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Abstract The numerical properties of a deterministic Boltz-
mann equation solver based on a spherical harmonics expan-
sion of the distribution function are analyzed and improved.
A fully coupled discretization scheme of the Boltzmann
and Poisson equations is proposed, where stable equations
are obtained based on the H-transformation. It is explicitly
shown that the resultant Jacobian matrix for the zeroth order
component has property M for a first order expansion, which
improves the stability even of higher order expansions. The
detailed dependence of the free-streaming operator and the
scattering operator on the electrostatic potential is exactly
considered in the Newton-Raphson scheme. Therefore, con-
vergence enhancement is achieved compared with previous
Gummel-type approaches. This scheme is readily applicable
to small-signal and noise analysis. As numerical examples,
simulation results are shown for a silicon n+nn+ structure
including a magnetic field, an SOI NMOSFET and a SiGe
HBT.

Keywords Boltzmann equation · Spherical harmonics
expansion · Small-signal · Noise

1 Introduction

Due to the continuous scaling during several decades, the
feature size of semiconductor devices has reached the deca-
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nanometer range [1]. For such scaled devices, transport can-
not be described accurately by momentum based models
(drift-diffusion or hydrodynamic models) [2, 3], which fail
even in the linear transport regime [4, 5].

In the semiclassical framework the Boltzmann equation
gives the most accurate information about device operation
[6–9]. The solution of the Boltzmann equation is the distrib-
ution function, which is the occupancy of the electron states.
Once the distribution function is known, all the measurable
quantities can be evaluated. However, it is defined over the
six-dimensional phase space (three-dimensional real space
and three-dimensional wavevector space). The high dimen-
sionality of the phase space makes solving the Boltzmann
equation a very challenging task. Since an analytical solu-
tion is not available for the general case, a computational
approach is required.

The usual approach for solving the Boltzmann equation
is the Monte Carlo approach, where the Boltzmann equa-
tion is solved by simulating a stochastic process [10–15].
In this approach, advanced physical models (e.g. full band
description [16, 17]) can be easily implemented. However,
the Monte Carlo method has many disadvantages due to its
stochastic nature [18]. For example, small currents can en-
tail excessive CPU times and it is difficult to perform small-
signal analysis in the lower GHz range [19].

A possible alternative is to solve the Boltzmann equa-
tion in a deterministic manner without stochastic errors. Its
properties are similar to those of the classical TCAD mod-
els. Since the distribution function is expanded with specific
basis functions, the number of unknown variables after dis-
cretization can be very large. As a result, the deterministic
approach requires much more computer memory than the
Monte Carlo approach. This is the main reason why the ap-
plication of deterministic Boltzmann equation solvers to de-
vices was hampered for a long time. The rapid advance of
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modern computers makes such an approach more and more
feasible.

There are many possible ways in the choice of basis func-
tions. For example, the discretization of the entire wavevec-
tor space with a three-dimensional grid can be found in
[20, 21]. However, the structure of the scattering integral
suggests to write the Boltzmann equation in polar coordi-
nates and to use spherical harmonics as basis functions for
the angular dependence. Regarding the radial dependence
of the distribution function, usually the energy is discretized
with a grid. In [22–25], the energy dependence of the distri-
bution function is resolved by an expansion with polynomi-
als.

The idea to expand the distribution with spherical har-
monics was among the first methods used to solve the Boltz-
mann equation by numerical means (e.g. [26]). Since the
spherical harmonics expansion was first applied to devices
in [27], there have been considerable efforts to improve the
physical models. In bulk simulations, some full band effects
were included into the lowest-order expansion by Vecchi
et al. [28]. Complete inclusion of a full band structure was
demonstrated for the valance bands in [29]. Simulations in-
cluding a magnetic field were reported in [30] for bulk and
in [31] for devices. The simulation of a MOSFET with the
relevant scattering mechanisms can be found in [32]. Since
rare events can be easily calculated in contrast to the Monte
Carlo approach, the substrate current for MOSFETs, for ex-
ample, can be readily calculated [32]. Although restricted
to a lowest-order expansion, two-dimensional simulations
were already reported in [32, 33]. Two-dimensional sim-
ulations with a higher-order expansion appeared only re-
cently in [34]. Impact ionization can be easily implemented.
Simulations including some quantum effects were reported
in [35].

The order at which the spherical harmonics expansion is
truncated has a strong impact on the accuracy of the results.
For the bulk case, Hennacy et al. presented higher-order ex-
pansions [36, 37]. In the case of one-dimensional devices
Rahmat et al. demonstrated a third-order expansion [38].
Later expansions of arbitrary order were reported for such
devices in [29]. Box integration for the derivation of the dis-
crete system of equations was introduced and exact current
continuity achieved [27, 33, 38]. Without stabilization simu-
lation of realistic semiconductor devices is not possible. The
H-transform was developed to stabilize the equations [27].
An upwind discretization have been proposed in [38]. Later
a stabilization was introduced [29], which is based on the
maximum entropy dissipation scheme [23].

Small-signal analysis is a vital component of modern
device simulation. In contrast to the Monte Carlo method,
small-signal analysis is possible for devices in the case of
the spherical harmonics expansion [35, 39, 40]. Noise can be
calculated based either on the Boltzmann equation [41, 42]
or Langevin Boltzmann equation [43].

In this paper, we review recent developments and ap-
plications of the spherical harmonics expansion method.
Compared with previous works for the device simulation
by the Maryland group [32, 35–37, 39], the Bologna group
[27, 33], and the MIT group [38], the particular focus is on
the demonstration of higher-order expansion results for the
two-dimensional device, on the stabilization and discretiza-
tion through a combination of the H-transformation and the
maximum entropy dissipation scheme, and on its application
to small-signal analysis [31, 34, 44, 45].

The structure of the paper is as follows: In Sect. 2, the un-
derlying theory is described in some detail. The focus is in
particular on the stabilization and discretization schemes. In
Sect. 3, three examples of applications, magnetotransport in
an n+nn+ structure, a partially depleted SOI MOSFET, and
a SiGe HBT, are considered. Conclusions and future per-
spectives are given in Sect. 4.

