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Abstract. In this paper we apply a recently-developed statistical model that explicitly accounts for
the extreme uncertainty surrounding film returns. The conditional distribution of box-office returns
is analyzed using the stable distribution regression model. The regression coefficients in this model
represent what is known about the correlates of film success while at the same time permitting
the variance of film success at the box office to be infinite. The empirical analysis shows that the
conditional distribution of film returns has infinite variance, and this invalidates statistical inferences
from the often-applied least-squares regression model. The estimates of the stable regression confirm
some earlier results on the statistics of the movie business and the analysis demonstrates how to model
box-office success in the movie business where “nobody knows anything.”
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1. Introduction

There is a large and growing literature on the economics of the motion-picture
industry, much of it focusing on empirical analysis of the attributes and distribution
of financially successful films.! The most recent empirical research in this line has
found that the unconditional distribution of film returns follows a non-Gaussian
stable distribution with infinite variance.> We find in this paper that the conditional
distribution of film returns—conditioned on production budget, opening screens,
“star” actors and directors, genre, rating, and time of release—also follows a stable
distribution with infinite variance. The infinite variance finding for the conditional
distribution of film returns corresponds to William Goldman’s (1983) classic state-
ment that in the movie business “nobody knows anything.” Goldman’s statement
has been refined and restated by Richard Caves as the nobody knows principle:
“That is, producers and executives know a great deal about what has succeeded
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commercially in the past and constantly seek to extrapolate that knowledge to new
projects. But their ability to predict at an early stage the commercial success of a
new film project is almost nonexistent” (Caves, 2000, p. 371).

Markets for motion pictures and other forms of popular entertainment have de-
mand processes characterized by recursive feedback. Consumers of films discover
what they like and dislike, and this information is spread through word-of-mouth
and other media, affecting the consumption decisions of potential viewers. The dy-
namic demand process results in “heavy tails” in the distribution of revenues across
products.® In earlier work on the movie business, De Vany and Walls (2002a)
model the conditional distribution of box-picture revenue using standard regres-
sion models that do not account for the infinite variance property. De Vany and
Walls (2004) then model the unconditional distribution of motion-picture profits
using the general stable distribution, capturing the heavy Paretian tails as well as the
central portion of the distribution. They reject the Gaussian model because motion-
picture revenues, returns, and profit all have infinite variance. This paper refines
and extends my earlier analyses with De Vany by modeling the conditional stable
distribution of motion-picture outcomes: In the framework of a linear regression
model we explicitly account for the stable distribution of the endogenous variable
while simultaneously estimating the regression coefficients and the characteristic
exponent of the stable distribution.

Modeling the conditional distribution of motion-picture returns permits us to
examine directly whether or not the non-Gaussian stable distribution of returns
results from the aggregation of movies with quantifiably different attributes: gen-
res, ratings, productions budgets, movie stars. In our empirical analysis we find
evidence that the distribution of returns conditional on a movie’s attributes has
infinite variance, thereby invalidating statistical inferences that would be made
from a least-squares regression model. Moreover, the stable regression estimates
differ statistically from those obtained from the least-squares estimator, and these
differences are of large practical significance: returns to production budgets are sub-
stantially larger (0.81 versus 0.71) and returns to “stars” substantially lower (103%
versus 138%) than one would estimate using an improperly specified least-squares
model.* We also evaluate some robust alternatives to least squares and find that
Huber (1964) regression provides a very good approximation to stable regression
while trimmed least squares is substantially inferior to least squares.

2. The Stable Distribution Model

The stable distribution was introduced into finance to explain the “heavy tails”
of asset returns as compared to the Normal or Gaussian distribution (Mandelbrot,
1963a, 1963b; Fama, 1963, 1965). The distribution is called “stable” because it is
invariant under convolution. Statisticians sometimes call it “Lévy-stable” in honor
of the French mathematician Paul Lévy who derived the conditions for a family
of distributions to be stable. In finance it is often referred to as “stable Paretian”
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because the tails of a non-normal stable distribution follow a power law like the
Pareto distribution (Bergstrom, 1952).

