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Abstract
Generative approaches to molecular design are an area of intense study in recent years as a method to generate new pharma-
ceuticals with desired properties. Often though, these types of efforts are constrained by limited experimental activity data, 
resulting in either models that generate molecules with poor performance or models that are overfit and produce close analogs 
of known molecules. In this paper, we reduce this data dependency for the generation of new chemotypes by incorporating 
docking scores of known and de novo molecules to expand the applicability domain of the reward function and diversify the 
compounds generated during reinforcement learning. Our approach employs a deep generative model initially trained using 
a combination of limited known drug activity and an approximate docking score provided by a second machine learned 
Bayes regression model, with final evaluation of high scoring compounds by a full docking simulation. This strategy results 
in molecules with docking scores improved by 10–20% compared to molecules of similar size, while being 130 × faster than 
a docking only approach on a typical GPU workstation. We also show that the increased docking scores correlate with (1) 
docking poses with interactions similar to known inhibitors and (2) result in higher MM-GBSA binding energies comparable 
to the energies of known DDR1 inhibitors, demonstrating that the Bayesian model contains sufficient information for the 
network to learn to efficiently interact with the binding pocket during reinforcement learning. This outcome shows that the 
combination of the learned latent molecular representation along with the feature-based docking regression is sufficient for 
reinforcement learning to infer the relationship between the molecules and the receptor binding site, which suggest that our 
method can be a powerful tool for the discovery of new chemotypes with potential therapeutic applications.

Keywords  Discoidin domain receptor 1 · Generative molecular models · Molecular docking · Bayesian regression · 
Machine learning in drug design

Introduction

Identifying a new compound active against a desired target 
within the immensity of chemical space requires screening 
libraries of drug-like molecules, currently at sizes of billions 
of compounds [1], for new leads that occur with a best case 
frequency of approximately 1 in 1000 (1 in 30,000) for 1 μM 
(100 nM) compounds [2]. Both traditional computer aided 
drug design (CADD) and new machine learning (ML) drug 
design approaches are concerned with increasing the rate of 
new active identification and the quality of the actives identi-
fied. Using CADD this goal is often accomplished through 
virtual screening, in which known compounds from a data-
base such as ZINC [3] or REAL [4] are rapidly evaluated 
either by docking against a known protein structure [5], or by 
evaluating their similarity to known active compounds [6]. 
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Conversely, machine learning approaches often attempt to 
accelerate this process by eliminating the library and instead 
incorporating generative models that are capable of design-
ing new active molecules directly [7].

The efficacy of the traditional CADD approach was 
recently illustrated in one of the largest ever reported vir-
tual screening and synthetic campaigns [2]; in this work, 
Lyu et al. screened 138 million make on demand molecules 
against the D4 receptor using DOCK3.7 [8] and selected 
for testing 549 compounds with different scaffolds across 
a range of docking scores. In general, when considering 
known active compounds, docking scores typically show 
greater correlation with geometric root mean squared devia-
tion from the known binding pose than with activity [9]. 
This was also true of the assayed results reported by Lyu 
et al., the docking scores showed little correlation with 
individual compound activity, however the probability of 
a compound being active was shown to correlated strongly, 
with the top scoring compounds having upwards of 25% hit 
rates compared to below 1% at lower scores. A comparable 
machine learning driven effort is that of Zhavoronkov et al. 
[10] who used a variational auto encoder (VAE) combined 
with a tensor train encoded gaussian mixture model (GMM) 
to localize sampling to regions of high activity within the 
VAE latent space. Using this approach, Zhavoronkov et al. 
generated 30,000 new molecules that were then prioritized 
using traditional CADD techniques, and ultimately identified 
a new Ponatinib [11] derivative with 9 nM activity. Subse-
quently, a number of other generative methods have contrib-
uted significantly to the identification of new preclinical lead 
candidates [12, 13].

