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Abstract. We report our preliminary work in applying the local discontinuous Galerkin (LDG) finite element
method to solve time dependent and steady state moment models, such as the hydrodynamic (HD) models and the
energy transport (ET) models, for semiconductor device simulations, in which both the first derivative convection
terms and second derivative diffusion (heat conduction) terms exist and are discretized by the discontinuous Galerkin
(DG) method and the LDG method respectively. The potential equation for the electric field is also discretized by
the LDG method, thus the numerical tool is based on a unified discontinuous Galerkin methodology for different
components and is hence potentially viable for efficient h-p adaptivity and parallel implementation. One dimensional
n+-n-n+ diode is simulated in this paper using the HD and ET models and comparison is made with earlier finite
difference Essentially Non-Oscillatory (ENO) simulation results.
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1. Introduction

In this paper we report our preliminary work in ap-
plying the local discontinuous Galerkin (LDG) finite
element method to solve various time dependent and
steady state moment models for semiconductor device
simulations, in which both the first derivative convec-
tion terms and second derivative diffusion (heat con-
duction) terms exist and are discretized by the discon-
tinuous Galerkin (DG) method and the LDG method
[3,4] respectively. The potential equation for the elec-
tric field is also discretized by the LDG method. This is
an ongoing project with the objective of developing a
numerical tool based on the DG and LDG methodology,
capable of solving various models for semiconductor
device simulations (hydrodynamic (HD) models, en-
ergy transport (ET) models, quantum drift-diffusion or
quantum hydrodynamic models, kinetic models, etc.)

in a unified treatment of first and higher spatial deriva-
tives, including those for the potential equations, which
would allow easy h-p adaptivity and efficient parallel
implementation.

The discontinuous Galerkin method is a finite ele-
ment method which uses discontinuous piecewise poly-
nomials as basis functions and relies on an adequate
choice of numerical fluxes, which handle effectively
the interactions across element boundaries, to achieve
stable and accurate algorithms for nonlinear hyperbolic
conservation laws (those involving first spatial deriva-
tives), nonlinear convection diffusion equations (those
involving first and second spatial derivatives), nonlin-
ear dispersive equations (those involving first, second,
and third spatial derivatives), etc., see for example [3,7]
and the review paper [4] and references therein. The
discontinuous Galerkin method was used before for
semiconductor device simulations, such as in [2] for
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the hydrodynamic models and in [1] for the quantum-
hydrodynamic models, however in these earlier works
only the convective terms were discretized by the dis-
continuous Galerkin methodology. Recent develop-
ment of the locally discontinuous Galerkin method in
treating higher order spatial derivatives allows us to
adopt a unified discretization strategy to handle all spa-
tial derivatives in these models, thus allowing the full
usage of the potential of this methodology in easy h-p
adaptivity and parallel efficiency.

In Section 2 we will describe briefly two moment
models (ET and HD models) that we use to test the nu-
merical method. In Section 3 we will describe briefly
the LDG method using the ET model as an example.
Section 4 contains numerical results on a one dimen-
sional n+-n-n+ diode to demonstrate the numerical
method. We mention a plan for future work at the end
of Section 4.

2. One Dimensional ET and HD Models

In this section, we briefly describe two one-dimensional
moment models of semiconductor devices: the ET
model and the HD model, that we will use for test-
ing the numerical method. We follow the description
in [5] and refer to [5] and the references therein for
more details.

2.1. The ET Model

The ET model is described by

ut + f (u)x = g(u)xx + h(u) (1)

where





u =
(

en,
nE

m

)

,

f (u) = φx n(eµ(E), µE (E) + D(E)),

g(u) = (nD(E), nDE (E)),

h(u) = (0, enµ(E)(φx )2 + e

ε
(n − nd )nD(E) − nEc

and the electric field −φx is obtained from the Poisson
equation

φxx = e

ε
(n − nd ). (2)

Here, the electron concentration n, the energy E , and
the electric potential φ are the unknown variables. e,
m, ε and nd are given constants or functions, rep-
resenting the electron charge modulus, the effective
electron mass, the dielectric permittivity and the dop-
ing, respectively. The mobilities µ and µE are given
by

µ = µ0
T0

T
, µE = 3

2
µ0kT0

(

1 − 5kT

4e

)

,

the diffusion coefficients D and DE are given by

D = kµ0T0, DE = 3

2e
µ0k2T0T

(

1 − 5kT

4e

)

,

and the collision term Ec is given by

Ec = 15k

4

[(

1 + 1

2

k

e
T

)

T − T0

]

,

where T0 is the constant lattice temperature, and the
temperature T is related to the energy E by

E = 3

2
kT

(

1 + 5

4
kT

)

.

