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Abstract
Molecular dynamics (MD) simulation is a powerful tool for characterizing ligand–protein conformational dynamics and offers 
significant advantages over docking and other rigid structure-based computational methods. However, setting up, running, 
and analyzing MD simulations continues to be a multi-step process making it cumbersome to assess a library of ligands in 
a protein binding pocket using MD. We present an automated workflow that streamlines setting up, running, and analyzing 
Desmond MD simulations for protein–ligand complexes using machine learning (ML) models. The workflow takes a library 
of pre-docked ligands and a prepared protein structure as input, sets up and runs MD with each protein–ligand complex, 
and generates simulation fingerprints for each ligand. Simulation fingerprints (SimFP) capture protein–ligand compatibility, 
including stability of different ligand-pocket interactions and other useful metrics that enable easy rank-ordering of the ligand 
library for pocket optimization. SimFPs from a ligand library are used to build & deploy ML models that predict binding 
assay outcomes and automatically infer important interactions. Unlike relative free-energy methods that are constrained to 
assess ligands with high chemical similarity, ML models based on SimFPs can accommodate diverse ligand sets. We present 
two case studies on how SimFP helps delineate structure–activity relationship (SAR) trends and explain potency differences 
across matched-molecular pairs of (1) cyclic peptides targeting PD-L1 and (2) small molecule inhibitors targeting CDK9.

Keywords  molecular dynamics · machine learning · automated workflows · simulation fingerprints · pocket dynamics · 
MD · ML

Introduction

Structure-based drug design (SBDD) has become central 
to the drug discovery process and helped identify several 
marketed drugs available today [1]. Physics-based compu-
tational approaches that characterize protein–ligand interac-
tions have significantly evolved [2] and benefited immensely 
from advances in hardware and algorithm optimizations [3]. 
Among the wide gamut of physics-based SBDD approaches, 
docking methods [4] continue to be among the most popular 

and have been used for a range of drug discovery processes 
including library screening [5] and ligand optimization [6]. 
Although their primary appeal lies in the ability to quickly 
predict the binding pose of a ligand in the protein pocket, 
it has been shown repeatedly that incorporating conforma-
tional dynamics of protein–ligand interactions is critical for 
driving the ligand optimization process [7].

Molecular dynamics (MD) simulations are an important 
tool for understanding the dynamics of binding pockets and 
optimizing ligands for drug discovery [8]. MD simulations 
can provide detailed information about the dynamic behav-
ior of proteins and their interactions with ligands [9]. MD 
simulations reveal the stability of the complex and identify 
potential weaknesses or vulnerabilities that are useful in 
ligand optimization. MD simulations have been critical for 
delineating the relation between pocket dynamics and func-
tion of several classes of proteins including transmembrane 
receptors like ion channels [10], opioid receptors [11], viral 
capsids [12], sirtuins [13], and RAS [14] family proteins. 

 *	 Alexander C. Brueckner 
	 bruecknera15@gmail.com

 *	 Sirish Kaushik Lakkaraju 
	 kaushik.lakkaraju@bms.com

1	 Molecular Structure & Design, Bristol Myers Squibb, 
Princeton, NJ 08540, USA

2	 Biocon Bristol Myers Squibb R&D Centre, 
Bangalore 560099, Karnataka, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s10822-024-00564-2&domain=pdf


	 Journal of Computer-Aided Molecular Design           (2024) 38:24    24   Page 2 of 13

These studies led to the development of selective activators 
or inhibitors [15–18] for these protein targets.

While there have been significant advances in high-
performance computing infrastructure [19–22] and 
optimization of MD algorithms [23–25] to enable running 
MD with biological systems of increasing size [26–28] and 
complexity [29–31], the process of setting up, running, and 
analyzing data from MD simulations continues to be multi-
step [32, 33] and cumbersome. This severely constrains 
the regular use of MD for compound prioritization 
in optimization campaigns typically run in industry. 
Moreover, several recent works have started adopting 
different strategies to dramatically increase chemical 
search space considered either via generative machine 
learning (ML) strategies [34] or through docking exercises 
involving extremely large libraries [35, 36] in screening 
and optimization cycles of discovery projects [37]. These 
studies have applied thermodynamic methods to enrich hit 
rates by accounting for dynamic protein–ligand interactions 
and conformational heterogeneity of the protein and ligand 
and the interplay with water [38, 39]. Given the limitations 
around the chemical similarity of compounds considered 
in a dataset for relative free energy calculations [40] and 
conformational sampling with thermodynamic approaches 
[41], incorporating ‘regular’ long-time-scale MD into 
assessing large libraries from generative ML or enumeration 
workflows will improve the accuracy of predictions and 
increase enrichment of hits from these workflows.

