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Abstract
Nonadditivity (NA) in Structure-Activity and Structure-Property Relationship (SAR) data is a rare but very information 
rich phenomenon. It can indicate conformational flexibility, structural rearrangements, and errors in assay results and 
structural assignment. While purely ligand-based conformational causes of NA are rather well understood and mundane, 
other factors are less so and cause surprising NA that has a huge influence on SAR analysis and ML model performance. 
We here report a systematic analysis across a wide range of properties (20 on-target biological activities and 4 physico-
chemical ADME-related properties) to understand the frequency of various different phenomena that may lead to NA. A 
set of novel descriptors were developed to characterize double transformation cycles and identify trends in NA. Double 
transformation cycles were classified into “surprising” and “mundane” categories, with the majority being classed as mun-
dane. We also examined commonalities among surprising cycles, finding LogP differences to have the most significant 
impact on NA. A distinct behavior of NA for on-target sets compared to ADME sets was observed. Finally, we show 
that machine learning models struggle with highly nonadditive data, indicating that a better understanding of NA is an 
important future research direction.
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RF  Random forest
CB2  Cannabinoid type 2
BACE1  Beta-Secretase 1
PDE10  Phosphodiesterase type 10
DPP4  Dipeptidyl peptidase-4
MAGL  Monoacylglycerol lipase
DDR1  Discoidin Domain Receptor Tyrosine Kinase 1
ADME  Absorption, Distribution, Metabolism and 

Excretion
GLYT1  Glycine transporter type-1
ATX  Autotaxin
SMN2  Survival of motor neuron 2
AEP  Asparagine endopeptidase

Introduction

SAR exploration builds strongly on the additivity hypoth-
esis: SAR is typically explored in a cross shape within an R1 
by R2 SAR matrix, where one substituent on one R-group 
vector is varied and all other substituents are kept fixed. With 
the best substituent identified, the next R-group is explored, 
keeping the current best substituent in the first vector fixed 
(Fig. 1). While an efficient way of establishing SAR, this 
process carries an implicit assumption of additivity across 
the substituents - if we cannot assume additivity, we would 
have to synthesize many more R-group combinations which 
would exhaust any reasonable technical capacity. Therefore, 

it is important to understand where the additivity hypothesis 
holds and where it does not.

In a recent publication, Gogishvili et al. showed that up to 
10% of all compounds show nonadditivity (NA) [1], which 
raises concerns about the effectiveness of the standard, effi-
cient approach to SAR exploration. They also showed that 
machine learning (ML) models struggle to predict activities 
of compounds that frequently are part of highly nonadditive 
local SAR. While a couple of physical phenomena that lead 
to strong NA have been described, we still lack a quantita-
tive understanding of how often particular events occur, and 
when to expect them. The instances that have so far been 
described include structural changes of both protein and 
ligand, reorientation of the whole ligand, and differences 
in water networks [2–4]. More mundane reasons for strong 
NA include experimental errors, errors in the assignment of 
stereochemistry, and substituent interactions.

Technically, NA is calculated from sets of four com-
pounds linked by two identical transformations, e.g. dou-
ble transformation cycles (DTCs, hereafter referred to as 
‘cycles’) [5]. Those transformations match medicinal chem-
istry thinking in the sense that each transformation tests the 
variation of a structural element, while keeping all other ele-
ments fixed. For practical reasons, in computed NA analy-
ses across whole SAR datasets we typically use matched 
molecular pair (MMP) transformations. It is the two trans-
formations, plus the four compounds with their measured 
activities and/or properties, that characterize a cycle. If there 
is an outlier among the compounds or measurements, we 
will see the whole cycle as having a high NA. Since individ-
ual compounds typically occur in several cycles, there is an 
amplifying effect where the measurement error of a single 
entry can propagate, leading to an overestimation of total 
NA. Yet, it would be too simple to assume that the majority 
of NA is caused by experimental errors. In in-house data, we 
occasionally identify a single mismeasurement as cause for 
NA (results not published), but we here will show that NA 
is correlated with certain properties of the local SAR, which 
should not be the case if the majority of NA was caused by 
random errors.

In this contribution, our overall goal is to better character-
ize surprising NA, identify drivers behind it, and illustrate 
its importance for ML models. We are not focusing on the 
causes of NA in individual instances, as this has been previ-
ously explored, but instead, we are interested in examining 
NA trends across a dataset. To get there, we first report a 
set of novel descriptors to characterize cycles. We use these 
descriptors to subgroup cycles and search for trends in NA: 
If all NA was caused by random errors, we would expect 
to see NA evenly split among subgroups. Conversely if we 
see systematically higher NA following identifiable trends 
in subgroups, we reason that there are common properties 

Fig. 1 Schematic R group analysis representation of SAR exploration. 
Initially, six distinct R1 groups are inspected, while maintaining a con-
stant R2 group across all compounds (i.e. horizontal line). Following 
this, the R1 group of the most active compound is kept constant, while 
different R2 groups are investigated (i.e. vertical line). The optimal 
combination of R1 and R2 substituents is represented by a green dot. 
Compounds with low activity are denoted by yellow dots, the red dot 
indicates an inactive compound and a light green dot indicates a com-
pound with moderate activity
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that lead to NA, and they should be taken into account when 
planning SAR exploration. We analyze physicochemi-
cal, ADME, and on-target data. We use in-house datasets 
where we can control the quality and have a sufficient data-
set size. Since we look for trends in groups of compounds, 
we use robust statistics to characterize the NA distribution 
on subsets. We will show that we can identify features of 
cycles that lead to very clear increases in NA, and we will 
discuss the impact of the findings on the practice of SAR 
exploration.