Here k is the Boltzmann constant.

2.2. The HD Model

The HD model is described by the following equations






nt + (nv)x = 0,

pt + (pv + knT )x = enφx − p

τp
,

Wt + (v(W + knT ))x = envφx + (κTx )x − W − W0

τw

.

(3)
where the electric field −φx is again obtained from the
Poisson Eq. (2). In this model, n still represents the
electron concentration, v is the velocity, W is the total
energy. The momentum p is related to v by p = mnv,
and the temperature T is related to the total energy W
by

W = 3

2
knT + 1

2
mnv2.

The momentum and energy relaxation times are given
by τp = C p

T0
T and τw = Cw

T
T +T0

+ 1
2τp, where C p
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and Cw are constants. κ is the thermal conductivity
governed by the Wiedemann-Franz law, described by
κ = 3

2 n k2µ0T0

e .

3. The LDG Method

In this section, we briefly describe the LDG method,
using the ET model (1)–(2) as an example. For more
details of the DG and LDG methods, including stabil-
ity analysis and error estimates, we refer to [3,4,7] and
the references therein. The starting point of the LDG
method is to rewrite PDEs containing higher order spa-
tial derivatives as a larger system containing only first
order spatial derivatives. Thus the ET model (1)–(2) is
rewritten as






ut + ( f (u) − q)x = h(u),

q − g(u)x = 0,

rx = e

ε
(n − nd ),

r − φx = 0.

(4)

Let I j = (x j−1/2, x j+1/2), j = 1, 2, · · · , N be a par-
tition of the computational domain, �x j = x j+1/2−
x j−1/2, h = sup j �x j and x j = 1

2 (x j−1/2 + x j+1/2).
The finite dimensional computational space is

Vh = V k
h = {z : z | I j ∈ Pk(I j )}

where Pk(I j ) denotes the set of polynomials of degree
up to k defined on I j . Both the numerical solution and
the test functions will come from this space V k

h . Notice
that both the mesh sizes �x j and the degree of polyno-
mials k can be changed from element to element freely,
thus allowing for easy h-p adaptivity. Different choices
of bases for V k

h do not alter the algorithm. We choose
locally orthogonal scaled Legendre polynomials basis
over I j = (x j−1/2, x j+1/2) for our implementation:

v
( j)
0 (x) = 1, v

( j)
1 (x) = ξ (x), v( j)

2 (x) = ξ 2(x) − 1

12
, · · · .

where ξ (x) = x−x j

�x j
. The numerical solution can then

be written as uh(x, t) = ∑k
l=0 u(l)

j (t)v( j)
l (x) for x ∈ I j .

We multiply each Eq. (4) by a test function z ∈ V k
h ,

integrate over I j , formally integrate by parts for all
terms involving a spatial derivative, replace the exact
solution u, q, r and φ by their numerical approxima-
tions uh , qh , rh and φh in V k

h , and replace terms on the
cell boundaries by suitable numerical fluxes to obtain

the LDG scheme:





∫

I j

(uh)t zdx −
∫

I j

( f (uh) − qh)zx dx

+( f̂ (uh) − q̂h) j+1/2z−
j+1/2

−( f̂ (uh) − q̂h) j−1/2z+
j−1/2 =

∫

I j

h(uh)zdx,
∫

I j

qhzdx +
∫

I j

g(uh)zx dx − ĝ(uh) j+1/2z−
j+1/2

+ĝ(uh) j−1/2z+
j−1/2 = 0,

−
∫

I j

r hzx dx + r̂ h
j+1/2z−

j+1/2 − r̂ h
j−1/2z+

j−1/2

=
∫

I j

e

ε
(nh − nd )zdx,

∫

I j

r hzdx − φ̂h
j+1/2z−

j+1/2 + φ̂h
j−1/2z+

j−1/2

+
∫

I j

φhzx dx = 0

(5)