We present an automated workflow (MDFit) that 
streamlines setting up, running, and analyzing Desmond 
[25, 42] MD simulations of protein–ligand complexes 
using the OPLS4 [43] force field. The workflow takes a 
library of pre-docked ligands and a protein structure as 
input, sets up and runs MD with each of the protein–ligand 
complexes, and then analyzes MD trajectories of each of 
the ligands in the input dataset. Analysis of MD trajectories 
includes flexibility of the ligand in the pocket via root mean 
squared deviation (RMSD) compared to the starting pose, 
stability of different ligand-pocket interactions, and other 
useful metrics that help quantify the dynamics of protein 
pocket and the ligand library. These metrics are combined 
into simulation fingerprints (SimFPs) that enable easy 
rank-ordering of the dataset along any of these collected 
metrics. In addition, we demonstrate that SimFPs can be 
used as features in ML models for potency prediction and 
mechanistic interpretation. In contrast to static encodings 
like protein–ligand interaction fingerprints, SimFPs capture 
the dynamics of protein–ligand interaction and facilitate 
more accurate predictions. Unlike relative free energy 
perturbation calculations, SimFP-based ML models are less 
restrictive about the need for chemical similarity within a 
dataset and can accommodate much more comprehensive 
sampling of pocket ligand dynamics through longer time 

scale MD. While there have been some attempts in the past 
with automating MD, analyzing bulk phase behavior of 
ligands [44, 45] or analyzing protein- ligand interactions 
[33, 46–48], our workflow streamlines and integrates all 
these aspects towards enabling a potency prediction ML 
model that learns comprehensively about protein–ligand 
interactions in the presence of water from MD and explains 
interesting SAR trends that are otherwise missed from static 
structure-based methods.

We show applications of MDFit for assessing (a) cyclic 
peptides that target PD-L1 & (b) small molecule inhibitors 
targeting CDK9, both with therapeutical potential as 
anticancer agents [49–51]. Compound names (Pep-01 to 
Pep-60 for PD-L1 [51] and Cpd 01 [52] to Cpd 39) from the 
original publications are retained.

PD-L1 binds to PD-1 at an elongated β-sheet interface. 
Cyclic peptides with beta-strand geometry offer unique 
advantages for binding to this shallow and expansive orthos-
teric site. An overlay of Pep-01 bound to PD-L1 (PDB code 
6PV9) and PD-1 bound to PD-L1 (PDB code 4ZQK) shows 
that Pep-01 binds to the β-sheet interface between PD-1 and 
PD-L1 (Fig. 1A). By mimicking the PD-1 secondary struc-
ture, Pep-01 packs against the PD-L1 surface with sufficient 
interaction energy to overcome the major costs of binding 
(Fig. 1B).

Previous studies have shown a strong correlation 
between peptide strain and their potency through docking 
of extensively sampled conformations of the peptides [53]. 
The extremely large number of rotatable dihedrals with 
these cyclic peptides makes relative free-energy perturbation 
methods for assessing potency and pocket dynamics 
untenable [54]. We apply MDFit to provide insights from 
protein-peptide dynamics that can clearly explain potency 
cliffs among matched-molecular pairs (MMPs). SimFPs 
enable easy identification of differences in the pocket and 
water-mediated interactions across MMPs that help build an 
understanding of the structure–activity relationship (SAR). 
In this study, SimFP features are also used for training an 
ML model to predict potency outcomes and infer which 
features are most important for activity. For the PD-L1 
dataset, the top SimFP features identified by the ML model 
offer additional insights about MMPs and their potency cliffs 
that would have otherwise been easy to miss with static 
information such as docked poses.