Methods

Datasets

We collected SAR data of twenty in-house on-target data-
sets and four ADME datasets. We performed NA analysis 
and analyzed the distributions of DTCs and ratios of cycles 
to compounds across the datasets. The on-target datasets 
belong to current drug discovery programs or previous 
programs where individual examples can be shared. Some 
of the latter group includes targets like AEP [6], ATX [7], 
BACE1 [8], CB2 [9], DDR1 [10], DPP4 [11], GLYT1 [12], 
PDE10 [13] and SMN2 [14]. The physicochemical and 
ADME datasets consist of solubility (kinetic solubility at 
pH 6.5, phosphate buffered), permeability (parallel artificial 
membrane permeability assay), lipophilicity (LogD7.4) and 
intrinsic clearance in human liver microsomes (HLM CLInt). 
Assay technologies to measure the physicochemical and 
ADME properties have in parts been published elsewhere 
[15–17].

Each dataset possesses a unique chemical space and 
SAR, characterized by variations in the number of chemi-
cal series, the ratio of cycles to the number of compounds, 
protein families, and other factors (see Fig. 2). The on-
target datasets vary in size, ranging from 1,000 to 9,000 
compounds, while the cross-project ADME datasets are sig-
nificantly larger, with sizes ranging from 66,000 to 89,000 
compounds. The average ratio of cycles to compounds is 
considerably lower for ADME properties than the average 
ratio for on-target properties, averaging at two cycles per 
compound. In contrast, the on-target properties exhibit a 
more diverse cycle-to-compound ratio. CB2 and MAGL 
display the highest number of cycles per compound (9 and 
6 compounds, respectively), whereas DDR1 and DPP4 
present a ratio of less than one. It is observed that projects 
with fewer chemical series tend to have a higher number of 
cycles due to a more localized SAR exploration.

All the compounds within a dataset were measured in 
the same assay. The activity values consisted of IC50 mea-
surements, with the exception of two ion channel programs 
where Ki was selected instead and two other programs 
where the functional assay (EC50) was selected. The nega-
tive logarithm of the activity value is used in all the equa-
tions and analysis shown. The ADME endpoints were also 
transformed in logarithmic scale. The geometric mean was 
applied for the cases with multiple measurements. Chemi-
cal structures in the form of isomeric SMILES were stan-
dardized, salts and adducts were removed to obtain parent 
molecules, and the stereoisomer and tautomer structures as 
deposited by the project teams were used.

Fig. 2 (A) Distribution of the number of compounds and number of DTCs per each on-target dataset. (B) Distribution of the number of compounds 
and number of DTCs per each ADME dataset. Vertical axes have been truncated
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NA calculation

Figure 3A depicts an example of four compounds that are 
related to each other by two transformations in a cycle. NA 
is calculated as the activity value (pAct) differences of the 
four compounds assembling the cycle

∆∆pAct = (pAct2 − pAct1) − (pAct3 − pAct4) (1)

Cycle descriptors

A set of descriptors was implemented to categorise cycles 
and analyze NA. Some descriptors are calculated on the 
cycle level which implies two transformations and four 
compounds, like the descriptor Number of atoms between 
R groups. Other descriptors depend only on the transforma-
tion level or on the compound level, such as the Tanimoto 
similarity or the unassigned stereocenters, respectively. The 
full list of descriptors is presented in Table 1 and Table S1. 
Some of the physicochemical descriptors consist of addi-
tive properties (i.e. number hydrogen bond donors (HBD), 
number hydrogen bond acceptors (HBA), topological polar 
surface area (TPSA)), which allows the calculation on the 
compound level. By applying this workflow, compound 
level descriptors and transformation level descriptors which 
belong to multiple cycles, only need to be calculated once.

The descriptors quantify the variance resulting from 
the substitutions of the R group. For transformation level 
descriptors, we always present the biggest effect between 

Table 1 List of implemented descriptors to analyze NA
Descriptor name Calculation level Output 

value
Property 
type

Highest Chi1 difference compound number physico-
chemical

Highest sp3 C 
difference

compound number physico-
chemical

Highest HAC 
difference

compound number physico-
chemical

Highest HAC 
exchanged

transformation number physico-
chemical

Highest HBA 
difference

compound number physico-
chemical

Highest HBD 
difference

compound number physico-
chemical

Highest LogP 
difference

compound number physico-
chemical

Highest formal charge 
difference

compound number physico-
chemical

Highest rotatable bond 
difference

compound number physico-
chemical

Highest TPSA 
difference

compound number physico-
chemical

Lowest Tanimoto 
similarity

transformation number 2D 
similarity

Number atoms between 
R groups

cycle number spatial

Number of fragmenta-
tion cuts

transformation number spatial

Stereochemistry compound assigned, 
unassigned, 
none

confor-
mational

Stereotransformation transformation inverted, 
unassigned, 
none

confor-
mational

Fig. 3 (A) DTC with surprising NA for PDE10 dataset. (B) List of NA descriptors with the corresponding values for the depicted cycle. Delta 
symbol (Δ) represents the difference of the property value between the two compounds of a transformation
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to have high NA at the 2 sigma level (95.4% of the overall 
population) if

|µ ( ∆∆pAct )Compound| > 2 σcycles /
√

n  (3)

holds. With increasing n, Eq. 3 takes very low numbers, 
labeling compounds with a low average NA as high NA 
compounds. Measurements for individual compounds also 
carry experimental uncertainty. Applying the same 2 sigma 
level, individual compounds’ average µ(ΔΔpAct)Compound 
has to be considered normal if it is lower than the amount 
expected from normal experimental uncertainty [5]

|µ ( ∆∆pAct )Compound| > 2 σexperiment  (4)

We use Eqs. 3 and 4 together to identify compounds with 
high NA. In practice, Eq. 3 applies to all compounds that 
are part of four or less cycles, whereas Eq. 4 applies to all 
compounds that are part of four or more cycles. Note that 
the absolute thresholds depend on σexperiment. From in-house 
experience across many different projects and previous pub-
lications [19], we find that an experimental uncertainty of 
0.2 log units, estimated by the robust standard deviation, is 
a good average value (details not shown). If there is a more 
precise estimate for individual assays, this may be used.

