum mechanical device
simulation.

Relating this description to the two versions of vibronic
coupling mentioned before, we assume that the NMP kinet-
ics are determined by a small number of local modes at the
defect site. A coupling to a large number of modes does not
seem reasonable for the defects involved in BTI and RTN
considering the large variations in transition rates between
the defects that are observed in measurements. These varia-
tions can only be explained by differences in the local envi-
ronment of the defect structure which can only hold a small
number of vibrational modes.

As examples we apply the method to hole capture at ox-
ide defects in an MOS structure. The model defect struc-
tures studied are the hydrogen bridge and the (puckered)
oxygen vacancy in α-quartz, which are both well-studied
defect structures [11]. The predicted capture rates are com-
pared to time dependent defect spectroscopy (TDDS) [6, 20]
measurements on small-area pMOSFETs. In these measure-
ments, a large negative bias pulse is applied to the gate of
the transistor, while the other terminals are grounded. After-
wards, the drain current is monitored and usually mapped to
a threshold voltage shift �Vth. This set-up resembles NBTI
measurements of large-scale devices, where the bias pulse
is called stress and the following monitoring phase is called
recovery. However, contrary to the continuous recovery tran-
sients observed in large-scale devices, the threshold voltage
shift changes in discrete steps, as illustrated in Fig. 1. These
steps have been attributed to discharging of oxide defects
that have captured a hole during the stress phase. Careful
analysis of a large set of recovery traces makes it possible
to extract the average capture and emission time constants
of individual defects. It is then possible to study the depen-
dence of these time constants on VG as in Fig. 7.

2 NMP transitions

Charge transition processes involving multiple vibrational
excitations of defects in semiconductors have been exten-
sively studied in literature [12–14, 17, 25]. The rate kif for
an NMP transition from the initial electronic state |Φi〉 to
the final electronic state |Φf〉 is given by

kif = Aiff, (1)

where Aif describes the electronic part of the transition and
f is the so-called line shape function, which describes the
vibrational influence.

Fig. 1 In small-area pMOSFETs, NBTI recovery traces feature steps
of varying size at different relaxation times. These steps have been at-
tributed to the stochastic discharging of defects that have captured a
hole during the stress phase. Using the TDDS method, the capture and
emission kinetics of these defects can be studied [6]

2.1 Electronic matrix element

The first factor in Eq. (1),

Aif = 2π

�

∣
∣
〈

Φf
∣
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〉∣
∣
2
, (2)

contains the electronic matrix element between the initial
and the final electronic state |Φi〉 and |Φf〉 via the perturb-
ing potential V ′. In a semiconductor device, none of these
quantities is accurately known, and so this term has to be
estimated [3, 14, 15]. In the present work, we approximate
it as [22]
∣
∣
〈

Φf
∣
∣V ′∣∣Φi

〉∣
∣
2 ≈ α

∣
∣〈xd|φj 〉

∣
∣
2
, (3)

where xd is the position of the defect and |φj 〉 is the free-
carrier wave function. This reduces the electronic matrix el-
ement to a tunneling expression and adds a prefactor that ac-
counts for the physics neglected in the approximation. The
tunneling of carriers to the defect position is usually cal-
culated using a Wentzel-Kramers-Brillouin (WKB) expres-
sion on top of a classical device simulation [3]. Quantum-
mechanical device simulation has also been used in [15] and
the present work. The consequence of approximation Eq. (3)
is that all capture rates calculated in the present work are ac-
curate to a constant factor, therefore all computed time con-
stants in Sect. 5 are given in arbitrary units.

2.2 Line shape function

The second factor in Eq. (1),

f = ave
α

∑

β

∣
∣〈ηfβ |ηiα〉∣∣2

δ(Efβ − Eiα ± E), (4)
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Fig. 2 Different electronic states |Φi〉 and |Φf〉 give rise to different
potential energy surfaces Ei and Ef for the atoms. A change in the
electronic state of a defect changes the corresponding potential energy
surface and in consequence the vibrational wave functions. To compute
the rate of the transition |Φi〉 → |Φf〉, the overlaps between all initial
and final vibrational states have to be taken into account

is called the line shape function. It describes the dependence
of the capture rate on the carrier energy E and is an inher-
ent property of the atomic structure of the defect. The line
shape is determined by the overlaps of the vibrational wave
functions |ηiα〉 and |ηfβ〉 associated with the initial and the
final adiabatic potential energy surface Ei and Ef as well as
the respective energies Efβ and Eiα , see Fig. 2. The carrier
energy E is the energy of the reservoir state that is involved
in the transition. It is added for hole capture (electron emis-
sion), and subtracted for electron capture (hole emission).