The stable distribution is in the domain of attraction of sums of independent
and identically distributed random variables. In plain language, this means that the
stable distribution is based on a more general version of the central limit theorem
than the version supporting the Gaussian distribution. In fact, the familiar Gaussian
distribution—on which much of modern portfolio theory is based—is the special
case of the stable distribution when the variance is finite.> The stable distribu-
tion model was largely ignored in economics and finance for some thirty years,
with alternatives such as mixture distributions and the student-¢ distribution being
proposed to explain the heavy tails in financial data without using a distribution
characterized by infinite variance.® Recently there has been a resurgence of inter-
est in the stable distribution in finance, including applications to modeling asset
returns, foreign exchange rates, interest rate and commodity price movements, and
real estate returns (Rachev and Mittnik, 2000; McCulloch, 1996).

The stable distribution is important in theory because it is based on a more general
form of the central limit theorem. It is important in practice because it can account
for the extreme uncertainty associated with physical and social phenomena. In the
application to the movie business in this paper, the stable distribution is the exact
statistical model used to capture what is known about movie success when “nobody
knows anything.” Fortunately, the recent theoretical interest in non-Gaussian stable
distributions is complemented by advances in statistical computation that have
produced fast numerical approximations for use in applied work.”

2.1. THE UNCONDITIONAL STABLE DISTRIBUTION

The stable distribution cannot be expressed generally as a probability distribution
function. Instead it is expressed in the form of a moment generating function,
X ~ S(w, B, v, §), with four key parameters:8 The index of stability « has a range
of 0 < a < 2 and the variance of the stable distribution is infinite when o < 2.
The skewness coefficient 8 has a range of —1 < 8 < 1, where the sign indicates
the direction of skewness. The scale parameter y > 0 expands or contracts the
distribution about the location parameter §. All non-Gaussian stable distributions
have tails that are heavier than the tails of a Gaussian distribution. When dealing
with data containing extreme values that are too large to have been drawn from a
Gaussian distribution, the more general stable distribution is the logical candidate
due to its heavier tails.’

The stable distribution function nests several well-known distributions. When
B = 0, the stable distribution becomes symmetric and is referred to as the symmetric
stable distribution. The stable distribution is known as the Gaussian distribution
when o = 2, the Cauchy when @ = 1 and 8 = 0, and the Lévy when o = 0.5 and
B = =£1. As the characteristic exponent « approaches 2, the skewness coefficient
B has less impact on the shape of the distribution; when o = 2 the distribution has
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only two parameters, location and scale, corresponding to the mean and variance
of the Gaussian distribution.

2.2. CONDITIONAL STABLE DISTRIBUTION ANALYSIS

Blattberg and Sargent (1971) appear to be the first economists to develop the basic
regression model with non-Gaussian stable disturbances. They derive an estimator
for regression coefficients conditional on the value of the index of stability o« < 2
and show in a Monte Carlo simulation that their stable regression estimator is
superior to the ordinary least squares estimator. More recently, McCulloch (1998a)
derived the maximum likelihood estimator for the stable regression model in which
the index of stability o and the regression coefficients are estimated jointly.'® The
stable regression model has the familiar form of a linear regression

k

Vi :,30+Z,3ijxi+€i (1)

j=1

where the Bs are the coefficients to be estimated, the xs are the regressors, but
the random disturbance term is assumed to follow a symmetric stable distribution
with median zero, €; ~ S(«, 0, v, 0).!! Estimation of the stable regression model
results in an estimate of the regression coefficient Ss as well as an estimate of the
characteristic exponent a.'> When the characteristic exponent a < 2, the random
term will follow an infinite variance stable distribution, invalidating all hypothesis
tests from the least-squares model.