Cyclin-dependent kinases (CDKs) are Ser/Thr kinases 
regulated by cyclins. Several CDK inhibitors have advanced 
to the clinic and have shown efficacy for multiple myeloma 
and other tumors [52]. We ran MDFit with a series of 
azabenzimidazole inhibitors [51] using a previously 
published co-crystal structure (Fig. 1C). Akin to the PD-L1 
data set, top SimFP features identified from MDFit helped 
explain interesting SAR trends among MMPs that were 
otherwise not immediately apparent from their docked poses.
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Methods

The MDFit workflow (Fig. 2) automates the following 
process and the scripts are available for download from 
Github (https://​github.​com/​bruec​kna20​20/​MDFit). The 
workflow requires the user to provide a protein model 
and a library of ligands as inputs. The protein structure 

needs to be fully prepared with missing side chains and 
loops added, protonation states of residues determined, 
hydrogen atoms added, and terminal residues capped. 
For the PD-L1 case study, protein from PDB 6PV9 [55] 
was used as the starting protein conformation. For the 
CDK9 case study, protein from PDB 7NWK was used as 
the starting protein conformation. Protonation states of 
protein residues were determined using PropKa [56] and 

Fig. 1   A Overlay of 4ZQK and 
6PV9 crystal structures showing 
Pep-01 binds to the β-sheet 
interface of PD-L1 to block 
PD-1 binding. B Peptide bind-
ing interface with PD-L1. All 
residues within 5 Å of Pep-01 
are shown with critical residues 
determined by ML models (vide 
infra) shown in red (detrimen-
tal), green (beneficial), or blue 
(detrimental or beneficial). C 
Pocket interactions of Cpd 38 
in CDK9 using PDB 7NWK. 
While docked poses were indis-
tinguishable within the series, 
MDFit was useful in identifying 
the detrimental effect of pushing 
against Phe 103 & Ile 25 (vide 
infra)

Fig. 2   MDFit workflow takes a 
library of ligands with reason-
able starting poses in a protein 
pocket, runs MD, and generates 
collated SimFP for easy analysis 
of the stability of all ligands in 
the protein pocket across MD 
trajectories

https://github.com/brueckna2020/MDFit
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the protein was prepared using the Protein Preparation 
Wizard module in Maestro (Schrodinger, LLC). Ligands 
in the input library need to have 3D conformations with 
reasonable poses when bound to the protein pocket. For 
the PD-L1 dataset, Pep-01 [57] and sixty of its analogs 
as described previously [57] were used. Previous studies 
have harnessed solution-state NMR and X-ray co-crystal 
structures of Pep-01 to accurately generate bound states 
of Pep-01 and its analogs [53, 57, 58]. Top poses from the 
docked conformer ensembles [53] were used as starting 
conformations for MDFit. For the CDK9 case study, thirty- 
nine azabenzimidazole inhibitors described previously 
[51] were used. Compounds were docked into the pocket 
using Glide [59] and poses similar to Compound 6 in the 
crystal structure were used as inputs for MDFit.

1)	 Force-field parameters: The workflow begins with a call 
to the FFBuilder tool from Schrodinger that evaluates all 
dihedrals in the input library, sets up QM calculations 
for dihedral scans, and optimizes missing or sub-optimal 
dihedral parameters using these QM scans. Optimized 
dihedral parameters are merged into the OPLS4 [43] 
‘main’ force field supplied by the user. This optimized 
force field is subsequently used for MD and analysis.

2)	 Protein–ligand complexes: Each of the ligands in the 
input library is complexed with the protein which is 
put through an initial round of minimization using the 
MacroModel [60] module by Schrodinger. Powell-
Reeves Conjugate Gradient (PCRG) minimization of 
the complex is run for a maximum of 500 steps with a 
convergence criterion of all gradient thresholds set to 
0.3 kJ/mol.

3)	 Solvation: Minimized protein–ligand complexes are 
then inserted into an orthorhombic box with dimensions 
determined to set each edge of the box at 10 Å from 
the protein surface. The total charge of the protein and 
ligand is calculated and neutralizing ions Na+ or Cl− 
are placed randomly inside the box between the protein 
surface and the box edges. The remaining space is filled 
with water molecules.