where, e.g. z−
j+1/2 = z(x−

j+1/2). The “hat” terms are the
numerical fluxes which are chosen as follows: f̂ (uh) in
the first Eq. (5) is chosen as the Lax-Friedrichs flux, see,
e.g. [4] and the references therein. q̂h in the first equa-
tion and ĝ(uh) in the second equation are chosen as the
“alternate” fluxes q̂h = (qh)− and ĝ(uh) = g((uh)+)
(the “−” and “+” can also be reversed), see [3]. Notice
that the auxiliary variable qh can be locally solved from
the second Eq. (5) and substituted into the first equation.
This is the reason the method is called the “local” dis-
continuous Galerkin method and this also distinguishes
LDG from the classical mixed finite element methods,
where the auxiliary variable qh must be solved from a
global system. In the third and fourth Eq. (5), which
discretize the Poisson equation, we choose numerical
flux r̂ h and φ̂h as φ̂h = (φh)−, r̂ h = (rh)+ − [φh]
(the “−” and “+” can also be reversed), where [φh]
denotes the jump (φh)+ − (φh)−. Again, the auxiliary
variable rh can be locally solved from the fourth Eq.
(5) and substituted into the third equation, resulting in
a system for φh which can be solved by standard linear
solvers. Noticed that the Poisson equation is coupled
to the first Eq. (5) through the h(uh) term, which con-
tains rh . The first Eq. (5) is advanced with the third
order total variation diminishing (TVD) Runge-Kutta
method [6] in time, until a steady state is reached for
our steady state diode test case.

4. Numerical Results

In this section we demonstrate the LDG method by
a numerical example for a one dimensional n+-n-n+
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Figure 1. Comparison of the LDG method (solid lines) with the finite difference ENO method (symbols). ET model (top) and HD model
(bottom). Left: electron density n (1012 cm−3); right: velocity v (µ m/ps).

diode using the ET model (1)–(2) and the HD model
(3)–(2). The silicon diode we simulate has a length of
0.6 µm with a doping defined by nd = 5 × 1017 cm−3

in [0, 0.1] and in [0.5, 0.6] and nd = 2 × 1015 cm−3

in [0.15, 0.45], with a smooth transition in between.
The lattice temperature is taken as T0 = 300◦K. The
constants C p and Cw in the relaxation times τp and τw

are given by C p = m
e µ0, Cw = 3µ0kT0

2ev2
s

with k = 0.138×
10−4, e = 0.1602, m = 0.26×0.9109×10−31kg, µ0 =
0.14 for the HD model and µ0 = 0.0088(1 + 14.2273

1+ nd
143200

)
in the ET model, and vs = 0.1, in our units.

The boundary conditions are given as follows: φ =
φ0 = kT

e ln( nd
ni

) at the left boundary, with ni = 1.4 ×
1010 cm−3, φ = φ0 + vbias with the voltage drop
vbias = 1.5 at the right boundary for the potential;
T = 300◦K at both boundaries for the temperature;
n = 5 × 1017 cm−3 at both boundaries for the concen-
tration; and Neumann boundary condition is used for
the velocity v at both boundaries.

First, we show the results of the comparison between
the second order LDG method (piecewise linear k = 1)
and the third order ENO finite difference method [5]
using 150 uniform cells in Fig. 1 We can clearly see
that the LDG method provides very good numerical

results in agreement with the results obtained by the
ENO finite difference method.

Next we compare the simulation results of the LDG
method using a uniform mesh with 150 cells (we de-
note its cell size by �x1) and a non-uniform mesh
with 75 cells. The non-uniform mesh has two distinct
mesh sizes, �x1 in the two intervals [0.05, 0.15] and
[0.45, 0.55] near the junctions, and �x2 = 4�x1 for
the remaining part of the domain. The comparison is
given in Fig. 2.

We can clearly see from Fig. 2 that the LDG method
with a non-uniform, coarser mesh and with a uniform
mesh with more cells has comparable resolutions, pro-
vided that they have the same mesh size near the critical
junction regions. Notice that many numerical schemes
have difficulties in handling abrupt changes in mesh
sizes in adjacent cells, however the LDG method is de-
signed to handle such meshes with full stability and
accuracy. This advantage of the LDG method in han-
dling arbitrary meshes will be more apparent in two
dimensional simulations.

For this ongoing project, future work will include
generalization to two dimensional problems and to
other models of device simulations.
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Figure 2. LDG method. Comparison between a uniform mesh with 150 cells (solid lines) and a non-uniform mesh with 75 cells (symbols).
ET model (top) and HD model (bottom). Left: electron density n (1012 cm−3); right: velocity v (µm/ps).
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