When the characteristic exponent 1 < o < 2, the least-squares estimator of the
regression coefficients will be centered on y, but least squares is inefficient relative
to maximum likelihood stable regression because it does not account for the heavy
tails of non-Gaussian stable distributions.'> Another way of stating this is that least
squares places too much weight on the outlying observations because they are so
improbable under the Gaussian distribution.!* In this sense, the stable maximum
likelihood estimator can be thought of as a robust estimator in that it is less sensitive
to outliers than is least squares. Because the characteristic exponent « is estimated
jointly with the regression coefficients, the data determine the optimal divergence
from the least-squares weights attached to each observation.

3. Data Description and Estimation Results

The sample of data is drawn from the population of movies released in the United
States and Canada from 1985 to 1996, inclusive. These are the same data analyzed
by De Vany and Walls (1999) that were obtained from ACNielson EDI, Inc.’s his-
torical database. The EDI data are compiled from the North American distributor-
reported box-office figures and are widely regarded as the standard industry source
for published information on motion picture theatrical revenues.'> From the EDI
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Table 1. Box-office revenue, negative cost, and opening screens.

Variable Mean Std Dev Min Max

Box-office revenue  17.2 million  26.9 million 1304 245 million
Negative cost 11.9 million  10.3 million 4801 114 million
Opening screens 844 761 1 3012

Data Source: ACNielson EDI, Inc.

Table 1. Composition of sample by sequel, stars,
genre, and rating.

Dummy variable Films Percentage
Sequel 169 8.50
Star actor/director 326 16.39
Genre
Action 224 11.26
Adventure 55 2.77
Animated 40 2.01
Black comedy 26 1.31
Comedy 418 21.02
Documentary 8 0.40
Drama 587 29.51
Fantasy 33 1.66
Horror 69 347
Musical 32 1.61
Romantic comedy 132 6.64
Sci-Fi 41 2.06
Suspense 140 7.04
Western 15 0.75
Rating category
G 58 2.92
PG 392 19.71
PG-13 497 24.99
R 1042 52.39

Data source: ACNielson EDI, Inc.

database, we selected all films for which data on the variables of interest were
available. The resulting sample of complete cases contained 1989 movies.'® Ta-
ble I provides descriptive statistics on box-office revenue, opening screens and the
negative cost—the cost of producing the final original “negative” of the movie from
which the “prints” shown at cinemas are made.!” Table II provides a tabulation of
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the sample by a film’s attributes for genre, sequel, rating category, and presence of
a star actor or director.!8

We quantify the distribution of motion-picture revenue conditional on Negative
Cost, Opening Screens, whether or not the movie is a Sequel (or prequel), whether
or not the director or the actors are Stars, the Genre, the Rating category, and the
Year of release in the form of a log-linear regression

InRevenue; = By + B In Negative Cost; + B, In Screens;
+ B3Sequel; + B4Star; + I'[Genre, Rating, Year]; + u; 2

where i indexes individual movies, Star and Sequel are dummy variables equal to
unity when a movie contains a star or is a sequel, respectively, and zero otherwise,
and I is a vector of coefficients conformable to the sets of explanatory variables
indicating particular genres, ratings, and years of release.'” This basic regression
equation has been used by previous researchers including Smith and Smith (1986),
Prag and Cassavant (1994), Litman and Ahn (1998), Ravid (1999), and De Vany
and Walls (2002a). We use this log-linear specification for two reasons: 1) use
of this equation makes our results comparable to the results obtained by previous
researchers, and 2) on a more technical level, De Vany and Walls (2002a) estimate
the optimal exponent in a Box-Cox (1964) transformation of Revenue and find
statistical evidence in support of modeling the logarithm of box-office revenue.?’