Based on the success of the above campaigns, we set out 
to combine the generative model described by Zhavoronkov 
et al. [10] with a reward function that could rapidly and 
accurately approximate the docking affinity of the generated 
compounds. The goal of this combination is to overcome 
the known limitation of generative molecular models which 
tend toward high similarity with the active molecules used 
to condition the generative process [14] as well as lessen-
ing the amount of initial data needed for such a model to be 
applicable to a new drug target [15]. To approximate the 
docking scores, we investigated several techniques and show 
Bayesian Ridge regression based on Morgan radius 2 finger 
prints (MFP2, equivalent to ECFP4) [16] to have the best 
combination of accuracy, speed, and extensibility beyond the 
training set. An overview of the training process is depicted 
in Fig. 1A.

We are not the first to consider combining traditional 
CADD approaches with machine learning. Other research-
ers have directly incorporated docking programs as scoring 
functions within larger machine learned models designed to 
iteratively optimize the molecular docking scores [17–19]. 
Another popular approach is using machine learning as a fast 

prescreening step [20–22] to identify molecules from a library 
that are likely to have high docking scores prior to the more 
time consuming step of running the docking simulation. Most 
similar to this work, Choi and Lee presented V-Dock [20] a 
multilayer perceptron (MLP) model for predicting docking 
scores, QED, and Tanimoto similarity of molecules to known 
targets. This was combined with MolFinder [23], a SMILEs 
based evolutionary optimization algorithm, to develop diverse 
molecules with high docking scores and QED. In another simi-
lar recent work, Ciepliński et al. [24] developed a docking-
based benchmark from 1200–10,000 docked compounds for 
4 different targets. For each target, an MLP was trained that 
could predict the docking score of compounds toward that 
protein, with the MLP output then being used as an optimiza-
tion goal for three generative networks (CVAE [25], GVAE 
[26], and REINVENT [27]) resulting in molecules with dock-
ing scores considerably above the 50th percentile of random 
ZINC molecules, though below the 10th percentile. Our work 
expands upon these previous efforts in several ways. First, our 
GMM-VAE model is considerably more complex than previ-
ously explored generative models primarily due to the GMM 
mapping of the latent space generated during the initial train-
ing. This allows us to employ a transfer learning approach 
wherein the GMM is initially trained on known actives, but 
approximate docking scores are used during reinforcement 
learning, enabling a greater diversity of generated com-
pounds, while still incorporating known activity data within 
the GMM. Finally, we show that Bayes regression based on 
MFPs compares comparably to the MLP approaches in the 
previous works, and is independent of similarity to known 
active compounds.

As in the case of Zhavoronkov et al. [10], we elected to 
investigate the discoidin domain receptor 1 (DDR1), a recep-
tor tyrosine kinase implicated in fibrosis and solid tumor 
formation [28–30]. We show that our approach results in a 
significant increase in average docking score as compared 
to a similarity only reinforcement across all ranges of simi-
larity to known molecules and all molecular weights. Fur-
ther, by comparison to randomly selected molecules from 
the ZINC database using scores normalized by molecular 
weight, we calculate an approximately 670-fold enrichment 
in the best scoring (< − 0.03/amu) compounds across all 
molecular weights. When accounting for the time neces-
sary to train the encoder and conduct reinforcement learn-
ing, this corresponds to a roughly 130-fold speed up in top 
scoring compound identification. Finally, we show that these 
increased docking scores correlate with docking poses with 
interactions similar to known inhibitors and result in high 
MM-GBSA binding energies comparable to known DDR1 
inhibitors, demonstrating that the Bayesian model contains 
sufficient information for the network to learn to efficiently 
interact with the binding pocket during reinforcement 
learning.
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Fig. 1   Pipeline Overview A Training of the Reinforcement Learner: 
Training of our pipeline occurs in three distinct stages. In Stage (1) 
known active molecules are combined with reference molecules 
and used to train the GMM-VAE. This yields a probability distribu-
tion that models the location of the known actives within the latent 
space and a decoder model that converts the latent space coordinate 
to a SMILEs string. In Stage (2) random molecules are generated 
based on the initial probability distribution and docked using SMINA. 
These docking scores along with those of the known actives are used 
to train a regression model to predict docking score based on molecu-
lar feature. In Stage (3) the regression model is converted to an expo-
nential reward function, and used to update the probability distribu-
tion through reinforcement learning. After training, new compounds 
are generated and high scoring compounds are validated by docking. 
B T-SNE Embedding of the Reinforcement Learning Trajectory: This 
plot was generated from the MFP2 features of known and generated 