Machine learning details

To prepare the input for the ML models, we generate input 
files with stratified splits, so that each of the five categories 
(rest, MMP, additive, mundane NA, surprising NA) is rep-
resented according to the distribution in the input data. Ran-
dom Forest (RF) models were trained using the Scikit-Learn 
framework [20] and the Graph Neural Network (GNN) 
models were trained using the Attentive Fingerprint meth-
odology (AttentiveFP) [21] using the Pytorch framework 
[22]. For the RF models, compounds were encoded using 
Morgan fingerprints (1024 bits, radius 2, RDKit). Fivefold 
cross-validation was applied. For the GNNs, molecular 
graphs were constructed, with atoms being nodes and bonds 
being edges. The hyperparameters were chosen based on the 
best internal validation performance. Note that here we are 
not interested in optimizing the ML models, but rather use 
a robust baseline approach to understand the impact of NA 
on prediction quality.

Code

Based on the original Python code to quantify NA [5], we 
have extended and enhanced the code. Major code refactor-
ing was done and unit/regression testing was added for code 
stability and maintainability. The code is written in Python 

the two transformations, and the obtained value is associ-
ated with the cycle. For instance, when the chemical simi-
larity of the two transformations is analyzed, the lowest 
Tanimoto coefficient is reported. For the remaining descrip-
tors, the highest difference between the two transformations 
is reported.

The 2D structure descriptors were calculated using 
RDKit, including the atom-based calculation of LogP using 
Crippen’s approach [18]. According to the level of stereo-
chemical information, cycles are classified as inverted (R 
groups have opposite chirality), unassigned (the stereocen-
ter of one R group is not defined) and none (the transforma-
tion involves chemical structure changes). To determine the 
shortest topological distance between the two R groups in 
a cycle, RDKit was used to calculate the number of atoms 
between R groups.

Compound classification based on NA

NA is a characteristic of a double transformation cycle, 
therefore it does not make sense to label an individual com-
pound as additive or nonadditive. Yet, we are interested 
in the impact of NA on predictive quality of ML models. 
To this end, we categorize compounds into distinct classes 
based on their embedding in MMPs/cycles and on the aver-
age per-compound NA [5] (the per-compound NA for com-
pounds 2 and 4 is ΔΔpAct and for compounds 1 and 3 is 
(− 1)·ΔΔpAct on the basis of Eq. 1) of all the double trans-
formation cycles they participate in. Each compound is allo-
cated to one of the following groups: compounds with high 
average per-compound NA, additive compounds (i.e. com-
pounds with low average per-compound NA), MMPs (refer-
ring to compounds belonging to matched molecular pairs 
but not engaged in a double transformation cycle), and the 
rest, which includes singleton compounds not connected to 
any matched molecular pair transformation. The set of high 
NA compounds is further divided into compounds exhibit-
ing surprising NA and those with mundane NA (for the defi-
nitions of surprising and mundane see the Results section).

To determine if a compound has high NA or low 
NA, we compare the average NA across all cycles (µ 
(ΔΔpAct)Compound) to the NA distribution we would expect 
from standard experimental uncertainty (σexperiment = 0.2 log 
units) [5]. The standard deviation of the distribution of all 
nonadditivities across a dataset, originating from experi-
mental uncertainty only [3], is

σcycles =
√

4 · var (ε) = 2 σexperiment  (2)

If a compound is part of n cycles, we would expect its aver-
age NA across cycles, originating from random assay uncer-
tainty, to decrease with √n. So a compound is considered 
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Distance between R-groups

Average NA is strongly influenced by the distance between 
the two R-groups in a cycle. With R-groups being anchored 
close to each other, it is much more likely that the two 
groups will interfere and hence influence the activities of 
the compounds in a nonadditive fashion. Our data shows 
that the mean absolute NA increases as the topological dis-
tance between two R groups, defined as the shortest path in 
terms of atoms, decreases, see Fig. 4A. This phenomenon 
occurs in both types of datasets, on-target and ADME. The 
implemented descriptor calculates the number of atoms 
between the two R-groups in a cycle. If the number of atoms 
between R-groups is zero, the two R-groups are connected. 
A distance of one or two means that the R groups are either 
attached to the same atom or to neighboring atoms. In all 
cases, the R groups can have steric as well as electrostatic 
influence on each other because of the very small spatial 
and topological distance between the two substituents. With 
increasing distance between the R-groups, the average NA 
decreases. As we want to filter out mundane NA and focus 
on the surprising cases, we use a cutoff of at least three 
atoms between R-groups to characterize surprising cycles.

Transformation similarity

The more similar the two molecules involved in a transfor-
mation are, the less NA is observed. Figure 5 shows a pro-
nounced decrease of NA at minimum Tanimoto coefficients 
above 0.6. The exceptions to this observation were in the 
on-target cycles where sets of molecules had a minimum 
Tanimoto coefficient of 1 and average high NA. Inspection 
of those cases revealed that all of them were cycles that 
had a stereochemistry inversion in both transformations. 
Stereochemical assignment in databases can be unclear 
or inconsistent, which together with this statistical analy-
sis indicates that an unknown, unassigned or incorrectly 
assigned stereocenter could lead to NA. This is discussed 
further below. In the on-target cycle set, very few (2%) had 
the minimum transformation Tanimoto below 0.4 but in the 

making use of the cheminformatics libraries RDKit [23] as 
well as Pandas and NumPy. The assembly of cycles is based 
on matched molecular pairs, employing our open-source 
code mmpdb [24]. The code includes NA classification and 
corresponding descriptor calculation. The code to perform 
NA calculations is available from GitHub under https://
github.com/Roche/NonadditivityAnalysis.

Results

We have analyzed different factors that lead to NA and 
investigated how often different reasons for NA occur such 
as substituent competition, experimental issues or annota-
tion errors. 892,839 cycles were generated: 21% of those 
are based on on-target properties, 79% are based on ADME 
properties. A detailed view of the number of cycles per 
property is shown in Fig. 2.