Least squares and stable regression estimates of the regression parameters are
presented in Table I11.2! In the least-squares regression the characteristic exponent is
o = 2 by construction. In the stable regression « is a parameter to be estimated and
our maximum likelihood estimate is & = 1.8436 with an estimated standard error of
0.0419. Clearly we can reject the hypothesis that the random disturbance follows a
Gaussian distribution (the hypothesis that « = 2) in favor of the alternative that the
disturbance follows a non-Gaussian stable distribution with infinite variance.?? In
Figure 1 the fitted Gaussian distribution of residuals from the least-squares estima-
tion is plotted along with the empirical density of the residuals as approximated by
the Epanechnikov kernel.>* The density plots show that the empirical distribution
has heavier tails and a higher more concentrated peak compared to the fitted Gaus-
sian distribution, and these attributes of the empirical distribution are captured in
our estimate of the characteristic exponent of 1.84 (which is statistically less than 2).

Since we have demonstrated that the residuals are non-Gaussian, we will now
compare the stable estimates with those obtained from the standard least-squares
estimation. We shall discuss the individual regression coefficients displayed in
Table III in their order of appearance in the regression equation:

e Negative Cost: This regression coefficient represents the elasticity of Revenue
with respect to Negative Cost. The least-squares estimate of this elasticity is 0.708
while the stable estimate is 0.809. The difference between these two estimates is
0.101 which is more than twice as large as the estimated standard error of 0.050.%*
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Table I1I. Least squares and stable regression estimates.

L-S estimates®

Stable estimates®

Variable Coeff Std Err Coeff Std Err
Constant 2.463 0.787 1.236 0.830
Log negative cost 0.708 0.046 0.809 0.050
Log opening screens 0.350 0.017 0.313 0.018
Sequel 0.403 0.303 0.437 0.284
Star 0.869 0.103 0.708 0.089
Genre
Action —0.258 0.298 —0.163 0.283
Adventure —0.264 0.348 —0.196 0.337
Animated 0.259 0.409 0.276 0.390
Black comedy —0.020 0.415 0.023 0.393
Comedy 0.112 0.287 0.168 0.272
Documentary 0.418 0.619 0.501 0.560
Drama 0.205 0.286 0.251 0.272
Fantasy 0.362 0.388 0.334 0.364
Horror 0.198 0.339 0.291 0.318
Romantic comedy 0.136 0.308 0.197 0.295
Sci—Fi —0.161 0.369 —0.086 0.350
Suspense —0.458 0.311 —0.390 0.296
Western 0.134 0.490 0.097 0.463
Rating category
G 0.627 0.273 0.517 0.260
PG 0.182 0.107 0.187 0.103
R 0.069 0.091 0.046 0.087
Year of release
1986 —0.361 0.228 —0.346 0.210
1987 —0.376 0.225 —0.342 0.208
1988 —0.685 0.221 —0.590 0.207
1989 —1.264 0.215 —1.150 0.203
1990 —0.781 0.221 —0.691 0.206
1991 —0.481 0.221 —0.445 0.204
1992 —0.648 0.226 —0.619 0.209
1993 —0.461 0.230 —0.482 0.214
1994 —0.508 0.233 —0.546 0.216
1995 —0.612 0.228 —0.567 0.213
1996 —0.690 0.224 —0.705 0.208

*The characteristic exponent o = 2 by constraint.

The characteristic exponent & = 1.8436 with an estimated standard error of
0.0419. The Gaussian distribution is clearly rejected.

183
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Figure 1. Empirical and Fitted Gaussian Distributions of Regression Residuals. Note: The
empirical density is a plot of the kernel density estimate obtained using the Epanechnikov
kernel.

® Opening Screens: This regression coefficient represents the elasticity of Revenue
with respect to the number of cinema screens on which a motion-picture makes
its debut. Least-squares provides an estimate of 0.350. The stable estimate is
0.330 with a standard error of 0.018. The stable estimate is smaller by about one
standard error, so the estimates are not statistically different.

o Sequel: The coefficients on the dummy variable Sequel are 0.403 and 0.437, re-
spectively, in the least squares and stable regressions. With an estimated standard
error of 0.284, we conclude that these estimates are not statistically different.

e Stars: The dummy variable Stars has a coefficient of 0.869 in the least-squares
regression and 0.708 in the stable regression, with an estimated standard error
of 0.089. The difference between these two values is about 1.81 standard errors,
which is statistically significant at a marginal significance level of about 0.08.