molecules and shows the progress of the reinforcement learner over 
2000 training epochs. At each indicated epoch, 500 molecules were 
sampled and included in the embedding. Known DDR1 inhibitors 
are shown in red, and inhibitors of other kinases in khaki. As seen in 
the embedding, learning occurs primarily in two modes, iteration on 
the scaffold of known actives resulting in random exploration of the 
chemical space locally around training compounds (see the circled 
region), and population drift starting from the center of the distribu-
tion guided by the reinforcement gradient toward high scoring scaf-
folds (As indicated by the arrows). C Sample Generated Molecules 
Shown are 6 molecules that demonstrate docking scores well above 
the average of known inhibitors (− 9.5), low ChEMBL similarity, and 
high weight normalized docking score. Poses of these molecules are 
available in Supplemental Fig. 2. Depictions of the latent space are a 
3D T-SNE embedding of the latent space descriptors of the training 
molecules. Coloring is based on the training sets
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Results and discussion

Training the GMM‑VAE

The GMM-VAE was trained in batches of 1000 molecules 
composed of 25%/25%/10%/40% of DDR1 kinase inhibitors 
(1.5 k)/other kinase inhibitor (10 k)/non-kinase inhibitors 
(10 k)/uninvestigated druglike molecules (1.6 M). Training 
was conducted over 50 epochs where each epoch consisted 
of complete encoding of the uninvestigated druglike mol-
ecules with each other set randomly sampled to fill the batch. 
Molecules were represented as simplified molecular input 
line entry system (SMILES) strings that were converted to 
vectors using an integer embedding to represent the atom 
and bond characters. Stereochemistry was omitted from the 
encoding. The GMM model was conditioned using a binary 
activity flag that indicated whether a molecule was active 
against any kinase with an IC50 of less than 10uM. Dur-
ing training, the loss function (see Zhavoronkov et al. [10]) 
decreased rapidly during the first 5 epochs as the autoen-
coder reached upwards of 99% accuracy in reconstruction 
of the SMILES strings. Over the remaining 45 epochs, the 
GMM model continued to converge, though improvements 
were minimal in the final epochs. After training, the GMM 
was used to direct sampling from the regions of the latent 
space predicted to have high likelihood of containing DDR1 
inhibitors. Prior to reinforcement learning, approximately 
25% of samples yielded valid SMILES strings. Visualization 
of the sampling and training molecules using a t-distributed 
stochastic nearest neighbor (T-SNE) [31] embedding of the 
MFP2 features showed samples to be mostly normally dis-
tributed within the T-SNE space with regions of high con-
centration near the DDR1 inhibitors, and scattered samples 
among the other kinase inhibitors (Fig. 1B, Supplemental 
Fig. 1). Given the significant difference between the latent 
representation and the T-SNE, this represents a well-trained 
and diversely featured model.

Developing and training the docking regressor

In developing the docking regressor, we had several desired 
characteristics for the constructed model. First it must be 
accurate enough to enable optimization of the docking 
score during reinforcement learning. Second, it must be 
fast enough in execution to be included in the reinforce-
ment learning, without meaningfully increasing the training 
time. Third, the loss of accuracy outside the training domain 
must be gradual; the generation of new molecules necessar-
ily means some extrapolation outside the training data must 
occur, meaning any model that loses accuracy rapidly will 
be unsuitable for new chemotype development. To ensure 
our training data spanned the entirety of the chemical space 

considered we used SMINA [32] to dock all collected DDR1 
and other kinase inhibitors, as these define the breadth of 
the chemical space considered as seen in the T-SNE embed-
dings. We supplemented this with an additional 2500 mol-
ecules sampled from the GMM-VAE, to account for any 
chemical groups enriched in that model but absent in the set 
of kinase inhibitors.