2.2.1 Line shapes from DFT

We have recently devised a method to extract the line
shape function from DFT defect calculations [21, 23]. In
this method, approximate potential energy surfaces are ex-
tracted from DFT calculations as depicted in Fig. 3. These
parabolic potential energy surfaces define harmonic oscil-
lator vibrational wave functions for the defect in the initial
and the final charge state. Finally, the overlap integrals of
the harmonic oscillator wave functions, for which analytic
expressions exist [26, 27], are used to construct line shapes
via Eq. (4). The resulting line shapes consist of weighted
Dirac peaks. These peaks are artifacts of the single-mode
description and the neglect of the energetic contribution of
the perturbation operator. The result is corrected to give con-
tinuous line shapes by smearing with a normal distribution
of standard deviation kBT . A more in-depth description of
the line shape calculation can be found in [23], the results
for the defects under consideration can be seen in Fig. 3. Es-
pecially the potentials extracted from the puckered oxygen
vacancy (Fig. 3 right) show clearly that the usually assumed
linear electron-phonon coupling [15–17], which leaves the
vibrational frequency unchanged, is not applicable here.

Fig. 3 Results from our DFT calculations for the hydrogen bridge
(left) and the oxygen vacancy (right). (top) The structures employed in
our calculations, reduced to the atoms immediately surrounding the de-
fect. The partial charge densities associated with the defect are shown
as wire frame. (center) To extract line shapes from DFT calculations,
approximate parabolic potential energy surfaces are extracted for the
defect in its neutral (black) and positive (red) state. The square symbols
indicate the points calculated using DFT [21]. (bottom) The extracted
line shape functions at 300 K. The weighted Dirac peaks from Eq. (4)
are indicated in black, the red curves show the smeared results (Color
figure online)

2.2.2 Classical line shapes

When quantum effects in the atomic motion can be ne-
glected, the line shapes become simple analytic expressions
which can be easily implemented into a device simulator. In
the classical case, the electronic transition happens exactly
at the crossing points of the potential energy surfaces [28].
The line shape Eq. (4) is calculated as

f (E) = Z−1
∫

q

e−Ei(q
′)/kBT δ

(

Ef
(

q ′) − Ei
(

q ′) + E
)

dq ′,
(5)

with the partition function

Z =
∫

q

e−Ei(q
′)/kBT dq ′. (6)

For the harmonic potentials Ei(q) = ciq
2 and Ef(q) =

cf(q − qs)
2 + Es, where the parameters qs, ci, cf, and Es



J Comput Electron (2012) 11:218–224 221

Fig. 4 Comparison of the classical line shapes from Eq. (7) (symbols)
to their quantum mechanical counterpart that was calculated numer-
ically from Eq. (4) (lines) at the indicated temperatures. The 100 K
plots show oscillations as the quantum mechanical nature of the vi-
brational overlaps becomes more and more pronounced in this regime.
Deviations between the two formulas arise at low temperatures and in
the weak coupling regime (energies below the peak of the line shape)
due to the absence of tunneling in the classical version

are extracted from DFT, the classical line shape reads

f (E) =
√

kBT kiπ−1

2

×
(

e−ciq
2
1 /kBT
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2
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)

,

(7)

where

q1,2 = cfqs ± √

cicfq2
s + (ci − cf)(E + Es)

cf − ci
. (8)

The quantum mechanically calculated line shapes are com-
pared to their classical counterpart in Fig. 4. It shows that the
classical formula underestimates the transition rate at low
temperatures and for energies that are below the maximum
of the line shape, which correspond to the weak coupling
regime of the defect [29]. These underestimations are due
to the neglect of tunneling in the classical model. For strong
coupling, which is especially relevant for the exchange of
holes with the silicon valence band, good agreement be-
tween the classical and the quantum mechanical version is
already given at room temperature.

2.3 Total capture rate

The rate kif in Eq. (1) is the rate for the transition between
one free carrier state |φj 〉 and the localized defect state. In
a semiconductor device, there is a reservoir of free carri-
ers with different energies Ej , wave functions |φj 〉, associ-
ated occupation probabilities pj , and multiplicities mj . All
of these reservoir states separately contribute a possible re-
action path. Using Eq. (3), the total capture rate ktot is found
by summing up the contributions of all particles in the reser-
voir as

ktot =
∑

i

kif = α
∑
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∣
∣〈xd|φj 〉
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2
f (Ej ) (9)

for capture while for emission we have

ktot = α
∑

j

(1 − pj )mj

∣
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∣
∣
2
f (Ej ). (10)

3 Non-equilibrium Green’s functions

In the present work, the carrier concentration of the MOS
structure has been calculated self-consistently using a non-
equilibrium Green’s function (NEGF) method [30]. One ad-
vantage of the NEGF approach is the absence of any arti-
ficial boundaries within the device, e.g. a Dirichlet bound-
ary condition at the semiconductor-oxide-interface as usu-
ally employed in closed-boundary MOS device calculations
[15, 16]. Also, it allows the injection of carriers from the
gate to be taken into consideration.