NA classification

We have developed a set of descriptors to be used to cat-
egorize cycles into surprising and mundane based on their 
structural features. The distinction between surprising and 
mundane is arbitrary rather than definitive but the intention 
is to provide a convenient way to enable teams to focus on 
those high NA cycles that deserve greater attention and fur-
ther investigation.

Hence, we propose to classify double transformation 
cycles as mundane when any of the following conditions 
apply:

 ● Number of atoms between R groups ≤ 2 atoms.
 ● Tanimoto similarity of the transformation < 0.4.
 ● Number of exchanged heavy atoms > 10.
 ● Linker exchange transformations.
 ● Transformations with unassigned or inverted 

stereocenters.

Fig. 4 (A) Impact of the absolute 
NA mean values across the 
distance between R groups, 
on-target data is colored in red 
and ADME data is colored in 
blue. The error bars indicate 
the standard deviation at 95% 
confidence. (B) DTC example 
from the PDE10 dataset where 
the atom distance between the 
transformations is zero
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analysis for both on-target and ADME datasets (Fig. 5C). 
The mean absolute NA for cycles involving up to 10 HAC 
is 0.44 for on-target sets and 0.35 for ADME sets. In con-
trast, for transformations with more than 10 HAC, the mean 
absolute NA increases to 0.52 for on-target sets and 0.42 for 
ADME sets, respectively.

Figure 5B shows a cycle with NA of 2.59, where in trans-
formation 1 (T1) 16 heavy atoms are exchanged. In this 
particular case, the constant part of the cycle is very small, 
consisting of just a carboxamide linker. Practically the two 
transformations exchanged almost the entire molecule - in 
such a case, it is not surprising to find high NA. Generally, 
when considering a fixed molecular weight range, the con-
stant parts become smaller as the transformed fragments 
increase in size, which in cases like the one above should not 
be surprising. The size of the transformation has an effect on 
the amount of NA seen with both sets, on-target and ADME. 
Consequently, we propose that a higher number of HAC in 
the transformation is likely to be associated with instances 
of mundane NA, and a cutoff needs to be set for the HAC 
exchanged for surprising NA. While this cutoff may be set 
specifically for each project based on the individual needs of 

ADME set there were many more (33%). The majority of 
these are cycles where the transformed fragments are large 
(see Fig. 5B) and the compounds largely originate from dif-
ferent projects, sharing a small constant part but exchanging 
the greater part of their structures. We use a threshold of 
minimum transformation Tanimoto above 0.4 to character-
ize surprising cycles.

Transformation size

At the beginning of our study, we decided to increase the 
maximum number of heavy atoms allowed in the trans-
formation to 16 instead of the default value of 10 in the 
mmpdb code [24] in order to accommodate bigger trans-
formations. As the upper limit for the heavy atom count 
(HAC) in the transformation is raised, there is a correspond-
ing sharp increase in the number of double transformation 
cycles observed. Specifically, we cataloged 263,984 such 
cycles with a maximum of ten HAC within the transfor-
mation. This figure increases to 892,839 cycles when the 
transformation’s maximum HAC is extended to 16. How-
ever, expanding the size of the transformation comes with 
a greater chance of high NA as we have observed in our 

Fig. 6 (A) Impact of the absolute 
NA mean values across the num-
ber of fragmentation cuts, data 
related to on-target properties is 
represented on the red line, while 
data pertaining to ADME proper-
ties is depicted in blue. (B) DTC 
example from the CB2 dataset 
with double cut for the first trans-
formation (T1) and triple cut for 
the second transformation (T2)

 

Fig. 5 (A) Influence of the transformation similarity on the absolute 
NA mean values, data related to on-target properties is represented in 
red, while data pertaining to ADME properties is depicted in blue. (B) 
DTC example from CB2 set where the T1 presents the lowest Tani-

moto similarity and maximum of heavy atoms exchange is sixteen. (C) 
Increase of the mean absolute NA according to the maximum number 
of heavy atoms exchanged

 

1 3

Page 7 of 16    26 



Journal of Computer-Aided Molecular Design           (2024) 38:26 

these variations are typically not synthesized, making the 
generation of cycles containing such compounds less likely.

Stereochemistry

A change in or unclear stereochemistry can cause substantial 
NA. To account for this, we have incorporated two stereo 
descriptors that capture stereochemistry at both the transfor-
mation and compound levels. At the transformation level, 
we differentiate cycles whose transformation only implies 
changes in stereochemistry between R-groups, either due to 
unassigned stereocenters or inverted ones. Although only 
3.1% of the cycles involve stereotransformations, those 
related to on-target data exhibit significantly higher NA val-
ues, particularly for inversion transformations. The average 
absolute NA for on-target cycles without stereotransforma-
tion is 0.49, whereas with inversion stereotransformation it 
is 0.60. Further investigation into cycles showing high abso-
lute NA with stereoinversion revealed that in many cases the 
absolute stereochemistry had been assigned arbitrarily, an 
example is shown in Fig. 7. In other cases, due to incomplete 
chiral separation, the inactive enantiomer was contaminated 
with differing proportions of the active enantiomer, leading 
to an overestimation of the measurement of the potency of 
the inactive enantiomer for one of the two matched pairs, 
with a consequent increase in the apparent NA. In con-
trast, for the ADME data, the average absolute NA values 
for cycles without stereotransformation and with inversion 

SAR exploration, for a general analysis such as this one we 
decided to set it to 10 heavy atoms.

Linker exchange

Exchanging a linker or the core of a molecule can induce 
substantial conformational changes, depending on the 
geometry of the linking fragment. To filter out cycles with 
linker and core exchanges, we have implemented a descrip-
tor based on the number of cut bonds in a transformation. 
Most of the transformations in our datasets are single cuts. 
Cycles that include double and triple cuts have a frequency 
of 34.3% and 6.8% respectively for the on-target set; and 
17.3% and 1.5% respectively for the ADME set.