Using this docking data, we trained 16 common regres-
sion models (See Table 1) available in Scikit-Learn [33] to 
predict the docking scores based on the molecules MFP2 
features. To generate an initial set of new molecules from 
the GMM-VAE, we initially conducted reinforcement learn-
ing in a manner similar to Zhavoronkov et al. [10] using 
two self-organized maps (SOMs) [34] that return the prob-
ability of a molecule being either a DDR1 kinase inhibitor, 
or a kinase inhibitor of any type. After reinforcement, new 
molecules were generated and docked, and these generated 
molecules were used as a blind validation for each regres-
sor model. Pearson’s r, R2, mean absolute error(MAE), and 
root mean squared error (RMSE) were used as the regressor 
evaluation criteria. For each model, ten fold cross validation 
was used to measure the uncertainty in these parameters. 
Execution time was also measured for each model. Based 
on these criteria Bayesian ridge regression narrowly out-
performed stochastic gradient descent, with the remaining 
regressors showing considerably worse performance. Addi-
tionally, the Bayesian Ridge regressor takes only 2 ms per 
epoch to estimate the docking score, a negligible amount of 
time compared to the 2.5 s needed to conduct the sampling 
and reinforcement, and a considerable speed up compared to 
the 0.4 h needed to locally conduct the docking scoring for 
the same number of molecules. Of note, Bayesian regressors 
have been used extensively by the Liotta group at Emory 
University for molecular design and virtual synthesis show-
ing them to be accurate and versatile with little training data 
[35] and useful in the development of inhibitors against a 
range of targets [36–39].

Reinforcement learning

To conduct reinforcement learning, we converted the output 
of the Bayesian Ridge regressor to a reward function based 
on the average of the known inhibitors. We tried several 
forms for this function and found an exponential function 
to result in the fastest reinforcement learning process. Our 
sampling strategy was a combination of direct sampling 
of the GMM model and an exploratory sampling based on 
the average and standard deviation of latent space values 
sampled. We settled on a 90/10 ratio of these two modes 
based on the empirical result that either 90/10 or 10/90 ratios 
resulted in the best performing molecules, with all ratios 
between exhibiting lower performance. At each epoch in the 
reinforcement process, 500 molecules were sampled and the 



511Journal of Computer-Aided Molecular Design (2023) 37:507–517	

1 3

average reward was calculated and baselined using the previ-
ous averages. Models were saved at various points during the 
training up to 3000 epochs, and for each saved model, 500 
molecules were sampled, and docking conducted. Based on a 
combination of docking scores, generation of valid SMILES 
strings, and the percentage of unique SMILES strings, 1000 
epochs was selected as the optimal stopping point (Supple-
mental Fig. 3). While continued improvement in docking 
scores occurred after this point, it was primarily due to 
tighter convergence that resulted in fewer unique molecules 
being generated.

We also used T-SNE embeddings to visualize the conver-
gence of the reinforcement model (Fig. 1B, Supplemental 
Fig. 1A). From this view it is clear that the reinforcement 
learning occurs primarily by two separate processes. First is 
optimization local to the known inhibitors by modification of 
those scaffolds with new substituents that improve the dock-
ing score, but do not correspond to large movements in the 
chemical space. Second is a gradient descent away from the 
center of the chemical space in the direction of the highest 
docking compounds identified.

Performance of generated compounds

To evaluate the performance of the compounds generated by 
the reinforcement learning process, we first generated and 
docked a total of 30,000 compounds. As controls we used 
four separate sets: (1) 30,000 molecules provided by Zhavo-
ronkov et al. (generated using the same network architecture, 

but a similarity-based SOM reward function) [10], (2) 
30,000 molecules sampled from ZINC with a molecular 
weight and LogP Distribution matching the DDR1 inhibi-
tors, (3) 2,500 molecules sampled from the GMM-VAE 
prior to reinforcement learning, and (4) the known DDR1 
inhibitors. Of these sets, the compounds generated using 
our method had the highest average docking score, though 
a sub-population of known DDR1 inhibitors clearly out-
performs any generated compound (Fig. 2A). Surprisingly, 
the randomly sampled ZINC molecules also perform quite 
well, though we expect this would decrease if the LogP and 
molecular weight constraints were removed (as would be the 
case against a target with fewer known inhibitors).