The formalism assumes thermal equilibrium in the gate
and bulk region where level broadening due to scattering is
modeled using an optical potential [30]. The oxide is treated
as a non-equilibrium domain with ballistic quantum trans-
port.

3.1 NEGF and line shapes

Due to the open boundary conditions, there are no discrete
eigenstates for the hole wave functions. Instead, there is
a nonzero probability to find a hole at every energy level.
From the Green’s function, the local density of states

D(x,E) = m(E)
∣
∣
〈

x|φ(E)
〉∣
∣2

δ(E) (11)

as well as the occupation probability p(x,E) can be com-
puted. To obtain the total NMP hole capture rate ktot for a
defect at position xd, one just has to insert these quantities
into Eq. (9) and replace the sum by an integral to obtain

ktot = α

∫

f (E)h(xd,E)dE (12)

with the hole density

h(x,E) = p(x,E)D(x,E). (13)
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Fig. 5 The spatially and energetically distributed hole density as cal-
culated using the NEGF method. Thermal equilibrium in the gate and
the silicon bulk is induced via an optical potential. The penetration of
holes into the oxide can be clearly seen

An example hole density as calculated from NEGF is
shown in Fig. 5. The integration is implemented as a post-
processing step using the numerical NEGF and line shape
data.

3.2 Band bending

Especially for oxide defects, where due to the absence of
native carriers the application of a gate voltage induces the
largest electric field and in consequence the largest band
bending, it is necessary to maintain a clear energetic ref-
erence for the line shape functions. The energetic shift be-
tween the potential energy surfaces of the defect in its dif-
ferent charge states (see Fig. 2 and Fig. 3) depends on the
energy of the reservoir state involved. A band bending shifts
the relative position of the defect energies and the reservoir
energies [21], that has to be accounted for in the calcula-
tion of the transition rates. For the evaluation of the inte-
gral Eq. (12), we chose the SiO2 valence band edge Ev,
which was also taken as the reference energy in the DFT
calculations, as the common alignment energy. The capture
rate (12) equation thus changes to

ktot = α

∫

f
(

E − Ev(xd)
)

h(xd,E)dE. (14)

As illustrated in Fig. 6, the dependence of the line shape on
the value of the reference energy at the defect site plays a
crucial role for the transition kinetics, as the band bending
energetically shifts the relative position of the line shape and
the spectrum of the hole states, leading to large changes in
the capture rate.

Fig. 6 Illustration of the bias induced shift of the relative position of
the line shape and the free-hole states. A hydrogen bridge line shape
is used, the defect position is 2 Å from the Si/SiO2 interface. With
more negative gate voltage, the overlap between f (E − Ev(xd)) and
h(xd,E), and in consequence the transition rate, strongly increases

4 Calculation details

The electronic structure of the defect is described with DFT
using the PBE functional [31, 32]. The atomistic host lattice
is an orthorhombic alpha-quartz supercell structure [11, 21]
containing 72 atoms. Alpha-quartz was chosen because it
is a well studied reference system for amorphous silica
[11, 33, 34]. The defect energies are aligned to the hole
reservoir using the valence level of the DFT reference sys-
tem [35], as the energy levels of the investigated defects are
in the lower half of the SiO2 band gap. More details on the
DFT part can be found elsewhere [21–23].

The MOS device is described using the Vienna
Schrödinger-Poisson software package (VSP2) [36]. It con-
sists of a poly-Si gate and an n-doped bulk separated by a
2 nm SiO2 layer. For electrons the unprimed and primed val-
leys with 0.19 me and 0.91 me electron mass are included.
Holes were considered with 0.49me effective mass.

The calculation of the NMP hole capture rates proceeds
in a two-step process. First, the band bending is calcu-
lated by solving the Poisson- and the NEGF equations self-
consistently. Secondly, the NEGF problem is again solved
non-self-consistently on a different energy grid that accounts
for high-energy holes as these contribute considerably to the
NMP transitions.