We note that cycles whose transformations involve 
multiple cuts exhibit slightly higher NA for the on-target 
datasets (Fig. 6A). The lack of a more pronounced differ-
ence could be due to the preservation of geometry and exit 
vectors across most transformations, thereby avoiding dras-
tic conformational changes. Furthermore, the compounds 
within cycles have already been developed following a 
rational design, striving to maintain similar shapes and pro-
tein interactions, thus becoming bioisosteric replacements. 
In practice, project teams explore SAR with a variety of exit 
vectors and scaffold replacements. However, if the initial 
one or two examples of each variation do not achieve the 
desired on-target activity, additional compounds bearing 

Fig. 7 DTC example from the MAGL dataset where the horizontal transformation consists of stereochemistry inversion transformation and the 
four compounds have unknown absolute configuration
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corresponding stereo is unassigned. It is challenging to fully 
represent structures of compounds containing stereocenters 
whose absolute configurations are unknown or undeter-
mined, and organizations apply varying structure business 
rules during compound registration to handle this. In our 
organization there is a complex system of structure com-
ments which attempt to describe what is known about the 
stereochemistry of such compounds but these comments are 
of course not taken into account during the NA analysis. To 
identify really surprising NA, we propose to ignore cycles 
where a transformation changes a stereocenter.

Figure 7 illustrates an example cycle, showcasing ste-
reochemistry at both levels. The horizontal transformation 
involves an inversion of stereochemistry at the transforma-
tion level. Despite the vertical transformation altering the 
R-groups into entirely new chemical structures, the oxa-
zolidinone stereo center is defined for the compounds con-
taining the chlorofluorobenzene group (compounds 1 and 
2), but it is undefined for the compounds containing the 
chloropyridine group (3 and 4). Compounds 1 and 2 were 
separated from a 1:1 isomeric mixture using chiral chro-
matography without determining the absolute configura-
tion at the methyl group chiral center; the same applies to 

stereotransformation are 0.40 and 0.22 respectively. The 
very low value for the inversion stereotransformation cycles 
can be understood by considering that such cycles consist 
of two pairs of enantiomers with likely very similar ADME 
property values within each pair [25]. At the compound 
level, we highlight cycles containing compounds with unas-
signed, assigned or no (none) stereocenters, irrespective of 
the variable part of the MMP transformation. Our data sug-
gests that compounds with unassigned stereochemistry are 
more likely to exhibit higher NA values, presumably due to 
the potential failure to incorporate actual stereochemical dif-
ferences correctly in the cycles. On-target data revealed that 
cycles where compounds do not have stereocenters have the 
lowest mean absolute NA (i.e. 0.46), while cycles with fully 
assigned and partially unassigned stereochemistry have val-
ues of 0.52 and 0.53 respectively. In the case of ADME data, 
cycles with assigned stereochemistry, partially unassigned 
stereochemistry or without stereo compounds had similar 
mean absolute NA values (0.38, 0.41 and 0.41 respectively), 
again consistent with the expected low influence of stereo-
chemistry on ADME SAR. Overall, approximately half 
(47%) of the cycles contain compounds with some form 
of stereochemistry. However, in a third of these cycles, the 

Fig. 8 NA trends for molecular polarity properties (A) and molecu-
lar spatial properties (B) for potentially surprising on-target cycles 
colored in red and for potentially surprising ADME cycles colored in 
blue. Error bars represent the standard error at 95% confidence. Each 

bin on the X-axis, independently of the property, group is composed 
of at least 20 cycles. The data for the properties ΔLogP, ΔTPSA, and 
ΔChi1 is categorized into bins, while the remaining properties are rep-
resented as integers
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Statistical property analysis on surprising NA cases

After classifying double transformation cycles into poten-
tially surprising and mundane, we here proceed to analyze 
the commonalities among the surprising cycles. We focus 
on properties associated with polarity, including LogP, 
TPSA, number of HBD and HBA. Additionally, we con-
sider structural descriptors related to the steric and shape 
aspects of the molecules. These encompass the fraction of 
sp3 hybridized carbons, the number of rotatable bonds, the 
number of heavy atoms and connectivity indices. All these 
descriptors are initially calculated at the compound level 
and then extended to the cycles by taking the largest dif-
ference between them. Assigning a descriptor value at the 
cycle level is crucial, as NA only exists at this level.

Figure 8 summarizes our findings: Lipophilicity (ΔLogP) 
has the most significant impact on NA in the surprising 
cycles. If lipophilicity is substantially changed during trans-
formations, the effect on binding might not be additive. 
To determine the underlying reasons of this observation, a 
detailed investigation would be necessary for each individ-
ual project. Figure 9 illustrates a cycle with a ΔLogP of 4.65. 
The compounds within this cycle have a broad spectrum of 
lipophilic character, ranging from the rather hydrophilic 
compound C1 to the extremely greasy compound C3. The 
most potent compound C2 has an intermediate lipophilicity 
arising from the combination of the polar pyrrolidinol and 
the lipophilic chlorobenzene substituents.

Although the impact is less pronounced, TPSA and num-
ber of HBA follow the same trend as lipophilicity across 
both types of datasets. We note that the difference in number 
of HBD does not influence the surprising cycles’ NA. This 
could be due to the lack of significant variability in the num-
ber of HBD within a cycle. The median change of number 
of HBD for the entire dataset is zero.

We have not identified a spatial descriptor that strongly 
correlates with NA. In the case of on-target data, there is 
a clear trend of increasing NA values as the difference in 
HAC and the number of rotatable bonds increases, up to 
a certain point (6 for HAC and 4 for rotatable bonds). For 
the remaining cycles with higher difference values, which 
constitute a minority, the effect is unpredictable, as indi-
cated by the error bars. The difference in HAC impacts the 
size of the molecule, while the difference in the number of 
rotatable bonds can lead to different spatial configurations. 
Both descriptors also account for the increase in NA val-
ues for the ADME set. While one might expect a correlation 
between the number of rotatable bonds and the fraction of 
sp3 hybridized carbons, this does not appear to be the case 
with the difference of calculated values. We also included 
the topological Chi indexes [26] as descriptors to capture 
the connectivity of the molecular graph. We compared the 

compounds 3 and 4. Hence compounds 1 to 4 are all sin-
gle stereoisomers, but their absolute configurations at the 
methyl group chiral center were arbitrarily assigned. Tak-
ing into account the displayed stereochemistry, this cycle 
exhibits a strong NA of 3.31. Yet, if the stereochemistries at 
the methyl group chiral centers of one pair of compounds in 
the horizontal transformation were assigned inversely (e.g. 
compound 1 with the stereochemistry and measured value 
of compound 2, and compound 2 with the stereochemistry 
and measured value of compound 1), the NA value would 
drop to 0.13. It is important to note that we can’t confirm 
stereochemistry assignment through NA analysis, but this 
instance provides a good example of how NA analysis could 
propose a correction or at least make it consistent in the 
dataset.