Accounting for the molecular weight distribution of the 
sets helps to explain these observations. The generated 
compounds tend to be lower in molecular weight than most 
of the considered molecules (Fig. 2B) ranging primarily 
between 280 and 380 amu, roughly corresponding to the 
size of molecules considered “lead-like” (typically 250–350) 
[40]. This may be partially due to the relatively low molecu-
lar weight (< 340 amu) of the MOSES molecules used as 
training data, however, a decrease in average molecular 
weight during reinforcement learning also suggests iden-
tifying better scoring, high molecular weight compounds 
to be more difficult within this framework. To allow more 
even comparison across these groups, we also considered 
the docking efficiency of each compound (docking score / 
molecular weight), a common metric that corrects for the 
tendency of large molecules to be higher scoring on the basis 

Table 1   Comparison of Regression Models on Generated Molecules

Regressor Time/500 mol 
(ms)

R2 Pearson r MAE RMSE

μ σ μ σ μ σ μ σ μ σ

Bayesian Ridge 1.856 ± 0.360 0.212 ± 0.094 0.596 ± 0.044 0.389 ± 0.019 0.497 ± 0.028
SGD 1.604 ± 0.485 0.211 ± 0.105 0.567 ± 0.061 0.385 ± 0.021 0.497 ± 0.031
SVR 228.068 ± 0.022 0.180 ± 0.102 0.501 ± 0.060 0.391 ± 0.017 0.507 ± 0.030
LassoCV 1.671 ± 0.275 0.159 ± 0.073 0.577 ± 0.019 0.405 ± 0.017 0.514 ± 0.020
ARD 1.726 ± 0.416 0.126 ± 0.053 0.570 ± 0.005 0.412 ± 0.017 0.524 ± 0.014
Ridge 1.666 ± 0.391 0.112 ± 0.069 0.578 ± 0.021 0.413 ± 0.015 0.528 ± 0.018
KernelRidge 73.090 ± 6.970 0.080 ± 0.080 0.541 ± 0.031 0.413 ± 0.020 0.537 ± 0.021
Linear 1.605 ± 0.522 0.077 ± 0.067 0.565 ± 0.019 0.421 ± 0.015 0.538 ± 0.017
GradientBoosting 2.868 ± 0.284 0.063 ± 0.100 0.425 ± 0.064 0.426 ± 0.005 0.542 ± 0.027
AdaBoost 46.527 ± 0.840  − 0.048 ± 0.028 0.240 ± 0.026 0.454 ± 0.025 0.574 ± 0.010
RandomForest 17.928 ± 0.157  − 0.396 ± 0.058 0.305 ± 0.065 0.531 ± 0.003 0.662 ± 0.011
Bagging 627.265 ± 5.236  − 0.476 ± 0.134 0.312 ± 0.094 0.546 ± 0.011 0.680 ± 0.028
MLP 3.165 ± 0.056  − 1.004 ± 0.029 0.487 ± 0.000 0.635 ± 0.005 0.793 ± 0.003
ExtraTress 22.173 ± 0.647  − 1.565 ± 0.012 0.225 ± 0.042 0.703 ± 0.014 0.897 ± 0.002
DecisionTree 2.100 ± 0.561  − 1.804 ± 0.045 0.201 ± 0.028 0.747 ± 0.022 0.938 ± 0.011
KNN 152.129 ± 3.781  − 3.372 ± 0.212 0.258 ± 0.008 0.962 ± 0.013 1.171 ± 0.024
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of surface area alone [41]. This metric reveals significant 
optimization within the generated set compared to all others 
with an average docking efficiency of − 0.03 amu−1 com-
pared to approximately − 0.02 amu−1 for the ZINC, GMM-
VAE, and known DDR1 inhibitors (Fig. 2C). An alternate 
view is provided in Fig. 2D which shows the docking score 
plotted against molecular weight for each molecular set, with 
the generated compounds being at the top of the combined 
distribution for all molecular weights at which they are pre-
sent. A version of the same plot binned by molecular weight 
(Fig. 2E) shows the distribution of scores of each molecular 
set, in each bin.

Finally, because generative models tend to perform best 
closest to their training data, we considered how the docking 
efficiency of our compounds was related to their similarity 
to known inhibitors. To do so, for each molecule we que-
ried the CHEMBL API for the Tanimoto similarity [42] of 
the most similar molecule in the database. These similari-
ties were used to bin the molecules, and the distribution of 

docking efficiency in each bin is shown in Fig. 2F. In each 
bin the generated compounds have the highest efficiency, 
and while all sets show decreasing efficiency with decreas-
ing similarity to known inhibitors, the efficiency drop off is 
markedly lower for the compounds generated here.