4)	 Relaxation, Equilibration:

a.	 Protein, ligand, and ion parameters are modeled 
using OPLS4 [43] while SPC [61] is used to model 
water. All simulations are run using the Desmond 
[25] engine. Both the case studies discussed below 
were run with Desmond from Schrodinger suite 
version 2022-2.

b.	 Solvated protein–ligand systems are relaxed before 
the production MD simulations. Initially, the entire 
system is equilibrated for 100 ps using the NVT 
Brownian dynamics at T = 10 K, with a harmonic 
position restraint of force constant of 50 kcal/mol/Å2 

applied to all protein & ligand heavy atoms. At the 
same temperature and using the same restraints, the 
system is equilibrated for an additional 24 ps using 
a Berendsen [62] thermostat with pressure gradually 
dropping from 50 to 2 bars through NPT dynamics 
run.

5)	 Production: After equilibration, production MD 
simulations are run using NPT dynamics without 
positional restraints. By default, the workflow is set to 
run each protein–ligand solvated system in triplicate 
for a simulation time of 2 ns with a trajectory saving 
frequency set to 100 ps. Velocity seeds are randomized 
for each of the three MD runs. While the default settings 
stand at 2 ns for disk space considerations since MD 
trajectory files can be quite large, our calculations with 
PD-L1 & CDK9 data sets show that running simulations 
to 100  ns helps with convergence (see section on 
Simulation Length) and capturing interesting SAR 
trends. Therefore, for the PD-L1 & CDK9 datasets, each 
ligand–protein system was run for 3 replicates, each for 
100 ns.

6)	 Analysis: Schrodinger’s Simulation Event Analysis 
(SEA) scripts are used for assessing the production 
MD trajectories. The scripts collect a wide range of 
metrics (Supplementary Info, Table SI) that capture 
meaningful information and insights about ligand and 
pocket flexibility.

a.	 Clusters from Trajectories: RMSD-based clustering 
analysis provides the top N cluster representations 
(default of 5) of the model system, revealing 
common structural motifs or states. The Desmond 
MD clustering algorithm calculates the RMSD 
similarity matrix for the given trajectory frames. 
By default, ligand atoms are used for RMSD 
calculations, and the matrix is computed based on 
these chosen atoms. Subsequently, the workflow 
clusters the trajectory frames using the RMSD 
matrix. An affinity propagation algorithm is 
employed for clustering, which is well-suited for 
identifying distinct conformational clusters. The 
output CMS files include information about cluster 
size, frame indices, and timestamps. These diverse 
conformations based on ligand RMSD are used for 
all analyses described with the PD-L1 dataset.

b.	 Parched Trajectory: A trimmed MD trajectory is 
generated by retaining only the protein + ligand and 
closest N solvent molecules. By default, this is set 
to 100. Before parching, trajectories are aligned 
using the ligand atoms from the starting pose for 
reference.
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c.	 Interactions: Protein–ligand interactions, water-
mediated interactions, dihedral motions in ligands, 
and ion permeation are all recorded using event 
detection scripts that use pre-defined distance, angle, 
and dihedral cutoffs based on literature precedent 
[63–65]. The workflow extracts and tabulates all 
protein–ligand interactions and characterizes their 
stability as a percentage of the simulation time 
that each interaction was observed. For the PD-L1 
dataset, along with the protein–ligand interactions, 
pre-calculated strain from the docked pose [53] is 
also added to the SimFP output for further analysis. 
Although all frames of the triplicate MD production 
runs can be included for this analysis (and is the 
default setting in the workflow), for both PD-L1 & 
CDK9 datasets, the first 10 ns (100 frames) of MD 
with each ligand were not considered for fingerprint 
generation.