2 Theory

In this work, we consider carrier transport in a two-dimen-
sional SiGe device, possibly under the presence of a con-
stant magnetic field perpendicular to the simulation plane.
The position-dependent band edge of the conduction band
due to the position-dependent Ge content is taken into ac-
count. Electron transport is described by balance equations
derived from the Boltzmann equation, while hole transport
is described by a simple drift-diffusion model.

2.1 Boltzmann equation and expansion with spherical
harmonics

The band structure of the conduction band is of critical im-
portance for electron transport. In this work, we employ the
Modena model, in which the conduction band is described
by six nonparabolic and elliptical valleys [7, 46]. The pa-
rameters of the related scattering mechanisms can be found
in [46]. The original momentum space of this model is de-
noted as k′-space.

All calculations are performed in the Herring-Vogt trans-
formed k-space [47], since it simplifies the SHE very
much [48]. The elliptical valleys are mapped onto spheri-
cal ones by the Herring-Vogt transform [7, 47]

kν = T̂ νk′ν, (1)

T̂ ν =
⎛
⎝

T ν
x 0 0
0 T ν

y 0
0 0 T ν

z

⎞
⎠ , (2)

where ν is the index of νth valley, and k and k′ are wave vec-
tors in the Herring-Vogt transformed k-space and the origi-
nal k′-space, respectively. The nonparabolic band energy ε
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relative to the minimum of the conduction band is given by

ε(1 + αε) = �
2k2

2md

, (3)

where α is the nonparabolicity factor, md the density-of-
state mass, and � the Planck constant divided by 2π . The
group velocity in the Herring-Vogt transformed space eval-
uates to

v = v(ε)eε = 1

1 + 2αε

�k(ε)

md

eε, (4)

where eε is the unit vector of the spherical coordinate system
for the radial direction.

Since we introduce the Herring-Vogt transformation, the
partial derivative in the k′-space must be transformed. The
semiclassical BE, which is modified for the Herring-Vogt
transformed k-space reads

∂f

∂t
+ 1

�
T̂ F · ∇kf + T̂ v · ∇rf = W̌ {f }, (5)

where f ν(r,k, t) is the distribution function for a single
spin direction, t the time variable, r the position in real
space, and W̌ {f } the single-particle scattering integral. The
force is given by

F ν = F ν
E + F ν

B

= ∇r

(−Eν
c (r) + qψ(r, t)

) − q
(
T̂ νv

)
× B, (6)

where Eν
c is the position-dependent valley minimum of νth

valley of the conduction band measured from the intrinsic
level of relaxed silicon, ψ the electrostatic potential, and B

the magnetic field. Note that the first term on the right hand
side represents the force due to the electric field and a gra-
dient of the band edge, while the second term is due to the
magnetic field. The Herring-Vogt transformed force is given
by [49]

T̂ νF ν = T̂ ν∇r

(−Eν
c (r) + qψ(r, t)

) − qv × B̀
ν
, (7)

where B̀
ν

is the transformed magnetic field defined as

B̀
ν =

⎛
⎝

T ν
y T ν

z 0 0
0 T ν

z T ν
x 0

0 0 T ν
x T ν

y

⎞
⎠B. (8)

Note that the magnetic force in the Herring-Vogt trans-
formed k-space is still perpendicular to the group velocity
in that space.

Following the scheme based on the expansion of the
distribution function on equienergy surfaces [29], a unique
mapping between the k-space and the energy space is re-
quired. In the case of the Modena model, the mapping is

unique, which can be readily shown with (3). The expan-
sion with spherical harmonics on an equienergy surface is
performed by the following operation,

1

(2π)3

∫
δ[ε − εν]Yl,m(ϑ,ϕ){BE}d3k, (9)

where Yl,m is a spherical harmonic [50]. The balance equa-
tion derived from the BE by the above projection reads [29]

∂

∂t

(
Z(ε)fl,m(r, ε, t)

) +
∑
l′,m′

Ll,m,l′,m′fl′,m′(r, ε, t)

+
∑
l′,m′

�l,m,l′,m′fl′,m′(r, ε, t) − W̌l,m{f }(r, ε) = 0, (10)

where f ν
l,m(r, ε) is the expansion of f ν(r, ε,ϑ,ϕ),

f ν
l,m(r, ε) =

∮
f ν(r, ε,ϑ,ϕ)Yl,m(ϑ,ϕ)d�. (11)

The density-of-states Z(ε) for one spin direction, which is
by a factor of 4π smaller than the conventional expression,
is given by

Z(ε) = k2

(2π)3

∂k

∂ε
. (12)

Also we have the following relation between the magnitude
of the velocity vector and the density-of-states:

∂v(ε)Z(ε)

∂ε
= 2

Z(ε)

�k(ε)
. (13)

The free steaming operator Ll,m,l′,m′ in (10), which de-
scribes the effect of the electric force, is given by

Ll,m,l′,m′fl′,m′(r, ε)

=
3∑

d=1

∂

∂xd

[
T ν

d al,m,l′,m′,dv(ε)Z(ε)fl′,m′(r, ε)
]

+ FE,d(r)
∂

∂ε

[
T ν

d al,m,l′,m′,dv(ε)Z(ε)fl′,m′(r, ε)
]

− FE,d(r)T ν
d bl,m,l′,m′,d

1

�k(ε)
Z(ε)fl′,m′(r, ε), (14)

where d (= 1, 2, and 3) is the index for the real space axis
and the subscript d represents the components for the xd di-
rection. The free streaming operator only couples the odd
part of f into the even one and vice versa. The coefficient
vectors al,m,l′,m′ and bl,m,l′,m′ are defined as

al,m,l′,m′ =
∮

eεYl,mYl′,m′d�, (15)

bl,m,l′,m′ =
∮ (

∂Yl,m

∂ϑ
eϑ + 1

sinϑ

∂Yl,m

∂ϕ
eϕ

)
Yl′,m′d�, (16)
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respectively. By their definition, we have the following rela-
tions for al,m,l′,m′ and bl,m,l′,m′ .

al,m,l′,m′ = al′,m′,l,m, (17)

al,m,l′,m′ + al′,m′,l,m = bl,m,l′,m′ + bl′,m′,l,m, (18)

b0,0,l′,m′ = 0. (19)

The magnetic operator �l,m,l′,m′ in (10), which describes
the effect of the magnetic force, is given by

�l,m,l′,m′fl′,m′(r, ε)

=
3∑

d=1

qv(ε)B̀ν
d cl,m,l′,m′,d

1

�k(ε)
Z(ε)fl′,m′(r, ε). (20)

The coefficient cl,m,l′,m′,d is defined as

cl,m,l′,m′,d

=
∮

(eε × ed) ·
(

∂Yl,m

∂ϑ
eϑ + 1

sinϑ

∂Yl,m

∂ϕ
eϕ

)
Yl′,m′d�,

(21)

where ed is the unit vector of the Cartesian coordinate
system for the xd direction. Compared with al,m,l′,m′,d or
bl,m,l′,m′,d , cl,m,l′,m′,d contains one more unit vector in its
definition. Therefore, it only couples the odd(/even) part of
f into the odd(/even) one.