After categorizing the cycles according to the aforemen-
tioned criteria, we identified 40,889 double transformation 
cycles (21.7%) in the on-target set and 118,902 (16.9%) in 
the ADME set that qualify as potentially having surprising 
NA. The majority of the cycles are filtered out (classified as 
mundane) by these criteria, see Tables S3 and S4. Among 
all cycles with high NA, this helps to focus on the surpris-
ing cases where interesting NA may be present and where 
further SAR exploration is warranted.

Fig. 9 DTC from the CB2 dataset with strong surprising NA, which is 
potentially associated with a high difference in lipophilicity
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The AttentiveFP models clearly outperform the RF mod-
els when it comes to predicting ADME properties. How-
ever, the AttentiveFP models for on-target properties do not 
surpass the performance of the RF models. While we here 
only test stratified cross-validation, we expect that other 
validation setups show a similar result. The compounds 
which are part of the additive set are typically predicted the 
best. This is anticipated as a ML model can effectively learn 
from compounds that exhibit additive behavior. It aligns 
with findings from Kwapien et al., who asserted that data-
sets composed solely of additive data points are simpler to 
predict compared to those containing nonadditive data [27]. 
On the other hand, the nonadditive sets (i.e. mundane NA 
and surprising NA sets) generally have a smaller margin 
between the baseline and prediction, indicating these are the 
most challenging sets to predict. While the overall model 
performance varies across all datasets, a clear hierarchy of 
prediction quality appears. This order, based on RMSE val-
ues, is additive < mmp < mundane < surprising ~ rest.

Discussion

NA is a key phenomenon in SAR data that requires attention 
from drug design teams. Previously, NA has been estimated 
to affect around 10% of all compounds in a SAR dataset [1]. 
We here show that the majority of those cases, 70–80%, are 
mundane kinds of NA that are to be expected due to direct 
substituent interactions, linker exchanges, stereochemistry 
assignment issues, and transformations that in combina-
tion change the majority of the compounds. Those cases are 
likely to be expected by experienced design teams. Yet, for 
the remaining 20–30% of cases, NA comes as a surprise. On 
a fundamental level, drug design would not be possible with-
out additivity, as otherwise every new combination of sub-
stituents would give a very unpredictable result, and many 
more compounds would have to be synthesized. It would be 
very useful if we can reduce the amount of surprise. Design 
teams need to be aware of when to expect additivity and 
when they cannot in order to steer their synthetic efforts and 
increase the efficiency of SAR exploration.

Using a set of novel interpretable descriptors that char-
acterize double transformation cycles, we show that trans-
formations whose change in logP add up to a large amount, 
are likely to cause high NA. Other descriptors that indicate 
a change in polarity, such as ΔTPSA and ΔHBA, are also 
correlated with higher NA. For structural descriptors like 
ΔRotBonds or ΔHAC, on the contrary, we did not find a 
clear correlation with a change in NA. More work will be 
required to better understand the individual reasons for NA, 
in particular understanding this correlation with chang-
ing the polarity. To this end, NA has been explained with 

values for order zero (only vertices are represented), order 
one (for one edge path distance), and order two (for two 
edges path distance). Lower Chi values indicate a higher 
number of connectivity subgraphs. Considering that the 
ΔChi1 ninetieth percentile is 2.2 for on-target and 3.0 for 
ADME, we can still observe some contribution of connec-
tivity towards NA within this ΔChi1 range.

Property prediction on surprising NA compounds

Gogishvili et al. and Kwapien et al. pointed out that ML 
models are poor at predicting compounds that are frequently 
part of high NA cycles [1, 27]. Using the definitions we 
introduced here to characterize cycles into mundane and 
surprising, the performance of ML models on predicting 
compounds belonging to different classes can be evalu-
ated. ML models will assign activity values to compound 
structures, so a category mapping from the cycle level to the 
compound level is required.