While the automated part of the MDFit workflow stops 
with the generation of SimFPs, a predictive model can be 
readily trained to map SimFPs to experimental potency 
values. We emphasized the selection of simple, interpret-
able models that enable both the prediction of potency from 
SimFPs and the identification of important features. In this 
study, we investigated Linear, Ridge, Lasso, Random For-
est, and Gradient Boosting Regression as implemented in 
scikit-learn [66] (see Supporting Information; Table S2, 
Figures S1–S5). Our workflow uses regression weights, 
impurity for tree-based models, and/or leave-one-feature-
out cross-validation to estimate feature importance. Model 
prediction performance was investigated via nested leave-
one-molecule-out cross-validation (LOMO-CV). SimFPs 
from triplicate runs were used as- is or averaged to arrive 
at an input feature matrix. The feature matrix was preproc-
essed by normalizing on the unit hypercube. The target IC50 
values were transformed to pIC50 values and standardized 
to zero mean and unit variance. For each model type, hyper-
parameters were selected by minimizing the mean squared 
error using grid search LOO-CV. Feature importance was 
computed in CV folds and a final model was fit to the full 
data set for comparison.

Results and discussion

Simulation fingerprints (SimFPs) are a collection of 
interactions between a ligand and the protein target 
observed through MD simulations. The reported values are 
the average interaction frequency across a simulation. For 
example, a SimFP of 0.5 translates into a protein–ligand 
interaction occurring in 50% of the MD simulation frames. 
A SimFP value can be greater than 1.0 in cases where a 

ligand interacts with a protein residue through multiple 
points of contact (e.g., a bidentate interaction).

SimFPs can be used to rank-order or identify patterns 
across Matched Molecular Pairs (MMPs) for ligands with 
experimental readouts. Observed trends can be used to 
prioritize design ideas where the user gives preference to 
those that retain or enhance desired interactions. For larger 
data sets, SimFPs can be used as features to train ML models 
that can in turn be used to predict experimental readouts and 
assign feature importance. In addition, the critical SimFPs 
highlighted by the ML model can be used to further explain 
differences in observed readouts, such as potency. In this 
section, we discuss the utility of SimFPs in detail, focusing 
first on feature importance followed by handling edge cases.

SimFP feature identification

Machine learning methods can be used to identify specific 
peptide-protein interactions that contribute to the prediction 
of the desired endpoint from the full SimFP data set. For 
PD-L1, a Lasso regression model was built to predict the 
HTRF pIC50 values using SimFPs and strain energy [53] as 
features. While the model performance was modest (Fig. 3, 
right; LOMO-CV Q2 = 0.36 and RMSE = 0.78), using the 
SimFPs as features provides interpretability lost in more 
complex modern ML models.

The top ten features (weights with the largest absolute 
value) of the PD-L1 data set are reported in Fig. 3, left. We 
note that along with interaction stability fingerprints that 
come from MDFit, pre-computed strain energies [53] were 
included as an additional feature of SimFP. Strain energy 
remains the standout feature, consistent with previous 
studies [53], while a water-mediated interaction with Asn63 
was the most detrimental (negative weight) and a water-
mediated interaction with Val76 was the most beneficial 
(positive weight) SimFP to potency. Based on the feature 
importance, peptide optimization should focus heavily on 
minimizing peptide strain followed by minimizing water-
mediated interactions with Asn63 and maximizing water-
mediated interactions with Val76. Select Match Molecular 
Pair (MMP) cases will be described herein using the feature 
selection to explain SAR.

MMPs with strain energy differences

Mutating position 2 from NMe-Ala in Pep-01 to NMe-Val in 
Pep-41 results in a significant drop in potency (pIC50 = 8.1 
vs 6.0, respectively). Minor variations were observed for the 
top SimFP features, but a major increase in strain energy for 
Pep-41 explains the loss in potency (Fig. 4). While seem-
ingly minor, the addition of a bulky sidechain distorted Pep-
41’s backbone conformation, increasing the strain by nearly 
0.02 kcal/mol/heavy atom which is a remarkably high cost 
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for two additional heavy atoms. In a prospective peptide 
design exercise around this MMP, modifications would focus 
on reducing the strain energy of Pep-41 while retaining the 
SimFPs observed with MDFit.