® Genre: None of the individual genre classifications are individually significant
in either regression, but in both regressions the genres are significant as a group.

e Rating: The Rating dummy variables show the change in Revenue relative to
the omitted category of PG-13. In both regressions we find that G-rated movies
have statistically higher revenues at the 5% level, and that PG-rated movies have
significantly higher revenues at the 10% level. Revenues of R-rated movies are
statistically no different from PG-13 in both regressions.?

® Year of Release: In both regressions we find the same basic pattern of movies
earning higher revenues in some years than others, with the returns in all years
lower than the base year 1985.
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We have shown that the coefficient on Star is statistically larger in the least-
squares estimation than in the stable regression estimation. But what would be the
practical value of knowing this and having the estimates from the stable regression
model? To interpret dummy variables in log-linear regression we must subtract 1
from the exponentiated coefficient on the dummy variable. The coefficient on Star
in the least-squares regression results in a value of exp(0.869) — 1 = 1.3845
or an increase of some 138 percent. Compare this to the estimated value of
a Star in the stable regression of exp(0.708) — 1 = 1.0299 or 103 percent.
The difference between these two estimates—35 percentage points—confirms
the “curse of the superstar” found by De Vany and Walls (2004). When using
the Gaussian model (least squares is equivalent to maximum likelihood in the
Gaussian model) if a Star is paid the expected increase in revenue associated
with his or her performance in a movie then the movie will almost always lose
money. The conditional stable-distribution analysis in this paper permits us to
quantify the magnitude of the decision error made when a research analyst ig-
nores the statistics of the movie business and mechanically applies least-squares
regression.

We noted earlier that the stable regression model can be thought of as a robust
estimator in that it weights extreme observations less heavily than does least squares.
For completeness, we have included estimates using two alternative estimators
that are also robust to outlying observations but computationally much simpler
than stable regression. First, we report results of a bounded influence regression
where the observations are reweighted using criteria suggested by Huber (1964)
and Mosteller and Tukey (1977).2° Second, we report the results of trimmed least
squares which is least squares applied to the central 9 deciles of the data.

The results of the Huber regression, reported in the first two columns of Table I'V,
are much closer to the stable estimates. Indeed, the coefficients on Negative Cost,
Opening Screens, Sequel and Star differ only at the second decimal place and
beyond, and in each case the difference is substantially less than one standard error.
The coefficient estimates on individual Genre, Rating, and Year dummy variables
do differ, but in these cases the difference is about one standard error and so not
statistically different. Also of importance is that the estimated standard errors in
the Huber regression are close to those in the stable regression. Overall, the Huber
regression provides a close approximation to the stable regression with the exception
of the constant term.

The trimmed least-squares estimator performs poorly and for some coefficients
(Negative Cost and Star) provides estimates that are farther in error than least
squares. The extreme weighting function of trimmed least-squares assigns a zero
weight to observations that are discarded. One important problem with the trimmed
least-squares estimator is that the influential observations in the original regression
may influence the estimated coefficients so much that the residuals associated with
those observations do not appear as outliers. In this case the discarded observations
are really from the central part of the distribution and the outlying observations are
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Table IV. Estimates from alternative robust estimators.