Scattering processes with transition rates of the following
form are considered

W̌ ν,ν′
η (r,k,k′) = 1

�s

cν,ν′
η [r, ε(k), cos∠(k,k′)]

× δ(ε(k) − ε(k′) − �ωη). (22)

∠(k,k′) is the angle between the initial (k′) and final (k)
wave vectors, �ωη the constant energy transfer and �s the
system volume. Neglecting the Pauli principle, the scat-
tering integral expanded with spherical harmonics reads
[29, 32, 48]

W̌l,m{f } =
∑
η,ν′

{
Z(ε)Z(ε − �ω)c

ν,ν′
ηl fl,m(r, ε − �ω, t)

− Z(ε + �ω)Z(ε)c
ν′,ν
η0 fl,m(r, ε, t)

}
, (23)

where c
ν,ν′
η,l is the projection of cν,ν′

η onto the lth Legendre
polynomial.

2.2 H-transformation

As shown in the previous subsection, the magnetic operator
�l,m,l′,m′ does not contain partial derivatives. Therefore, it
can be easily treated as an operator local in both real space

and energy. The scattering integral W̌l,m is also local in real
space. Since the stabilization is mainly concerned about the
coupling between the spatial derivative and derivatives along
other variables, the terms local in real space can be treated
easily. Therefore, in the following discussion, we concen-
trate on the free steaming operator Ll,m,l′,m′ , which is non-
local in real space.

In the case where the energy dependence of the distrib-
ution function is resolved by an expansion with polynomi-
als [23], the free streaming operator includes only the partial
derivative with respect to position. When we have only one
partial derivative in the free-streaming operator, a stabiliza-
tion scheme can be applied easily. However, since the energy
is discretized with a grid in this work, we have two distinct
partial derivatives with respect to either position or energy.
This can cause numerical problems. To overcome these dif-
ficulties, we use the H-transformation [33]. We introduce a
variable transformation from (r, ε) to (r̃,H):

r̃ = r, (24)

H = ε − q�(r), (25)

where �(r) can be an arbitrary function of r . According to
this variable transformation, the free streaming operator is
transformed as follows:

Ll,m,l′,m′fl′,m′(r, ε)

= L̃l,m,l′,m′ f̃l′,m′(r̃,H)

=
3∑

d=1

∂

∂x̃d

[
T ν

d al,m,l′,m′,d ṽ(r̃,H)Z̃(r̃,H)f̃l′,m′(r̃,H)
]

+
(
FE,d(r̃) + ∂H

∂xd

)

× ∂

∂H

[
T ν

d al,m,l′,m′,d ṽ(r̃,H)Z̃(r̃,H)f̃l′,m′(r̃,H)
]

− FE,d(r̃)T ν
d bl,m,l′,m′,d

Z̃(r̃,H)

�k̃(r̃,H)
f̃l′,m′(r̃,H). (26)

Usually, H is identified with the total energy, therefore,
the condition �(r) = ψ(r) − Eν

c (r)/q is imposed. In this
case, with help of the relation

FE,d(r) = ∂

∂xd

(−Eν
c (r) + qψ(r)

)
, (27)

(26) reduces to

Ll,m,l′,m′fl′,m′(r, ε)

= L̃l,m,l′,m′ f̃l′,m′(r̃,H)

=
3∑

d=1

∂

∂x̃d

[
T ν

d al,m,l′,m′,d ṽ(r̃,H)Z̃(r̃,H)f̃l′,m′(r̃,H)
]
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− FE,d(r̃)T ν
d bl,m,l′,m′,d

Z̃(r̃,H)

�k̃(r̃,H)
f̃l′,m′(r̃,H). (28)

In this form, the free streaming operator contains only
differentials with respect to position xd . One obvious
strength of the H-transformation over the discretization
scheme based on the kinetic energy [29] is that the free
streaming operator can be treated correctly even in the bal-
listic limit [51]. Of course, this advantage becomes only
possible at the cost of a potential-dependent energy grid.

Since the set of equations in (10) for a given H consti-
tutes a system of hyperbolic conservation laws, in princi-
ple, any numerical method suitable for hyperbolic systems
would be applicable [23]. When the spherical harmonics ex-
pansion is restricted to the first order [33], a specific second-
order differential equation for the zeroth-order component
can be found. Its discretization can be done easily because a
self-adjoint differential operator is involved [37]. However,
the higher-order expansion in the case of a device simula-
tion is more difficult. For example, in [38] an upwind dis-
cretization is applied to the kinetic-energy-based formula.
In [29], the maximum entropy dissipation scheme [23] is di-
rectly applied to the kinetic-energy-based formulation. As
discussed already, the kinetic-energy-based formula intro-
duces an artificial broadening of electron distribution in the
ballistic limit. In this work, the maximum entropy dissipa-
tion scheme is applied in addition to the H-transformation.

2.3 Maximum entropy dissipation scheme

The even part of the electron distribution function yields
densities like the electron density or the energy density.
In this sense the even components of the electron distrib-
ution function can be viewed as densities. Since the odd
part yields the current density, the odd components can be
viewed as fluxes, for which the balance equations have to be
stabilized [23]. In the following, the free streaming opera-
tor which couples the odd part into the even one is labeled
“even”, while the opposite one is the “odd” operator.