We choose to assign compounds to one out of five differ-
ent sets: surprising NA, mundane NA, additive, MMP and 
rest. If a compound is part of cycles with high NA where 
the cycles are categorized as both mundane and surprising, 
it is assigned to the surprising NA set. If a compound is part 
of cycles with high NA, but the cycles are all categorized 
as mundane, it becomes part of the mundane set. A com-
pound becomes part of the additive set, if its average per-
compound NA falls below the criteria outlined in Eqs. 3 and 
4. If a compound is not part of any cycle, but has matched 
molecular pair neighbors in the dataset, it is assigned to the 
MMP category. Finally, if a compound does not have any 
MMPs, it is assigned to the rest category. The distribution 
of compounds between the five categories is rather consis-
tent across the properties examined for both on-target and 
ADME properties. The majority of the compounds fall into 
either the mmp set (with an average of 42.7% and 50.4% of 
compounds for on-target and ADME sets) or the additive set 
(averaging 44.6% and 37.5% of compounds for on-target 
and ADME sets respectively). The remaining categories, 
namely the rest set, the mundane NA set and the surpris-
ing NA set account for 2.1%, 8.5% and 2.1% of compounds 
in the on-target datasets, and 3.0%, 6.6% and 2.5% respec-
tively for the ADME datasets. We built models using RF as 
a classical ML algorithm and AttentiveFP as a neural net-
work approach. These are compared to a null model based 
on the activity mean value of each compound category. Fig-
ure 10 illustrates the comparison of performance metrics for 
two on-target properties (BACE1 and CB2) and two ADME 
properties (lipophilicity and solubility) as representative 
sets. The performance for all datasets can be found in Table 
S5 of the SI.
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ligand binding in two distinct regions of the binding pocket 
are independent of each other. Subtle or more significant 
changes in ligand conformation may therefore result in high 
NA. Complex effects such as changes in water networks or 
ligand binding entropy might also influence NA. In contrast, 
ADME properties are generally less controlled by specific 
pharmacophore sites or molecular features and are instead 
more dependent on the physicochemical properties of the 
entire molecule. Within the four ADME properties included 
in our analysis, aqueous solubility showed a significantly 
higher average absolute NA than lipophilicity, permeability 
and clearance (see Table S2). Lipophilicity is empirically 
an additive molecular property while permeability is cor-
related with lipophilicity and with additive physicochemical 
descriptors such as the number of hydrogen bonding atoms, 
polar surface area and rotatable bond count [29, 30]. Micro-
somal intrinsic clearance might be expected to be affected 
by molecular recognition by metabolizing enzymes but in 
practice, at the level of matched molecular pairs, the change 
in lipophilicity plays a significant role [31]. Solubility is 
heavily influenced by lipophilicity but also by crystal lat-
tice energy. The molecular recognition event important for 

specific occurrences, such as water networks [2], ligand 
conformational changes [28], protein side chain flipping 
[4], or complete ligand rearrangements [3]. However, all of 
these explanations are retrospective - for drug design teams, 
it would be very useful if we can derive rules that guide 
design teams on when to synthesize and test more substitu-
ent combinations.

Our findings suggest a distinct behavior of NA for on-
target datasets compared to ADME datasets, with on-target 
datasets exhibiting more NA than ADME datasets (see Table 
S2). Small molecule drug discovery projects typically aim 
to identify molecules that interact with proteins in a very 
specific manner. The primary on-target potency is driven by 
highly specific protein-ligand interactions, where the com-
pound’s conformation significantly influences and dictates 
the binding affinity. Therefore factors that impact ligand 
conformation such as chirality, ortho effects and hydro-
gen bond formation may heavily impact the SAR by vir-
tue of changes in molecular recognition. The extent of this 
impact will depend on the characteristics of the pocket and 
its flexibility. In turn, NA analysis examines the extent to 
which changes in binding affinity of two substructures of a 

Fig. 10 Performance metrics for two on-target end points (BACE1 
and CB2) and for two ADME properties (lipophilicity and solubility) 
are presented. The red dots represent the RMSE values of RF models, 
while the blue dots indicate the RMSE values for AttentiveFP models. 
The gray dots indicate the performance of the null model as a base-

line. The RMSE values have the same units as the properties which 
all are in logarithmic scale. Each model’s values are divided into five 
categories: mundane NA, surprising NA, additive, mmp, and rest com-
pounds. The percentage values indicate the relative number of com-
pounds in these categories
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membrane permeability assay (which is run at pH 6.5). An 
example of such a cycle is shown in Fig. 11. Compound 1 is 
the only compound that does not have a very high fraction 
ionized (> 99%) at pH 7.4 and pH 6.5 and therefore has far 
higher measured lipophilicity and permeability values than 
the other three compounds.

The observation that the majority of the observed high 
NA in the lipophilicity and permeability datasets could be 
attributed to a large error in the experimental determination 
of one or more compounds in the cycles leads to a different 
interpretation of the apparently poor performance of the ML 
models in predicting the compounds belonging to high NA 
circles, namely that the model is in reality giving a more 
accurate estimate of the property value than the experimen-
tal result. We have found that when a particular compound 
is flagged by the NA analysis as showing consistently highly 
positive or negative per-compound NA [5] and has a large 
difference between its ML predicted and measured value in 
the same direction, this is a very strong indication of a mis-
measured data point that should be followed up by a new 
measurement.

This research, for the first time, presents a systematic 
data analysis on NA across a broad spectrum of on-target 
assays. We have restricted our analysis to in-house datasets 
where all experimental values were obtained under the same 
conditions and repeat measurements were available. This is 
particularly relevant for NA analysis in order to minimize 
the experimental uncertainty associated with each assay, 
and allows us to assume that the noise from each measure-
ment is taken from the same distribution. Given that this 
analysis aimed to identify the impact of descriptors on NA, 
it was crucial to be extremely careful in minimizing any 
additional noise. Experimental uncertainty can have a large 
impact on SAR analysis. The distribution of NA values is 
directly tied to an upper limit of experimental uncertainty or 
experimental noise, which is typically between 0.1 and 0.3 
log units [19].

Typically, NA is a property of local SAR, consisting of 
four compounds. In a few cases, apparent NA is caused by 
a single error in the database: This could be a wrong mea-
surement, or the wrong compound assigned to a structure. 
NA analysis will point to compounds that are consistently 
part of cycles with huge NA. The experiments and struc-
tures of those compounds should be checked individually. 
In our study, we were able to identify inconsistency in the 
stereochemical assignment in one case, leading to apparent 
NA. Stereochemistry is tricky, as the exact stereochemis-
try is often not known, and the relative stereochemistry can 
be captured in a format that does not translate to the input 
SMILES strings used for NA analysis. NA analysis will 
point out such cases and requires corrections to make the 
assignment consistent on a SMILES level.

solubility is ligand-ligand interactions in the crystal lattice 
and this is not an additive property. Moreover, measured 
solubility values are also influenced by sample purity and 
the nature of counterions which may even lead to different 
kinetic solubility results for different batches of the same 
compound. Along with displaying more NA than the other 
ADME properties, solubility is also the most challenging 
for the ML models to predict as evidenced by the highest 
RMSE for AttentiveFP being associated with solubility 
(see Table S5). Nonetheless, it is interesting that with all 
four ADME properties we observed similar NA trends for 
molecular polarity properties as were observed with the on-
target datasets (Fig. 8).