Time comparison versus docking only

Finally, we consider the relative time needed to identify 
10,000 high docking efficiency (< − 0.03amu−1). In our 
ZINC set, these occurred at a rate of approximately 0.07%, 
meaning approximately 14 million compounds would need 
to be docked. At a rate of approximately 1000 molecules 
per hour on our server, this would correspond to a wall time 
of over 18 months. By contrast, training of the GMM-VAE 
takes roughly 48 h, an additional 20 h were required for 
docking the molecules used to train the reward function, 
reinforcement learning took 6 h, and docking of the sampled 

Fig. 2   Evaluation of Compounds Generated by Bayesian Guided 
Reinforcement Learning Molecular sets considered are DDR1—the 
known DDR1 inhibitors, ZINC—randomly sampled from a set with 
molecular weight and LogP matching DDR1, Zhavoronkov—mole-
cules provided as supplemental information and generated based only 
on molecular similarity, GMM-VAE—molecules generated in this 
work prior to reinforcement learning, RL—molecules generated in 
this work based on Bayesian reinforcement learning A Distribution of 

docking scores B Distribution of molecular weights, C Distribution 
of docking efficiency (score/MW), D docking score plotted versus 
molecular weight, E distribution of docking scores in each molecular 
weight range, F Distribution of docking efficiency in bins defined by 
the maximum Tanimoto similarity to any known CHEMBL molecule. 
In E, F numbers below each distribution indicate the percentage of 
that set represented by the distribution
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compounds takes another 30 h, approximately 4.3 days total, 
or a speed up of 134 times compared to docking alone.

Comparison of docked protein–ligand interactions

When designing our training approach, we were most 
interested in creating a model in which docking scores 
could supplement known activity data to allow generative 
modelling to be deployed against developing targets. High 
docking scores on their own however are not meaningful 
indicators of activity. Docking a simple alkane such as 
dodecane will often give high scores due to high van der 
Waals contacts from the flexible backbone while being 
devoid of potential pharmaceutical value. In contrast, 
a successful docking campaign aims to identify impor-
tant interactions between the ligand and protein that are 
responsible for activity. While our training approach did 
not explicitly account for any specific interactions, we 
were interested in the consistency of the interactions of the 
generated molecules, and how these interactions compared 
to those of the known inhibitors. Essentially, we sought to 
determine whether this reinforcement learning strategy can 
develop something akin to a pharmacophore model within 
the network weights.

To attempt to answer this question, we generated ligand 
interaction fingerprints (LIFPs) for the highest scor-
ing docking pose of each known inhibitor, the randomly 
selected ZINC molecules, and each generated molecule 
using the ProLIF package [43]. ProLIF creates a one-hot 
encoded vector of ligand interactions where each feature 
represents a residue and type of interaction (e.g. vdW, 
pi-pi, H-bond, etc.) resulting in a detailed representa-
tion of the ligand pose. We compared the ProLIF finger-
prints of each batch of molecules using several metrics. 
To qualitatively analyze the trends during reinforcement 
learning, we created a t-SNE embedding of the LIFPs of 
molecules generated during reinforcement learning and 
compared them to the randomly selected ZINC molecules 
and the known inhibitors (Fig. 3). In this representation, 
the ZINC molecules are spread most widely within the 
t-SNE space, along with the molecules from early train-
ing epoch samples. With more training epochs, however, 
the generated molecules are found more concentrated in 
the areas of highest known inhibitor concentration, dem-
onstrating that despite the low chemical similarity to the 
known inhibitors the binding interactions are similar. This 
suggests that the model has some internal understanding 
of isosteric substitutions. The increased similarity with 
known inhibitor binding modes was further shown by the 
average maximum Tanimoto similarity of the LIFP of 

each generated compound to a known inhibitor; this met-
ric increased from approximately 0.75 at the beginning of 
reinforcement learning to 0.85 after 1000 epochs of train-
ing, demonstrating that the increased docking scores are 
also correlated with binding modes that are increasingly 
similar to the known inhibitors. Note that these similari-
ties are high comparable to the MFP Tanimoto scores due 
to the much smaller size of the LIFP (132) compared to 
MFP (2048). Interestingly, the randomly selected Zinc 
molecules also displayed high Tanimoto similarities in this 
metric, averaging 0.78, though the docking scores were 
consistently lower.