If the entropy, which is defined as a convex function of
the electron distribution function, is dissipated by the Boltz-
mann equation, it guarantees that the Boltzmann equation is
well posed [23]. The name “maximum entropy dissipation
scheme” implies that the semi-discretized system is built
in such a way that it preserves this property for a specific
form of the entropy function. Under the choice of the sim-
plest possible entropy function, 1

2 exp( H
kBT0

)f 2 [23], the free
streaming operator is a skew self adjoint operator under the
weight function exp( H

kBT0
). kBT0 is the thermal energy eval-

uated at the lattice temperature T0. Therefore, in the max-
imum entropy dissipation scheme, the odd operator is ex-
pressed as the negative adjoint form of the corresponding
even operator with the weighting factor.

When we apply this scheme to the kinetic-energy-based
formula directly, this weighting factor plays an important
role, because it is a function of position. However, in the
case of the total-energy-based formula, it is just a constant,
therefore, we can simply take the negative adjoint operator.
Following this scheme, the odd operator L̃l′,m′,l,m (l′ is odd
and l even.) is given by

L̃l′,m′,l,mf̃l,m(r̃,H)

=
3∑

d=1

T ν
d al,m,l′,m′,d ṽ(r̃,H)Z̃(r̃,H)

∂

∂x̃d

f̃l,m(r̃,H)

+ FE,d(r̃)T ν
d bl,m,l′,m′,d

Z̃(r̃,H)

�k̃(r̃,H)
f̃l,m(r̃,H). (29)

Note that the index pairs (l,m) and (l′,m′) are interchanged
in the coefficients of the equation. Equivalence of this form
and its original form can be easily shown by (13), (17),
and (18).

Let us have a look at L̃0,0,1,m′L̃1,m′,0,0f̃0,0(r̃,H), which
is obtained, when the first order equation is inserted into the
zeroth order equation. Besides the inverse scattering opera-
tor for f̃1,m′(r̃,H), it corresponds to the free streaming oper-
ator for f̃0,0(r̃,H). Using the expressions for both L̃1,m′,0,0

and L̃0,0,1,m′ , (19), and the property a0,0,1,m′,da0,0,1,m′,d ′ =
0 when d �= d ′, we have

L̃0,0,1,m′L̃1,m′,0,0f̃0,0(r̃,H)

=
3∑

d=1

(T ν
d a0,0,1,m′)2

× ∂

∂x̃d

[
ṽ2(r̃,H)Z̃2(r̃,H)

∂

∂x̃d

f̃0,0(r̃,H)
]
. (30)

Together with the scattering operator, this ensures that the
Jacobian matrix for f̃0,0(r̃,H) has property M [52].

The balance equation after the stabilization, which is a
partial differential equation over the two-dimensional real
space, is discretized by the box integration method [53]. It is
integrated over the control volume in the three-dimensional
energy/real space.

For box integration a special grid for the real space is in-
troduced. Figure 1 shows a part of the two-dimensional real
space grid. The electron distribution function f̃l,m with even
l is defined on the direct grid nodes (filled circles). The box
Giv for the direct grid node iv contains all points which are
closest to the grid node iv . For the electron distribution func-
tion with odd l, adjoint nodes are assigned, which are given
by the nodes on the midpoint between two neighboring di-
rect nodes. In Fig. 1, the adjoint nodes are denoted as opened
circles. Dimensional splitting along the lines between two
neighboring direct nodes (solid lines) is employed for the
odd operator.
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Fig. 1 Direct nodes (filled circles) and adjoint nodes (open circles)

In the following, a Cartesian tensor grid for the real space
is assumed for the sake of brevity, however, its extension to
unstructured grids is straightforward. By an integer subscript
we denote the direct grid points. The adjoint point between
two adjacent direct grid points is denoted by the subscript
whose value is the average of the two subscripts. For exam-
ple, x̃i+0.5 denotes the adjoint point between x̃i and x̃i+1.

In the case of the energy space, a uniform grid is em-
ployed. Since the uniform energy grid is shared by all val-
leys, intervalley scattering can be treated easily even when
the valley minimum is shifted from the conduction band
edge due to the position-dependent Ge content [44]. The
total energy range for a given n-th energy point, whose H

value is Hn, is denoted by (H−
n ,H+

n ). If the valley mini-
mum is located within this range, the integral over the en-
ergy space is valid only from that value, not from H−

n . The
minimum value of the valid total energy for the given n-th
energy range is denoted by Hmin

n (x̃). Then Hmin
n (x̃) can be

obtained by

Hmin
n (x̃) = min{H+

n ,max{H−
n ,Eν

c (x) − qψ(x̃)}}. (31)

Note that Hmin
n (x̃) may depend on the electrostatic poten-

tial.
First, the discretization of the odd free streaming operator

is shown. Since the dimensional splitting is employed for the
odd operator, we may consider only one spatial derivative
along the direction of the line on which the adjoint node is
located, let’s say x̃.

L̃l′,m′,l,mf̃l,m(x̃,H)

= T ν
x̃ al,m,l′,m′,x̃ ṽ(x̃,H)Z̃(x̃,H)

∂

∂x̃
f̃l,m(x̃,H)

+ FE,x̃(x̃)T ν
x̃ bl,m,l′,m′,x̃

Z̃(x̃,H)

�k̃(x̃,H)
f̃l,m(x̃,H). (32)

The odd components can be viewed as fluxes. Therefore, the
odd component is defined only when the two surrounding
direct nodes have non-vanishing integrated density-of-states
over the control volume. The odd operator is integrated over
x̃ (from x̃i to x̃i+1) and H (from H−

n to H+
n ),

∫ H+
n

H−
n

∫ x̃i+1

x̃i

L̃l′,m′,l,mf̃l,m(x̃,H)dx̃dH

= T ν
x̃ al,m,l′,m′,x̃

∫ H+
n

H−
n

ṽ(x̃i+0.5,H)Z̃(x̃i+0.5,H)dH

×
[
f̃l,m(x̃i+1,Hn) − f̃l,m(x̃i ,Hn)

]

+ FE,x̃(x̃i+0.5)T
ν
x̃ bl,m,l′,m′,x̃

∫ H+
n

H−
n

Z̃(x̃i+0.5,H)

