
Journal of Computational Electronics 3: 397–400, 2004
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Simulation Schemes in 2D Nanoscale MOSFETs: A WKB Based Method
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Abstract. The WKB approximation is used in this paper to develop a model simulating nanoscale MOSFETs
with a reduced numerical cost. The method is based on the Schrödinger-Poisson approach with open boundary
conditions (QTBM). Accurately results have been obtained with significantly gain in simulation time.
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1. Introduction

In this paper we present an accelerated numerical
method to simulate quantum ballistic transport in Sil-
icon ultrashort channel MOSFETs. There is a great
amount of work (see References) dedicated to semi-
conductor device simulation, either by finite ele-
ment/difference methods or by Green’s function for-
malism. The present approach is implemented in an
improved version of the NESSIE code, which was orig-
inally developed in the MIP laboratory. It consists in
a finite element resolution of the Schrödinger equation
with quantum transmitting boundary conditions [8],
coupled to the Poisson equation for the electrostatic
potential. The method exposed here aims at reducing
significantly the simulation time by reducing the num-
ber of grid points, while keeping a good accuracy. For
this purpose, the WKB approximation is introduced
in the subband decomposition method [3], allowing
the construction of an original finite element scheme.
Detailed features of this method are presented in
[1,9].

2. Method

We seek a 2D solution of the self-consistent
Schrödinger equation with open boundary conditions
(current carrying), coupled to the Poisson equation.

Step I. Subband decomposition (SDM)

Assuming the electron gas being confined in the direc-
tion z, we consider the decomposition of the 2D wave
function

ψε(x, z) =
∑

i

ϕi
ε(x)χi (z; x). (1)

with ϕi
ε the longitudinal wave functions and χi the

transversal ones. The resolution of the Schrödinger
equation in the whole 2D domain
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is thus replaced by the resolution of 1D eigenvalue
problems in the confined direction z, Eq. (3), and many
coupled 1D Schrödinger equations projected on the
transport direction x , Eq. (4)
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∫ 1

0
|χi (z; x)|2dz = 1 (3)
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ϕ j
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(4)

where the full 2D nature of the problem results in addi-
tional coupling terms which have been fully accounted
for in the work presented here. The number of un-
knowns is thus reduced from Nx × Nz for the standard
method to Nx × M for the SDM method, where M is
the number of subbands taken into consideration, Nx

resp. Nz the number of grid points in the transport resp.
confined direction.

Step II. WKB approximation (SDM/WKB)

Using oscillating interpolation functions instead of
polynomial ones for the resolution of the 1D
Schrödinger Eq. (4), enables us to reduce significantly
the number of grid points in the x-direction. To sim-
plify, we shall expose here the WKB approximation
to the 1D case, the coupling terms reducing thus to
ai j = bi j = 0 and ci j = δi j m. The 2D case is treated
in detail in [1,9]. Starting from the Ansatz

ϕ(x) = α(x)eiS(x)/h,

the wave function reads in an interval (x0, x1) far from
a turning point

ϕ(x) =
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(5)

where S(x) := ∫ x
x0

√
2m|E − V (t)|dt and δ > 0 is

a treshold value. Close to a turning point, i.e. |E −
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Figure 1. WKB basis functions.

V (x)| < δ, a matching procedure is required to deter-
mine the entire wave function. Some simple calculus
permit us to express ϕ by means of the so-called WKB
basis functions. The discretization method is then a fi-
nite volume method, where we replace the piecewise
linear hat functions, corresponding to the nodal points,
by the WKB basis functions. The quantum transmitting
boundary conditions are naturally taken into account in
this method. The WKB basis functions, represented in
Fig. 1, oscillate with a frequency close to that of the
wave function and in the limit �x � λ (de Broglie
wavelength) reduce to usual linear interpolation func-
tions. Accurate results have been obtained with much
coarser grids and reduced computational time.

3. Numerical Results

The results presented in this section are calculated with
the improved version of the NESSIE simulator.

Device Structure

We simulated a Double-Gate NMOSFET with a chan-
nel length and a body thickness of 10 nm. The
channel was assumed to be undoped (1016 cm−3

residual doping level), whereas the doping level of
the included reservoirs (source and drain) was 1020

cm−3. We accounted for the 6-fold degeneracy of the
Si-conduction band and used the effective mass approx-
imation (mT = 0.19∗me, mL = 0.98∗me) to describe
the ellipsoidal symmetry of each band. This was suffi-
cient here, due to the small bias voltages needed at such
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short gate length. The oxide thickness was 1 nm. A fi-
nite barrier height (3e V) was assumed between Si and
SiO2, allowing the penetration of the wave functions in
the gate oxide.