Comparison of MM‑GBSA binding energies

As a final evaluation, we also considered MM-GBSA bind-
ing energies of the generated molecules as a comparison to 
both the compounds generated using the SOM reward func-
tion, DDR1 inhibitors that had entered clinical trials, and 
the six molecules selected by Zhavoronkov et al. [10] For 
each molecule, we conducted a 30 ns molecular dynamics 
simulation in OpenMM [44] using the top scoring docked 
pose as the starting geometry, and calculated the MM-GBSA 
binding affinity using the last 15 ns of each trajectory. Rank-
ings generated by this methodology are more reliable than 
docking due to the more comprehensive forcefield used for 
scoring, the consideration of multiple nearby conformations, 
and a better representation of solvent effects [45]. However, 
due to the greater computational demands the number of 
molecules studied is necessarily reduced. To create a repre-
sentative sample from both the Bayes and SOM reward func-
tion generated molecules, we clustered the highest-scoring 
compounds using a 0.6 Tanimoto similarity cut-off for clus-
ter inclusion. We then analyzed the top 21 cluster centers 
which corresponded to roughly the top 200 molecules. As 
seen in Fig. 4, the MM-GBSA energies of the top scoring 
molecules generated using the Bayes reward function are 
significantly higher than those generated using the SOM 
only approach, and are slightly above both the seven DDR1 
inhibitors that have advanced to clinical trials, including four 
approved drugs. The six molecules selected by Zhavoronkov 
also perform well here, comparable to the clinical inhibitors. 
These, however, were selected from 30,000 compounds after 
considerable additional screening using docking and phar-
macophore analysis and are of comparatively high similarity 
to the known inhibitors. Our training approach more directly 
yields compounds with MM-GBSA properties comparable 
to known inhibitors with higher novelty suggesting that 
incorporation in future development pipelines can enrich 
the generated molecules in high-binding energy compounds.
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Conclusions

We have demonstrated a new training strategy for the gen-
eration of new lead-like molecules using deep learning and 
a GMM-VAE generative model. The key to this approach is 
the implementation of a Bayesian ridge regression model 

to predict the docking score of generated compounds dur-
ing reinforcement learning. We have shown that Bayesian 
ridge regression outperforms other regression approaches 
for predicting the docking score of generated molecules. The 
molecules generated using our approach have higher docking 
scores in all ranges of molecular weights generated, though 
future work is needed to increase this range. Additionally, 
unlike the comparison set, docking efficiency was consist-
ently high even as the molecular similarity to known mol-
ecules decreased. Further, an analysis of the protein–ligand 
interaction fingerprints of the docked molecules shows that 
this reinforcement approach yields molecules that converge 
toward the binding pattern of known inhibitors, demonstrat-
ing the ability of the model to both generate and retain an 
internal model of pharmacophore interactions based on 
the docking trends during reinforcement learning. Finally, 
MM-GBSA analysis of the generated compounds showed 
the top-scoring compounds from the Bayesian reward func-
tion to have average binding affinities comparable to the set 
of DDR1 inhibitors that have proceeded to clinical trial, and 
significantly higher than the molecules generated from the 
similarity-based SOM reward function. The computational 
resources needed to conduct this work are modest, and the 
inclusion of the docking data does not substantially increase 
the model training time with data collection to lead com-
pound generation occurring in as little as two weeks. We 
anticipate the work demonstrated here will allow researchers 

Fig. 3   tSNE Embedding of Ligand Interaction Fingerprints during 
reinforcement learning. As training proceeds, the generated mole-
cules localize near high concentrations of known inhibitors

Fig. 4   Comparison of the distribution of MM-GBSA calculated 
Gibbs binding energies of the molecules in each set. Use of the esti-
mated docking score (Bayes) significantly improves predicted bind-

ing energies over the similarity only based approach (SOM) to par-
ity with clinical DDR1 inhibitors. The molecules included in each set 
can be seen in Supplemental Fig. 5



515Journal of Computer-Aided Molecular Design (2023) 37:507–517	

1 3

to identify new lead molecules more efficiently than tradi-
tional docking studies that require high levels of parallelism 
to screen molecular databases in a time efficient manner. 
Finally, we believe this result is significant in creating a 
foundation to extend generative models to more data limited 
regimes such as one-shot [46] and few-shot [15] learning 
against newly identified targets.