�k̃(x̃i+0.5,H)
dH

×
[
f̃l,m(x̃i ,Hn)

x̃i+1 − x̃i

2

]

+ FE,x̃(x̃i+0.5)T
ν
x̃ bl,m,l′,m′,x̃

∫ H+
n

H−
n

Z̃(x̃i+0.5,H)

�k̃(x̃i+0.5,H)
dH

×
[
f̃l,m(x̃i+1,Hn)

x̃i+1 − x̃i

2

]
. (33)

For the Modena model, we can derive analytical expres-
sions for the integrals in the above equation

∫ H+
n

H−
n

ṽ(x̃i+0.5,H)Z̃(x̃i+0.5,H)dH

= 2md

(2π�)3

[1

2
(H+

n − Eν
c (x̃i+0.5) + qψ(x̃i+0.5))

2

− 1

2
(Hmin

n (x̃i+0.5) − Eν
c (x̃i+0.5) + qψ(x̃i+0.5))

2

+ α

3
(H+

n − Eν
c (x̃i+0.5) + qψ(x̃i+0.5))

3

− α

3
(Hmin

n (x̃i+0.5) − Eν
c (x̃i+0.5) + qψ(x̃i+0.5))

3
]
,

(34)
∫ H+

n

H−
n

Z̃(x̃i+0.5,H)

�k̃(x̃i+0.5,H)
dH

= md

(2π�)3

[
(H+

n − Eν
c (x̃i+0.5) + qψ(x̃i+0.5))

− (Hmin
n (x̃i+0.5) − Eν

c (x̃i+0.5) + qψ(x̃i+0.5))

+ α(H+
n − Eν

c (x̃i+0.5) + qψ(x̃i+0.5))
2

− α(Hmin
n (x̃i+0.5) − Eν

c (x̃i+0.5) + qψ(x̃i+0.5))
2
]
.

(35)

Therefore, the dependence of these analytical expres-
sions on ψ(x̃i) and ψ(x̃i+1) can be obtained. Note that both,
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the direct dependence on ψ(x̃i) and ψ(x̃i+1) and the depen-
dence through Hmin

n (x̃) should be considered.
Next, the discretization of the even free streaming oper-

ator is shown. Since we employ dimensional splitting for
the odd operator, we have four adjoint nodes surrounding
the given direct node. For example, let us assume that the
direct node is given by x̃i and ỹj . The surrounding four
adjoint nodes are x̃i±0.5 and ỹj±0.5. Explicitly in the two-
dimensional real space,

L̃l,m,l′,m′ f̃l′,m′(r̃,H)

= ∂

∂x̃

[
T ν

x̃ al,m,l′,m′,x̃ ṽ(r̃,H)Z̃(r̃,H)f̃l′,m′(r̃,H)
]

− FE,x̃(r̃)T ν
x̃ bl,m,l′,m′,x̃

Z̃(r̃,H)

�k̃(r̃,H)
f̃l′,m′(r̃,H)

+ ∂

∂ỹ

[
T ν

ỹ al,m,l′,m′,ỹ ṽ(r̃,H)Z̃(r̃,H)f̃l′,m′(r̃,H)
]

− FE,ỹ(r̃)T ν
ỹ bl,m,l′,m′,ỹ

Z̃(r̃,H)

�k̃(r̃,H)
f̃l′,m′(r̃,H). (36)

Defining the even operator along x̃-direction as follows,

L̃l,m,l′,m′,x̃ f̃l′,m′(r̃,H)

= ∂

∂x̃

[
T ν

x̃ al,m,l′,m′,x̃ ṽ(r̃,H)Z̃(r̃,H)f̃l′,m′(r̃,H)
]

− FE,x̃(r̃)T ν
x̃ bl,m,l′,m′,x̃

Z̃(r̃,H)

�k̃(r̃,H)
f̃l′,m′(r̃,H), (37)

and the one along ỹ-direction in the same manner, we can
treat the contributions from the specific directions sepa-
rately. When the grid node is located on the interface of
silicon and oxide regions, only (the part of) the area which
lies inside the silicon region is considered. Without loss of
generality, let us consider L̃l,m,l′,m′,x̃ f̃l′,m′(r̃,H) only. The
integral of the even operator over x̃ (from x̃i−0.5 to x̃i+0.5)
and H (from H−

n to H+
n ) is considered.

∫ H+
n

H−
n

∫ x̃i+0.5

x̃i−0.5

L̃l,m,l′,m′,x̃ f̃l′,m′(r̃,H)dx̃dH

= T ν
x̃ al,m,l′,m′,x̃

∫ H+
n

H−
n

ṽ(x̃i+0.5,H)Z̃(x̃i+0.5,H)dH

× f̃l′,m′(x̃i+0.5,Hn)

− T ν
x̃ al,m,l′,m′,x̃

∫ H+
n

H−
n

ṽ(x̃i−0.5,H)Z̃(x̃i−0.5,H)dH

× f̃l′,m′(x̃i−0.5,Hn)

− Fx̃(x̃i−0.5)T
ν
x̃ bl,m,l′,m′,x̃

∫ H+
n

H−
n

Z̃(x̃i−0.5,H)

�k̃(x̃i−0.5,H)
dH

×
[
f̃l′,m′(x̃i−0.5,H0)

x̃i − x̃i−1

2

]

− Fx̃(x̃i+0.5)T
ν
x̃ bl,m,l′,m′,x̃

∫ H+
n

H−
n

Z̃(x̃i+0.5,H)

�k̃(x̃i+0.5,H)
dH

×
[
f̃l′,m′(x̃i+0.5,H0)

x̃i+1 − x̃i

2

]
, (38)

where the coefficients are already defined in (34) and (35).
Since the magnetic operator and the scattering integral

are local in real space, their discretization is performed with-
out much difficulty. Note that the dependence of c

ν,ν′
η,l on the

electrostatic potential also should be considered.

2.4 Boundary condition

For all equations considered in this work (the Poisson equa-
tion, the Boltzmann equation, and the hole continuity equa-
tion), the Neumann boundary condition is imposed on a
non-contact boundary. For the Poisson equation and the hole
continuity equation, the Dirichlet boundary condition is im-
posed on a contact boundary.