Further investigation into the rare examples of high NA 
within the lipophilicity and permeability datasets revealed 
that in the majority of cases it could be attributed to an obvi-
ous measurement error in one of the four compounds within 
the cycle. Replacement of the measured value in such cases 
with the predicted value from an in silico model and subse-
quent recalculation of the NA reduced the absolute NA of 
these cycles to within normal experimental error for addi-
tive behavior. Inspection of the few remaining high NA 
cycles showed that the NA could very often be rationalized 
by a difference in ionization state for one of the four com-
pounds compared to the other three. Ionization has a large 
effect on lipophilicity and permeability - the ionized fraction 
partitions largely into the aqueous layer in the LogD7.4 assay 
and has much lower permeability in the parallel artificial 

Fig. 11 DTC from the lipophilicity (LogD7.4) and PAMPA permeabil-
ity (LogPeff) datasets that displays high NA attributed to a difference in 
fraction ionized for one of the four compounds
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Although we have not generated 3D conformations of 
the compound sets or incorporated protein information, the 
established descriptors are designed to capture 3D infor-
mation at the ligand level. However, if applicable, project 
teams would always analyze the SAR results together with 
3D modeling. Ideally, the insights derived from NA analysis 
could stimulate thought processes for highlighting potential 
NA effects and strategies to circumvent them. Possible out-
comes could include examining outliers through repeated 
measurements or aiding in the assignment of stereochemis-
try, synthesizing and testing new combinations of R-groups, 
and monitoring for significant changes in certain properties. 
We chose to keep the analysis within the cheminformatics 
realm for rapid computation and immediate NA assessment. 
Beyond the scope of this study, one could generate dock-
ing poses for all four members of a cycle, and evaluate the 
RMSD between the four compounds. Alternatively, one 
could perform FEP calculations to determine the binding 
free energy differences between the four compounds and see 
whether FEP can recapitulate high NA.

Conclusions

In this contribution, we further developed the understanding 
of causes of NA in molecular activity by analyzing a dataset 
of double transformation cycles from various consistent in-
house datasets. We identified descriptors that help differenti-
ate between mundane, i.e. explainable, and surprising NA in 
cycles. Factors such as the proximity of substituent groups, 
transformation similarity, size of molecular changes, linker 
exchanges, and changes in stereochemistry were found to 
substantially increase NA. These descriptors can help proj-
ect teams filter out cycles with mundane NA and focus on 
the surprising NA cases that require further investigation for 
unexpected SAR patterns.

We also investigated the relationship between NA and 
molecular properties derived from polarity and steric fac-
tors. The difference in lipophilicity (ΔLogP) was found to 
have the most profound effect on NA. Notably, there were 
distinct NA behaviors observed between on-target and 
ADME datasets, highlighting the importance of precise spa-
tial location of compound moieties in determining binding 
activity for on-target properties.

For ML model predictions, we show that the precision 
differs remarkably between different NA categories, includ-
ing surprising NA, mundane NA, additive, MMP, and rest. 
The models performed better on compounds in the additive 
set, while compounds in the NA sets were more challenging 
to predict. This categorization of NA introduces a novel way 
to measure the applicability domain and suggests the use of 
new descriptors to enhance predictability.

NA has a strong influence on the performance of ML 
models. Gogishvili et al. and Kwapien et al. have shown 
before that the predictive performance of ML models sub-
stantially drops for compounds involved in high NA SAR 
[1, 27]. Previous work has also shown that ML models 
have challenges predicting activity cliffs [32, 33]. Activity 
cliffs are a property for pairs of compounds, whereas NA 
is a property of four compounds in a cycle and the cycle 
could contain activity cliffs without necessarily exhibiting 
NA. We here confirm the finding that ML models have chal-
lenges when predicting properties of compounds that show 
high NA. We further expand this finding by showing that 
there is a hierarchy of ML models performance, depend-
ing on how well compounds are embedded in known local 
SAR. The hierarchy in order of decreasing performance is 
additive < mmp < mundane < surprising ~ rest. This is in line 
with previous research on applicability domain, yet offers 
a different, arguably more intuitive approach to understand 
predictivity of ML models. The hierarchy holds for both 
on-target and ADME datasets. High NA, no matter whether 
surprising or mundane, leads to compounds being predicted 
as badly as compounds that have no MMP neighbors, i.e. 
are chemically very distant to the rest of the dataset. Most 
likely, the overall performance of ML models will, inter alia, 
depend on how densely the SAR space is sampled within 
the training dataset. Will descriptor- or graph-based models 
even be able to accurately capture and model the reasons for 
NA? Given the results we show here, we feel that this is an 
important future research question for ML modeling.

The categories that we introduce here - additive/nonad-
ditive, MMP and rest - offer an alternative to the traditional 
model applicability domain, as they are able to separate 
compounds into such that are predicted well and others 
that are not. Traditionally, applicability domain is evaluated 
as Tanimoto similarity to the five nearest molecules in the 
training set [34]. The classification we offer here is argu-
ably more intuitive, as it is based on the molecular trans-
formations, the most fundamental way to analyze SAR 
datasets. Compounds from the double transformation sets 
have at least three close neighbors related by substructural 
transformations, facilitating more accurate predictions in a 
higher resolved SAR space. The compounds in the rest set 
are structurally the most dissimilar, followed by those in the 
MMP set. The three sets in which double transformation 
exists - additive, surprising and mundane - have comparable 
median Tanimoto coefficients but still differ substantially 
when it comes to the accuracy of predictions within them. 
Applicability domain based only on Tanimoto similarity is 
intrinsically different from similarity based on substructure/
mmp consideration. Therefore we argue that it is crucial to 
better understand NA to improve ML models.
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Overall, NA is still a key SAR phenomenon that we are 
only beginning to understand. Further investigations will 
be needed to understand and predict NA in SAR datasets, 
which will in turn be crucial to improve ML models and 
SAR exploration strategies.
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