Huber? Trimmed L-S®
Variable Coeff Std Err Coeff Std Err
Constant 0.884 0.751 —1.158 0.913
Log negative cost 0.811 0.044 0.947 0.055
Log opening screens 0.323 0.016 0.330 0.018
Sequel 0.497 0.289 0.419 0.297
Star 0.705 0.099 0.854 0.112
Genre
Action —0.066 0.285 —0.234 0.292
Adventure —0.081 0.332 —0.357 0.341
Animated 0.313 0.391 0.129 0.405
Black comedy 0.075 0.397 —0.029 0.440
Comedy 0.239 0.274 0.082 0.279
Documentary 0.552 0.591 0.706 0.601
Drama 0.325 0.273 0.194 0.278
Fantasy 0.349 0.371 0.369 0.396
Horror 0.381 0.324 0.357 0.333
Romantic comedy 0.265 0.294 0.114 0.301
Sci—Fi 0.017 0.353 —0.189 0.372
Suspense —0.287 0.297 —0.482 0.304
Western 0.110 0.467 0.175 0.499
Rating category
G 0.408 0.261 0.722 0.272
PG 0.192 0.102 0.204 0.108
R 0.033 0.087 0.073 0.093
Year of release
1986 —0.343 0.217 —0.490 0.234
1987 —0.344 0.215 —0.448 0.231
1988 —0.522 0.211 —0.722 0.228
1989 —1.046 0.205 —1.256 .0224
1990 —0.642 0.211 —0.849 0.229
1991 —0.424 0.211 —0.609 0.228
1992 —0.606 0.216 —0.767 0.234
1993 —0.507 0.220 —0.580 0.238
1994 —0.570 0.222 —0.580 0.242
1995 —0.537 0.218 —0.736 0.239
1996 —0.724 0.214 —0.814 0.234

“Robust regression where the observations are reweighted using first the
criterion of Huber (1964) and then the biweight criterion of Mosteller and
Tukey (1977).

PLeast squares is applied to the entire data set and the outlying observations
in the upper and lower 5% are discarded (trimmed). Least squares is then
applied to the remaining 90% of the original sample.
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retained, exacerbating the problem. This may explain the poor performance of the
trimmed least-squares estimator in our application.

4. Conclusions

Even though “nobody knows anything” when it comes to predicting the financial
success of films, much is known about the attributes of financially successful films
and we can quantify the systematic component of box-office revenue while ac-
counting for infinite variance. Recent advances in statistical computation make it
feasible to estimate a regression model with stable-distributed random disturbances
using standard maximum likelihood techniques. The stable regression model is
particularly well suited to empirical analysis of the entertainment industries where
financial success is characterized by extreme uncertainty and where we are inter-
ested in analyzing conditional distributions. In our analysis, we show the mistakes
of statistical inference that could be made by ignoring the infinite variance property
of film returns and applying the usual least-squares estimator: In particular, the es-
timated stable regression coefficients differ statistically from those obtained from
least squares, and the differences are of large practical significance regarding the
returns to production cost and “star” talent. In circumstances where estimation of
the stable regression model is inconvenient, applied researchers may use bounded
influence regression, which in our application provides a good approximation to
stable regression.

Notes

1. See, for example, Albert (1998, 1999), Litman (1983) Litman and Ahn (1998), Litman and Kohl
(1989), Prag and Cassavant, Ravid (1999,2003), Sedgwick and Pokorny (1999), Smith and Smith
(1986), and Wallace, Seigerman, and Holbrook (1993).

2. In this paper we are modeling the success of individual films. Hand (2002) finds that annual
cinema admissions aggregated across all films in the United Kingdom can be modeled using
standard time-series methods.

3. De Vany and Walls (1996) model motion-picture demand as a Bose-Einstein process and find that
it converges asymptotically to a Pareto distribution.

4. Itis well known that least squares is the maximum likelihood estimator when the random distur-
bance follows a Gaussian distribution. For this reason, and because least squares is the estimator
used by most applied researchers, we shall refer to least squares as representing the assumption
of a Gaussian distribution for the random disturbance.

5. See Samorodnitsky and Taqqu (1994) and Zolotarev (1986) for detailed mathematical proofs.

6. Estimators based on other distributions for heavy-tailed data—such as the student-t—do not
account for infinite variance, and are not in the domain of attraction of sums of independent
and identically distributed random variables. However, from a practical perspective, a student-t
distribution with low degrees of freedom may provide a similar weighting to that of the symmetric-
stable distribution. Zellner (1976) provides a complete development of a regression model with
Student-t disturbances.