In the case of the Boltzmann equation, instead of the
Dirichlet boundary condition we use Neumann boundary
conditions together with a surface generation rate

�s(k′) = [f eq(k′)θ(T̂ v ·n)+f (k′)θ(−T̂ v ·n)]T̂ v ·n, (39)

where n is a surface vector pointing into the device, θ(x)

the step function and f eq the equilibrium distribution spec-
ified by the electron quasi-Fermi level of the contact. This
boundary condition corresponds to a thermal bath contact
similar to the ones used in Monte Carlo simulations [54].
The injected particle flux (the first term on the right hand
side) is the result of an equilibrium distribution, whereas the
extracted particle flux (the second term) is due to the distri-
bution in the device. The surface generation rate is projected
onto spherical harmonics

�s
l,m(ε) =

∑
l′,m′

Z(ε)[fl′,m′(ε)dl,m,l′,m′ + f
eq

l′,m′(ε)el,m,l′,m′ ]

(40)

with

dl,m,l′,m′ =
∮

θ(−T̂ v · n)T̂ v · nYl′,m′(�)Yl,m(�)d� (41)

and

el,m,l′,m′ =
∮

θ(T̂ v · n)T̂ v · nYl′,m′(�)Yl,m(�)d�. (42)

The surface generation rate is implemented as a volume gen-
eration rate within the box of the terminal.
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2.5 Small-Signal Analysis

When the device in the steady-state is subjected to a small
perturbation with angular frequency ω, the resultant elec-
trostatic potential can be expressed in the complex domain
as ψ(r, t) = ψs(r) + δψ(r,ω)ejωt . Also the corresponding
deviation of the electron distribution function at angular fre-
quency ω is given by δf (r, ε,ω)ejωt . In order to avoid the
numerical difficulties arising from the time-varying density-
of-states, following the idea in [39], we fix �(r). When we
set �(r) = ψs(r) − Eν

c (r)/q , the linearized free streaming
operators for the deviations are written in the H-transformed
space,

L̃l,m,l′,m′ δ̃f l′,m′(r̃,H,ω)

=
3∑

d=1

∂

∂x̃d

[
T ν

d al,m,l′,m′,d ṽ(r̃,H)Z̃(r̃,H)

× δ̃f l′,m′(r̃,H,ω)
]

− FE,d(r̃)T ν
d bl,m,l′,m′,d

Z̃(r̃,H)

�k̃(r̃,H)
δ̃f l′,m′(r̃,H,ω),

(43)

˜δLl,m,l′,m′ f̃s,l′,m′(r̃,H)

=
3∑

d=1

q
∂δψ(r,ω)

∂xd

× ∂

∂H

[
T ν

d al,m,l′,m′,d ṽ(r̃,H)Z̃(r̃,H)f̃s,l′,m′(r̃,H)
]
,

(44)

where f̃s,l′,m′ denotes the steady-state solution of f̃l′,m′ .
Since δψ(r,ω) cannot be neglected in the small-signal
analysis, the coupling between different H -points should be
treated. The coefficient of ∂δψ(r,ω)

∂xd
is calculated by a suit-

able interpolation scheme. Once the coefficient is calculated
and fixed, the term is linear in the potential perturbation.

Following the above procedure, the small-signal Y -
parameters can be readily calculated. In the case of noise
simulation, the solution of the adjoint system [55–57] is
required. Once a suitable Green’s function for the output
variable is evaluated, the power spectral density of the fluc-
tuations of the output variable can be calculated in the way
described in [40].

3 Results

Three examples, an n+nn+ structure, a partially-depleted
SOI MOSFET, and a SiGe HBT, are presented. The exam-
ples have been selected to demonstrate the strength of the

deterministic Boltzmann equation solver. For the n+nn+
structure, the effect of a magnetic field on the device per-
formance is demonstrated. For the partially-depleted SOI
MOSFET, the effect of impact ionization on the device char-
acteristic is analyzed. For the SiGe HBT, the noise perfor-
mance is investigated.

All results are calculated at room temperature (300 K).

3.1 Transport in the n+nn+ structure

The direction of the magnetic field is assumed to be perpen-
dicular to the two-dimensional simulation plane, B = Bez.
In this case, only cl,m,l′,m′,z has to be calculated, which is
rearranged from (21) as follows,

cl,m,l′,m′,z

=
∮ (

− cosϑ
∂Yl,m

∂ϑ
+ cosϑ sinϕ

sinϑ

∂Yl,m

∂ϕ

)
Yl′,m′d�.

(45)

The doping profile of the n+nn+ structure with a 40 nm
long lowly doped region between two highly doped contact
regions is shown in Fig. 2. The structure is assumed to be
homogeneous and infinitely wide in the y-direction. A pre-
vious study of this structure [58] has shown that strong built-
in fields occur in the junctions and even the linear response
at equilibrium contains a ballistic part.

In Fig. 3, absolute values of the relative change of the ter-
minal current at different applied voltages relative to 0 T are
shown for two magnetic fields, 1 T and 10 T. The change due
to the magnetic field is small even at a high magnetic field.
For example, the biggest change in the figure is about 7% at
10 T. Therefore, it is very CPU time consuming to simulate
magnetotransport with the Monte Carlo approach. The ef-
fect of the magnetic field on the terminal current is stronger

Fig. 2 Doping profile of the 40 nm n+nn+ structure (reprint
from [31])
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Fig. 3 Absolute values of the relative change of the simulated terminal
current at different applied voltages relative to 0 T (reprint from [31])

Fig. 4 Electron velocities along x- and y-directions at V = 1 mV and
B = 10 T (reprint from [31])

at low applied voltage than at higher applied voltage. In
Fig. 4, the electron velocities along x- and y-directions at
V = 1 mV and B = 10 T are shown. The ratio of y and x-
components has its peak value in the lowly doped region.
In Fig. 5, the electron velocities along x- and y-directions
at V = 0.5 V and B = 10 T are shown. Hot electron effects
reduce the peak value of the velocity ratio compared to the
result for V = 1 mV. It can be understood by comparing the
relative magnitude of the magnetic operator with those of
the free streaming operator and the scattering integral.