MMPs with hydrophobic interactions differences

Pep-01 and Pep-66 differ only at position 11, where Pep-
01 has NMe-Nle and Pep-66 has NMe-Ser. This mutation 
results in a significant loss in HTRF potency (pIC50 = 8.1 
vs 6.8, respectively). Truncating the sidechain of Pep-
01 results in a favorable reduction in strain energy but 

sacrifices a hydrophobic interaction with Tyr123 (Fig. 5). 
The attractive forces between Tyr123 and NMe-Nle fully 
liberate water in the binding interface, more fully optimiz-
ing the protein-peptide compatibility [67]. Smaller polar 
sidechains will not fully desolvate the binding site, com-
promising the binding affinity. This case exemplifies the 
importance of integrating SimFPs and metrics from rigid 
methods such as docking. Relying solely on strain energy 
for ligand optimization or prioritization would incor-
rectly rank Pep-66 higher than Pep-01. Without the high-
throughput analysis of MD provided by MDFit, project 
teams could be misled, and optimization strategies may 

Fig. 3   Left: Top features for the PD-L1 full peptide SimFP data set. 
Green: Positive contribution, i.e., improving this interaction or maxi-
mizing this feature improves pIC50. Red: Negative contribution, i.e., 
reducing this interaction or minimizing this feature improves pIC50. 
Right: Lasso leave-one-molecule-out cross-validation (LOMO-CV) 
RMSE = 0.78 and Q2 = 0.36. The parity plot shows ½ and 1 log error 

bands. Normalized strain energy is the top feature with a negative 
contribution. In other words, reducing strain helps with improving 
potency. Water-mediated interaction with Asn63 is identified to have 
the most detrimental contribution while water-mediated interaction 
with Val76 has the most positive contribution to the HTRF potency of 
these cyclic peptides to PD-L1

Fig. 4   Cluster representatives for matched molecular pairs Pep-01 and Pep-41 in the PD-L1 data set. The backbone conformation of Pep-41 is 
distorted compared to Pep-01, resulting in a much higher strain energy
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lead to undesired outcomes. For peptide optimization in 
this MMP, designs would aim to recover the hydrophobic 
interaction in the Pep-01 MDFit SimFP while maintaining 
the lower strain energy observed for Pep-66.

Kullback–Leibler divergence for matched‑pairs

In some cases, differences in MD stabilities across the 
top features highlighted by the ML model do not fully 
explain the difference in potencies. Pep-52 features a 
beneficial water-mediated interaction with Val76 which is 
not observed for Pep-01 (importance =  +0.64) as well as 
an amplified detrimental water-mediated interaction with 
Gln66 (importance = –0.38). All other SimFP features were 
remarkably similar between the two peptides. Based on only 
these features, one would expect Pep-52 to have equal or 
slightly better HTRF potency compared to Pep-01. However, 
Pep-52 was about fivefold less potent than Pep-01.

The Kullback–Leibler divergence (KL divergence, rela-
tive entropy [68]) between SimFPs offers an alternate quan-
tification strategy that characterizes differences across all 
the features in the SimFPs into a single dimensional quan-
tity. SimFP of Pep-01 is treated as the reference and KL 
divergence for all the other peptides in the series was calcu-
lated relative to Pep-01. KL divergence identified Pep-52 to 
have the most divergent SimFP compared to Pep-01 (29.9; 
Fig. 6A) prompting further investigation.

The  d i f fe rence  between  the  raw SimFPs 
(|SimFPPep-52–SimFPPep-01|) identified the water-mediated 
interaction with Gln66 as the single most divergent SimFP 
feature across all three repetitions of Pep-01 and Pep-52. 
The detrimental water-mediated interaction between Pep-52 
and Gln66 for the individual repetition SimFPs were 80%, 
61%, and 55% (Fig. 6B; trajectory 3, 2, 1, respectively). In 
contrast, Pep-01 featured this interaction a mere 42% in 
trajectory 2 and never registered (0%) in trajectories 1 and 3.

Visualizing the representative clusters for Pep-01 and 
Pep-52 revealed the backbone carbonyl of Pro4 in Pep-52 
forms a water-mediated hydrogen bond with the backbone 

carbonyl of Gln66 (Fig. 7). For Pep-01, the same backbone 
carbonyl of Pro4 hydrogen bonds directly with the sidechain 
of Gln66. Water infiltration characterizes protein-peptide 
incompatibility for Pep-52, explaining the drop in HTRF 
potency relative to Pep-01 (pIC50 = 7.6 vs 8.1, respectively). 
While incompatibility may be observed tangentially in com-
putational methods that treat proteins as rigid bodies, direct 
observation of water infiltration at a specific residue from 
dynamic models focuses the project team on an area of the 
ligand for further optimization. In this case, a deep dive into 
ML feature importance, KL divergence, and raw SimFPs 
helped differentiate the peptide’s behavior in the binding 
pocket and explain the difference in potency.