7. In particular, McCulloch’s (1998b) numerical approximation of the symmetric stable density is
at the heart of the computation in this paper.
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8.

11.

12.

13.

14.

15.

19.

20.

21.

22.

23.

24.

The moment generating function—also called the characteristic function—is the Fourier trans-
form of the probability density function. See Nolan (1998) for the mathematical expression of
the moment generating function. For brevity it is not reproduced here.

. Other distributions could also be used to model heavy tails—such as the student-t with its heavier-

than-Gaussian tails—but these alternatives are arbitrary in that they are not limiting distributions
so one cannot appeal to the central limit theorem in their application.

. The material in this section follows closely the exposition and notation of McCulloch (1998a). See

Judge et al. (1985, pp. 825-826) for an overview of econometric models with infinite variance.
Most empirical applications of the stable distribution in economics and finance assume symmetry
due to the lack of a fast numerical routine to approximate the density of the general stable
distribution. General stable regression can be done at high cost. In the application of this paper,
discussed below, we find that the empirical distribution of the random disturbance is consistent
with symmetry.

In the actual estimation, « is constrained to be less than or equal to 2. When the estimated value
of « is 2, the stable regression model is identical to least-squares regression. Estimated values of
o less than 2 indicate divergence from least squares.

In the case of non-Gaussian stable disturbances where 1 < o < 2, least squares converges to y at
the rate n'/%~! as compared to the rate n~!/? of the stable maximum likelihood estimator. When
o < 1, the mean does not exist so least squares does not converge on y at all.

In fact, McCulloch (1998a) shows that the first-order conditions for symmetric stable maximum
likelihood are precisely the same as for weighted least squares with the appropriate weighting
function.

The EDI figures are cited and republished by many major industry publications including Daily
Variety and Weekly Variety.

. A more detailed description and cross tabulation of the entire sample of EDI data is contained in

De Vany and Walls (1999).

. The largest-grossing movies in our sample include Batman, The Lion King, Home Alone, Forrest

Gump, and Jurassic Park. The largest-budget films in the sample include Space Jam, Eraser, True
Lies, Terminator 2: Judgment Day, and Waterworld. 1t is interesting to note that not one of the
five most costly movies earned the highest revenues.

. We use the same definition of ‘star’ used by De Vany and Walls (1999): An actor or director

appearing on Premier’s annual listing of the hundred most powerful people in Hollywood or on
James Ulmer’s list of A and A+ actors was considered to be a star in our empirical analysis.
The omitted categories for the genre, rating, and year dummy variables are musical, PG-13, and
1985, respectively.

The true model is unknown and unknowable, but statistical inferences on the regression coef-
ficients do presume the correct model specification. The specification employed in this paper
benefits from the cumulative research of others. Still, there is no guarantee that it is correct.

The symmetric stable regression model was estimated in Gauss version 3.2 using code written
by McCulloch (1997) and available electronically from the Gauss source code archive at The
American University.

Because the random terms have a non-Gaussian stable distribution, the inferences of earlier
studies based on least-squares estimation are invalid. Only the De Vany and Walls (2003a)
study employed robust estimators that are approximately valid when dealing with heavily tailed
data.

The empirical density of residuals is insensitive to the particular kernel used. The Gaussian kernel
results in a density plot nearly indistinguishable from that obtained with the Epanechnikov kernel.
For hypothesis testing we use the estimated standard error from the stable regression. Recall
that the estimated standard errors from the least-squares regression are not meaningful when the
characteristic exponent o < 2.
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25. These results confirm the main findings of De Vany and Walls (2002b) that are based on the Pareto
distribution.

26. The bounded influence regression reported in Table IV was estimated using the robust regres-
sion routine programmed into Stata for Unix version 7 (Stata Corporation, 2001, pp. 155-156).
In short, the observations are reweighted using the Huber (1964) criterion until convergence,
and then these are used as starting values for the biweight criterion of Mosteller and Tukey
1977).
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