In Fig. 6 the electron distribution function multiplied by
the density-of-states is shown in the k-space for the valley
with the longitudinal mass aligned to x-axis at V = 0.5 V
and B = 0 T in the middle of the device. The distribution
is symmetric with respect to ky and a ballistic peak appears
at about kx = 0.16 · 2π/a0. In Fig. 7, the same quantity at

Fig. 5 Electron velocities along x- and y-directions at V = 0.5 V and
B = 10 T (reprint from [31])

B = 10 T is shown. The distortion toward the positive ky

direction due to the magnetic force is clearly seen.
One important question regarding the spherical harmon-

ics expansion is, whether the order of spherical harmonics
is sufficiently large or not. In Fig. 8, the electron velocities
along x-direction for different numbers of spherical harmon-
ics are shown. The applied bias is 0.5 V and the magnetic
field is 10 T. The convergence is clearly visible already for
the third order. In Fig. 9, the electron velocities along y-
direction for the same conditions are shown. It is obvious
that the velocity along y-direction requires more spherical
harmonics than that along x-direction, and convergence oc-
curs for the seventh order. It can be understood by realiz-
ing the different coupling behavior of cl,m,l′,m′,d , which is
related with the magnetic operator, from other coefficients
such as al,m,l′,m′,d and bl,m,l′,m′,d .

3.2 Partially-depleted SOI MOSFET

Numerical simulation of a partially-depleted SOI MOSFET
is known to be a very challenging task [59–61]. Floating-
body effects are determined by a delicate balance between
various generation and recombination mechanisms (SRH
generation/recombination mechanism, impact ionization,
etc) and hot electron injection from the drain end of the
MOSFET channel.

The quantization of carrier motion perpendicular to the
interface is not taken into account. In order to account
for inversion-layer transport, additional scattering mecha-
nisms are included in the simulation [32], and the para-
meters for those scattering processes are matched to the
CVT mobility model [62]. The impact ionization model
of [63] is exploited. In this simulation, the SRH genera-
tion/recombination mechanism is not considered.
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Fig. 6 Electron distribution
function multiplied by the
density-of-states in the valley
with the longitudinal mass
aligned to x-axis at V = 0.5 V
and B = 0 T and kz = 0 in the
middle of the device (reprint
from [31])

Fig. 7 Electron distribution
function for the same conditions
as in Fig. 6 besides a magnetic
field of 10 T (reprint from [31])

Fig. 8 Electron velocities along x-direction for different numbers of
spherical harmonics at V = 0.5 V and B = 10 T (reprint from [31])

The outline of the SOI MOSFET [64] is shown in Fig. 10.
The simulated SOI NMOSFET has a body thickness of
180 nm, a top oxide of 8.5 nm, a bottom oxide of 400 nm,
and a gate length of 500 nm. It is discretized with a grid of
63 × 81 nodes with a non-uniform spacing. The device is
of the partially-depleted type and has a homogeneous body
doping of 2 × 1017/cm3.

The output characteristics of the device are shown in
Fig. 11 and the kink effect is clearly visible. In Fig. 12, the

Fig. 9 Electron velocities along y-direction for different numbers of
spherical harmonics at V = 0.5 V and B = 10 T (reprint from [31])

corresponding source hole current generated by impact ion-
ization is shown.

In Fig. 13 the electron concentration is shown for VGS =
1.0 V and VDS = 1.0 V, above the kink. It is seen that
the vertical diffusion of electrons near the drain end of the
MOSFET channel is not strong in contrast to hydrodynamic
simulations [59, 60]. In Fig. 14 the electron dynamic tem-
perature [65] and the impact ionization generation rate are
shown along the Si/SiO2 interface for VGS = 1.0 V and
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Fig. 10 2D structure of the SOI MOSFET. Only part of the bottom
oxide whose thickness is 400 nm is shown. The ticks indicate the real
space grid

Fig. 11 Output characteristics of the SOI MOSFET for VGS = 1.0 V
with and without impact ionization

Fig. 12 Source hole current generated by impact ionization of the SOI
MOSFET for VGS = 1.0 V

Fig. 13 Electron concentration in the SOI MOSFET for VGS = 1.0 V
and VDS = 1.0 V. Labels A, B, and C correspond to 1010/cm3,
1014/cm3, and 1018/cm3, respectively

VDS = 1.0 V. Both quantities are rather unrelated and im-
pact ionization cannot be described by a local temperature
model typically used in hydrodynamic simulations [66]. The
peak of the impact ionization generation rate appears closer
to the drain contact than that of the dynamic temperature.
Thus, more holes generated by impact ionization flow out
through the drain terminal than a local temperature model
would predict.
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Fig. 14 Electron dynamic temperature and impact ionization genera-
tion rate along the Si/SiO2 interface for VGS = 1.0 V and VDS = 1.0 V

Fig. 15 Spectral intensity of the drain current fluctuations for
VGS = 1.0 V and VDS = 1.0 V

The low frequency noise for VGS = 1.0 V and VDS =
1.0 V is shown in Fig. 15. The contributions of the differ-
ent noise sources to the drain current noise are also shown.
Above the kink, the noise is caused by impact ionization
and hole scattering. Impact ionization and hole scattering
both yield shot-like noise which is strongly amplified by the
floating body effect [67]. At higher frequencies this feed-
back effect is short-circuited by capacitive coupling and the
decrease in noise with frequency is similar to the effect of a
low-pass filter of the first order.

3.3 SiGe HBT

The RF and noise performance of a SiGe HBT, which is
pseudomorphically grown on unstrained silicon, is investi-
gated. Apparent bandgap narrowing due to heavy doping is

Fig. 16 2D structure of the SiGe HBT. The ticks indicate the real space
grid

included [68]. Detailed comparison of the Boltzmann equa-
tion result with drift-diffusion and hydrodynamic models
and discussion of the accuracy of the classical models can
be found elsewhere, and will not be repeated.

The outline of the simulated SiGe HBT is shown in
Fig. 16. The device is symmetric to the line y = 0 and only
the right half is shown. The emitter width of this structure
is 75 nm. It is discretized with a grid of 74 × 20 nodes with
a non-uniform spacing. The doping and Ge profiles along
the symmetry line are given in Fig. 17. The base is 17.5 nm
thick and the Ge content has the form of a box profile with a
maximum Ge content of 18%. Basically, it is tried to follow
the state-of-the-art doping and Ge profiles shown in [69].