5 Results

Figure 7 left shows the gate voltage dependence of the
NMP hole capture time constants for the two model de-



J Comput Electron (2012) 11:218–224 223

Fig. 7 Gate voltage dependence of the hole capture time constant.
The calculated time constants are in arbitrary units, as explained in
Sect. 2.1. In the top figure, the results for the hydrogen bridge and for
the oxygen vacancy are compared to a Shockley-Read-Hall-like cap-
ture model, which shows much weaker gate voltage dependence in
deep inversion. The calculation temperature is 400 K and the defect
position is 2 (no symbols), 4 (medium sized symbols) and 6 (large sym-
bols) angstroms from the silicon bulk. The bottom figure shows the ex-
perimental situation. Capture time constants extracted using the TDDS
technique [6] are compared with the inverse of the drain current, which
is proportional to what would be seen for Shockley-Read-Hall-like de-
fects

fects. The NMP time constants are compared to time con-
stants typically employed in semiconductor device simula-
tion, where the concentration of carriers at the defect site
is multiplied with a field and temperature independent cap-
ture cross section τ = σh(x). We follow the usual prac-
tice to refer to the latter variant as the standard Shockley-
Read-Hall (SRH) [37] description. It is important to stress
that in this work we are only concerned with the calcula-
tion of capture rates. The calculation of emission rates in a
simple case can proceed using the statistical arguments of
Shockley et al. [37] as has been done by several authors
[13–15, 25, 38]. The NMP defects clearly show a much
stronger gate voltage dependence than the SRH defect. Fur-
ther, the gate voltage dependence increases with the distance

Fig. 8 Arrhenius plots of the capture rates for the defect types compar-
ing the quantum mechanical NMP capture rates Eq. (4) for the oxygen
vacancy and the hydrogen bridge to the capture rates calculated using
classical atoms Eq. (7) and to a Shockley-Read-Hall like model

of the defect from the silicon bulk. Both of these strong de-
pendencies are caused primarily by the energetic shift of the
line shape functions relative to the holes in the inversion
layer as illustrated in Fig. 6. Comparing the bottom part in
Fig. 7 shows that the NMP defects are consistent with the
qualitative behavior of defects observed in TDDS measure-
ments. The voltage dependence of the TDDS extracted cap-
ture time constants also clearly exceeds the voltage depen-
dence of a trapping model with constant capture cross sec-
tion. In the linear regime of the transistor, the capture rate of
such a process would be approximately proportional to the
drain current.

The temperature dependence of the hole capture is shown
in Fig. 8. The calculation of NMP hole capture rates for the
given defects becomes technically challenging for low tem-
peratures. As the temperature decreases, the line shapes be-
come increasingly narrow, thus making high-energy holes
the dominantly captured particles. Accurate representation
of high-energy holes in the NEGF algorithm requires an im-
proved refinement strategy for the energy grid. To overcome
this limitation, the hole distribution over energy was calcu-
lated from a classical density of states for the Arrhenius plot,
taking only the total hole concentration at the defect site
from the NEGF calculation.

The NMP defects show a strong temperature activation,
in good agreement with experimental observation and in
contrast to the SRH description. Also, the difference in tem-
perature activation between line shapes calculated using the
quantum mechanical formula of Eq. (4) and those calcu-
lated based on classical statistical physics Eq. (7) are com-
pared. For the hydrogen bridge, this difference becomes vis-
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ible only below 140 K. For the oxygen vacancy, the classical
formula reproduces the quantum mechanical behavior over
the complete temperature range investigated.

6 Conclusion

We report a detailed model to describe non-radiative multi
phonon transitions in the context of reliability issues in
semiconductor devices such as the bias temperature in-
stability or random telegraph noise. Our approach com-
bines a density functional theory for the defect and a non-
equilibrium Green’s function model for the device to obtain
an accurate description of the real-world situation. The im-
plementation of the non-radiative multi phonon transitions
deviates from published implementations by employing nu-
merically calculated line shapes instead of analytic expres-
sions, which enables us to go beyond the usual assump-
tion of linear electron-phonon coupling. This is very impor-
tant, as our DFT-extracted potential energy surfaces show a
strong difference between the spring constants of the neutral
and the positive charge state of the defect ci and cf.

We have applied the method to hole capture in an MOS
structure using two well-studied model defect structures, the
hydrogen bridge and the oxygen vacancy in α-quartz. The
calculations have been compared to experimental data ob-
tained using the time-dependent defect spectroscopy method
on small-area MOSFETs. The gate voltage dependence of
the calculated capture time constants show good qualita-
tive agreement with experiment. Also, the reported strong
temperature activation can be explained by the NMP model.
Line shapes calculated from classical statistical physics have
been compared to their fully quantum mechanical counter-
parts. The classical approximation is shown to give a good
approximation for the considered defects and the tempera-
tures typically encountered during device operation.
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