Fig. 5   Cluster representa-
tives for matched molecular 
pairs Pep-01 and Pep-66 in the 
PD-L1 data set. Pep-66 loses a 
hydrophobic attractive interac-
tion with Tyr123 relative to 
Pep-01

Fig. 6   A The top 10 most divergent SimFPs by KL divergence rela-
tive to Pep-01. B Differences in water-mediated interactions with 
Gln66 across three runs of MD. Pep-01 features less water-mediated 
interaction with Gln66 compared to Pep-52 indicating a tighter bind-
ing, compared to Pep-52 where water has seeped into the pocket
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Small molecule CDK9 inhibitors

Although there is some semblance of correlation (R2 = 0.1) 
between docked pose G lide scores and enzyme pIC50 (SI 
Figure S6), ML learning with SimFP was useful in delin-
eating interesting SAR trends, particularly those involving 
water-mediated interactions that were otherwise missed 
in docking. The top ten features (weights with the larg-
est absolute value) of the CDK9 data set are reported in 
Fig. 8, left. A hydrophobic interaction with Phe103 (Fig. 1C, 
Fig. 8) was the most detrimental (negative weight) and a 
hydrophobic interaction with Ile25 was the most beneficial 
(positive weight) SimFP to potency. Select Match Molecular 
Pair (MMP) cases will be described herein using the feature 
selection to explain SAR.

MMPs with hydrophobic interactions differences

Compound 24 and Compound 22 differ only around the pyri-
dinone core, where Compound 24 is an isopropylpyridine 
ring and compound 22 has a methoxy-methylpyridinone. 
This core modification results in a significant loss in potency 
(pIC50 = 8.5 vs 4.5, respectively). Unsubstituted pyridinone 
of Compound 24 results in a favorable reduction in hydro-
phobic contact with Phe103 in favor of a beneficial pi-pi 
stacking interaction (Fig. 9). For small molecule optimiza-
tion in this MMP, designs would aim to remove the hydro-
phobic interaction in Compound 22.

MMPs with water infiltration

Compound 24 and Compound 30 differ only around the 
pyridinone core R-group, where Compound 24 is an isopro-
pyl and Compound 30 has a tetrahydropyran. This solvent-
exposed modification results in a significant loss in potency 
(pIC50 = 8.5 vs 5.4, respectively). The smaller R-group of 
Compound 24 results in better protein–ligand compatibil-
ity than the bulkier R-group of Compound 30. The pyridi-
none core of Compound 30 distorts and drifts in the binding 
site, allowing water infiltration, observed as a disfavored 
water-mediated interaction with Asp167 (Fig. 10). For small 
molecule optimization in this MMP, designs would aim to 
probe the R-group size tolerability and the effects on pro-
tein–ligand compatibility.

Simulation length

To enable efficient rank-ordering of peptide designs using 
SimFPs prospectively, it is important to also assess simula-
tion convergence. Root Mean Square Deviation (RMSD) of 
the ligand conformations relative to the protein pocket is an 
often discussed metric to estimate convergence. However, 
as shown in Fig. 11, RMSD plots are not always useful in 
estimating how long a simulation needs to be for full con-
vergence. Instead, the divergence of SimFPs from differ-
ent time intervals relative to the full simulation trajectory 
(100 ns) can be used to estimate simulation convergence 
(Fig. 11). For the reference Pep-01 in the PD-L1 dataset 

Fig. 7   Cluster representatives for matched molecular pairs Pep-01 
and Pep-52 in the PD-L1 data set. Pro4 engages Gln66 through a 
direct hydrogen bond (Pep-01) or a water-mediated hydrogen bond 