The initial solution for the electrostatic potential is im-
ported from the drift-diffusion or hydrodynamic model.
When the correction of the electrostatic potential is smaller
than a predefined value (e.g. 10−10 V in this simulation),
convergence is achieved. Typical convergence behavior of
the simulation is shown in Fig. 18. For VBE = 0.7 V, VCE =
2.9 V and a third-order expansion (the biggest system of
equations with 12 437 920 unknown variables after elimina-
tion of the equations for odd l), the simulation time for the
steady-state solution is over 12 hours on a single-core work-
station. In this case, the maximum memory usage is about
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Fig. 17 1D doping and Ge profiles of the SiGe HBT for y = 0

Fig. 18 Maximum value of the potential correction at each New-
ton-Raphson iteration for different VBE values. VCB = 0.1 V

26 GB. AC analysis requires about twice as much memory
due to the complex numbers. Note that the simulation time
and memory usage can change due to the internal parame-
ters used in the iterative matrix solver, ILUPACK [70].

The Gummel plot is shown in Fig. 19. The current gain
at VBE = 0.7 V and VCB = 0.1 V is about 2700. The Boltz-
mann equation solver is able to simulate the collector and
base current without any problems over a range of several
orders of magnitude, where the CPU time is much less sen-
sitive to the bias condition than in the case of a Monte Carlo
approach. Given the spatial grid and the maximum order of
the spherical harmonics expansion, the main factor which
determines the simulation time is the span of the total en-
ergy included in the simulation. For example, in the case of
the SiGe HBT a larger energy span is required in the case of
lower VBE values or higher VCE values.

Fig. 19 Gummel plot. VCB = 0.1 V

Fig. 20 Electron density in the two-dimensional simulation plane at
VBE = 0.7 V and VCB = 0.1 V

The electron density in the two-dimensional simulation
plane is shown in Fig. 20. Very small densities near the
base-collector junction underneath the base contact can be
simulated. The density is smooth and no artificial oscilla-
tions occur due to the successful stabilization of the Boltz-
mann equation. Since the six valleys in the conduction band
are included in the simulation, detailed information for each
valley is available. The valleys with the longitudinal mass
aligned to x-, y-, and z-axis are denoted by x-, y-, and z-
valley, respectively. In Fig. 21, the contribution of each val-
ley to the electron density is shown. Since the x-valley has
a higher minimum energy in the SiGe region due to the Ge
content, its contribution to the electron density in that region
is very small.

The cutoff frequency evaluated at constant VCB = 0.1 V
is shown in Fig. 22. The small-signal current gain at
10 GHz is used for extrapolation of the cutoff frequency.
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Fig. 21 Contribution of each valley to the electron density for y = 0
at IC = 5.79 mA/µm2 and VCB = 0.1 V

Fig. 22 Cutoff frequency. VCB = 0.1 V

The peak cutoff frequency is 251 GHz in the range from
IC = 6 mA/µm2 to IC = 8 mA/µm2. In order to predict
the cutoff frequency and the corresponding collector current
density correctly, accurate evaluation of the electron velocity
is required. The electron velocity along the symmetry line is
shown in Fig. 23. The maximum electron velocity is about
two times the saturation velocity of silicon. In Fig. 24 the
transit time distribution (dτ/dx) is shown for three different
base/emitter voltages [71].

The output characteristics are shown in Fig. 25. The im-
pact ionization model in [63] is exploited. The Early voltage
obtained by the BE model is 9.5 V. In Fig. 26 the absolute
value of the corresponding base currents is shown. The open
base breakdown voltage evaluated from the collector/emitter
bias at zero base current is 1.08 V.

The spectral intensity of the collector/collector current
fluctuations is shown in Fig. 27. For low collector current

Fig. 23 Velocity profile for y = 0 at IC = 5.79 mA/µm2 and
VCB = 0.1 V

Fig. 24 Transit time distribution for VBE = 0.86, 0.9, and 0.94 V.
VCB = 0.1 V

densities it follows the shot noise expression (2qIC ). The
spatial origin of the terminal current fluctuations in the mid-
dle of the emitter window is shown in Fig. 28. The minimum
noise figure is shown in Fig. 29. The electron noise current
transit time, τn, which is given by [72, 73]

Selec
IBIC

= 2qIC(ejωτn − 1), (46)

is shown in Fig. 30.

4 Conclusion and future perspective

In this work we have reviewed a particular way to solve
the Boltzmann equation, the spherical harmonic expansion
approach. In this approach the Boltzmann equation is ex-
panded with spherical harmonics, and the set of the resul-
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Fig. 25 Output characteristics. VBE = 0.7 V

Fig. 26 Absolute value of the base current. VBE = 0.7 V

tant balance equations is solved with standard numerical
techniques. Since its properties are more similar to those
of the classical TCAD tools, almost everything possible
in the framework of the momentum-based device models
can be (and has been) done with this approach but with
a more physics-based model. Also, in this work, the re-
cent progresses on this approach are shown. Especially, the
fully-coupled scheme improves the robustness of the New-
ton scheme significantly.

Let us briefly mention some remaining topics. Although
the inclusion of the Pauli principle is possible for bulk sys-
tems [74, 75], it has not yet been reported for devices. The
complete inclusion of a full band structure is formulated in
[5], but it has been applied only to holes by now. The ex-
pansion of the full band structure of electrons is difficult and
might be approximated with the methods presented in [76].

Fig. 27 Spectral intensity of the collector/collector current fluctua-
tions at 10 GHz. VCB = 0.1 V

Fig. 28 Spatial origin of the terminal current fluctuations at 10 GHz.
VBE = 0.82 V and VCB = 0.1 V. The absolute value is shown for the
base/collector fluctuations

Fig. 29 Minimum noise figure at 10 GHz. VCB = 0.1 V
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Fig. 30 Electron current noise transit time, τn at 10 GHz. VCB = 0.1 V

Extension to large-signal operation is only shown by now
for bulk simulations [77] and not for devices.

The advances in computers makes this computationally
expensive method more and more attractive.
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