Numerical Efficiency

An extensive comparison between the two methods
SDM and SDM/WKB has been performed to illustrate
the efficiency of the new method. As an example, we
show in Fig. 2(a) a plot of the sheet charge densities ver-
sus X and in Fig. 2(b) cross-sections of the potential en-
ergy along the channel, near the Si/SiO2 interface. The
agreement between full lines (SDM/WKB) and broken
lines (SDM) is excellent. The SDM/WKB method ap-
proximated accurately the solution of the Schrödinger-
Poisson equation with a mesh of only 20 points in the
transport direction, whereas the SDM method used 72
grid points. The simulation time with the SDM/WKB
method was significantly reduced by a factor of about
2.5 compared with the SDM method. To conclude, the
WKB approximation has been successfully used in a
SDM method to further reduce computation time and
allow extensive simulation of 2D quantum transport in
nanoscale MOSFETs of arbitrary geometry.

Physical Discussion

The following results are now obtained with the
SDM/WKB method. Solution of the above men-
tioned equations allows the calculation of the 2D self-
consistent potential and of the spatial distribution of
microscopic quantities such as the 2D concentration of
electrons according to position n(x, z), its decomposi-
tion in the different subbands (including the distinction
between primed and unprimed subbands, associated to
the different valley orientations) and, if needed, a fur-
ther decomposition according to injection energy at the
contact. They allow the calculation of the 2D distribu-
tion of mean quantities, such as velocity �v(x, z), kinetic
energy ε(x, z), current density �jmx ,my ,mz (x, z) for each
valley orientation, as well as the total current density
�j(x, z), etc.. Of course macroscopic quantities such as
source and drain currents can be derived as well. For in-
stance, Fig. 3 shows the drain characteristics obtained
for a 10 nm thick film (z direction) and a 10 nm chan-
nel length (x direction). The results are given per unit
length in the y-direction.

The repartition of the current between the three val-
ley orientations shows interesting features as both the

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

17

X  (nm)

S
u

rf
ac

ic
 e

le
ct

ro
n

 d
en

si
ty

  (
m

–3
)

(a) V
DS

=0V 

V
DS

=0.5V 

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.6

−0.5

-0.4

−0.3

−0.2

−0.1

0

0.1

X  (nm)

P
o

te
n

ti
al

 e
n

er
g

y 
 (

eV
)

(b) 

V
DS

=0V 

V
DS

=0.5V 

Figure 2. (a) Plot of the sheet charge density for VGS = 0.1V.
Full lines: SDM/WKB; Broken lines: SDM (b) Cross sections of the
potential energy at 1 nm from the interface Si/SiO2 for VGS = 0.1 V.
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Figure 3. Current-Voltage output characterisctics for different gate
voltages.
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Figure 4. Cross sections of the current densities �j x close to the
drain for VDS = 0.5 V and VGS = 0.2 V.

spatial variation of the current density and the am-
plitude are affected by the valley orientation (Fig. 4).
Moreover, this method has the advantage of accounting
for quantum effects in both directions, the confinement
as well as the transport one. It is therefor able to anal-
yse tunneling effects between source and drain. For
instance, Fig. 5 shows how the energy spectrum of the
electrons injected from the source in the first unprimed
subbands (mL in the confinement direction) evolves
along the channel. This spectroscopy has been done
for a low VGS bias voltage and medium drain voltage.
It shows that the leackage current which flows through
the device is strongly influenced by electrons which

Figure 5. Source-injected electron population (configuration mx =
mL ) in log. scale and the tunneling effect beneath the potential barrier
(green line) for VDS = 0.2 V and VGS = − 0.3 V.

are tunneling through the source/channel barrier. This
tunneling current leads to a larger drain induced bar-
rier lowering (DIBL), as extracted from current voltage
characteristics, compared to the internal barrier modu-
lation by drain voltage. In particular, the barrier lower-
ing is of the order of 25–27 meV when the drain voltage
increases from 0.2 to 0.5 V. This leads, at a temperature
of 300 K, to a current increase by a factor of 2.63. The
transfer characteristics show however a current varia-
tion of a factor of about 4.05. This discrepancy is due to
the tunneling of electrons through the source/channel
barrier. These tunneling electrons bring a non negligi-
ble contribution to drain current compared to electrons
injected thermionically above the barrier. The impor-
tant point in our method is that no assumption is needed
about the 2D shape of the barrier to evaluate this tun-
nelling contribution.
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