(Pep-52). The water infiltration in the Pep-52 simulations provides a 
possible explanation for the difference in potency relative to Pep-01
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Fig. 8   Left: Top features for the full CDK9 SimFP data set. Green: 
Positive contribution, i.e., improving this interaction or maximiz-
ing this feature improves pIC50. Red: Negative contribution, i.e., 
reducing this interaction or minimizing this feature improves pIC50. 
Right: Lasso leave-one-molecule-out cross-validation (LOMO-CV) 

RMSE = 0.96 and Q2 = 0.27. Hydrophobic contact with Phe103 is the 
top feature with a negative contribution. In other words, reducing the 
interaction prevalence helps with improving potency. Hydrophobic 
interaction with Ile25 is identified to have the most positive contribu-
tion to the HTRF potency of the CDK9 inhibitors

Fig. 9   Cluster representatives for matched molecular pairs Compound 
24 and Compound 22 in the CDK9 data set. Pyridinone engages 
Phe103 through a direct pi-pi stacking interaction (Compound 24) or 
hydrophobic contact (Compound 22). The replacement of the pi–pi 

interaction with a hydrophobic interaction during the simulations pro-
vides a possible explanation for the difference in potency relative to 
Compound 24

Fig. 10   Cluster representatives for matched molecular pairs Com-
pound 24 and Compound 30 in the CDK9 data set. Piperidinone 
engages Phe103 through a water-mediated interaction (Compound 

30) or does not engage Asp167 (Compound 24). The water infiltra-
tion in the binding site during the simulations provides a possible 
explanation for the difference in potency relative to Compound 24
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and Compound 38 in the CDK9 dataset, SimFPs converge 
at 70 ns for all three MD trajectory repetitions. Therefore, 
100 ns MD trajectories can be assumed to fully characterize 
relevant protein–ligand dynamics, and ML models can rank-
order designs using the SimFPs.

Conclusions

We have presented a new high-throughput workflow for 
setting up, running, and analyzing molecular dynamics 
simulations for a library of ligands. MDFit produces 
compiled simulation fingerprints (SimFPs) for users to 
decipher critical protein–ligand interactions and rank-
order ligands based on compatibility. Application of the 
MDFit workflow to a data set of 61 peptides bound to 
PD-L1 & 39 small-molecule inhibitors bound to CDK9 
resulted in the discovery of several SimFPs critical for 
HTRF potency & binding. Matched molecular pairs were 
explored to highlight the utility of SimFPs when combined 
with ML techniques. KL divergence offers an attractive 
alternative to explain potency differences otherwise not 
evident in the top ML features.

The stability of pocket interactions from MD 
simulations characterizes the enthalpy of binding into the 
protein pocket. Conformational entropy is included via 

pre-calculated strain of the docked pose [53] in the SimFP. 
Through sufficient sampling of each ligand in the binding 
pocket, ML models trained on these SimFPs account 
for all important thermodynamic events and therefore 
have reasonable accuracy of predictions of binding 
affinity. Unlike relative free energy perturbation [69] 
approaches that have limitations based on ligand size [54] 
and chemical similarity [70], SimFP-based ML models 
for potency assessment are less likely to have either of 
these constraints. Future version releases will support 
other MD engines (OpenMM [71], GROMACS [72]) and 
force-fields (OpenFF [73]), add more information into 
SimFPs [73], and additional analysis via machine learning 
approaches. While the current version uses Schrodinger’s 
native simulation interaction analysis APIs for Desmond 
trajectories, for SimFPs with OpenMM/GROMACS 
trajectories we will integrate ProLif [48] into our 
workflow. The MDFit workflow is expected to be useful 
for characterizing pocket dynamics of multiple modalities, 
including small molecules, peptides, PROTACs, and 
molecular glues to drive drug discovery projects moving 
forward.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10822-​024-​00564-2.

Fig. 11   A, B: Heavy-atom RMSD of Pep-01 in PD-L1 and Com-
pound 38 in CDK9 data set respectively relative to the protein pocket 
throughout the three 100  ns MD repetitions. C, D: KL divergence 

of Pep-01 & Compound 38 SimFPs relative to the full trajectory 
(100 ns) shows that simulations converge at 70 ns

https://doi.org/10.1007/s10822-024-00564-2
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