Methods

Computational resources

All machine learning calculations were conducted on a dual 
GPU server with 2 × 32 GB Geforce3090TI GPUs with dual 
AMD EPYC 7302 16-Core Processors, and 128 GB RAM.

Other than for benchmarking purposes, docking was con-
ducted using resources provided by the Nanjing University 
Scientific Computing Center.

Collection of training data

Training data is divided into several groups, each of which 
was collected using slightly different methods based on the 
importance of that set to the model goal. DRR1 Inhibitors: 
These molecules were collected from ChEMBL [47], the 
CDDI database, and the patent literature by way of SciFinder 
[48]. Other Kinase Inhibitors: These molecules were col-
lected solely from ChEMBL. Non-Kinase Inhibitors: These 
molecules were collected solely from ChEMBL. Lead and 
Druglike Molecules: These molecules were assembled from 
the MOSES benchmark set [49] and the ZINC database [50]. 
ZINC molecules were selected from the drug-like set with 
clean reactivity. These were further sub-selected to match 
the molecular weight and LogP distribution of the DDR1 
Inhibitors. This was accomplished by dividing the DDR1 
Inhibitors into two dimensional bins defined by strides of 
10 in molecular weight and 0.2 in LogP. The percent of all 
DDR1 molecules in each bin was then used to bootstrap a 
training set of ZINC molecules within the same property 
range. Detailed information for the origin of the training data 
is available in the Supplementary Information.

Molecular docking

Molecular docking was performed using SMINA [32] a 
version of the popular Autodock Vina [51] software modi-
fied for higher throughput. The structure of DDR1 was 
obtained from the Protein Data Bank, accession number 
6FEX, a 1.29 Å resolution crystal structure containing 
CHEMBL4635278 a 29 nM IC50 DDR1 inhibitor [52]. 

CHEMBL4635278 was used to define the docking site with 
the autobox_ligand parameters. The receptor was prepared 
using the built in Dock Prep and Minimization routines of 
UCSF Chimera [53] to add protons and alleviate any steric 
clashes that resulted. The GMM-VAE is encoded without 
stereochemical information, but generates molecules with 
stereocenters; therefore, for each generated smiles, we gener-
ate every stereoisomer using RDKit [54] prior to docking. 
Also in RDKit, an initial minimum energy 3D conforma-
tion was generated for each molecule by enumerating 100 
structures and minimizing using the UFF forcefield and 
retaining the lowest energy conformation. Atomic charges 
were then assigned using the mmff94 forcefield [55] within 
Open Babel [56]. Docking was then conducted using these 
prepared structures with seed 0 and exhaustiveness 8. After 
docking, for the purposes of reward function generation, 
molecules were again processed using RDKit, stereocent-
ers removed, and SMILES deduplicated, keeping the highest 
docking score. SMINA Docking scores are derived from 
known physical interactions (a van der Waals-like poten-
tial (defined by a combination of a repulsion term and two 
attractive Gaussians), a nondirectional hydrogen-bond term, 
a hydrophobic term, and a conformational entropy penalty), 
and are nominally in kcal/mol. However, given the signifi-
cant modifications made to these parameters toward the goal 
of pose replication over binding affinity, they are at best a 
pseudo-energy. As such we have referred to them throughout 
in a unitless notation to avoid confusion with experimental 
affinity values.

Generation of the reward function

All regression models were generated using Scikit Learn 
with the default parameters. Molecular features were non-
stereoisomeric MFP2 features generated from RDKit. The 
SOM pseudo-regression was built using MiniSOM [57]. 
The number of neurons in the SOM was calculated as 5√N 
where N is the number of molecules in the training set. For 
each neuron the average docking score of the contained mol-
ecules was returned for any new molecules that activated 
that neuron. Docking scores were then converted to a reward 
function using several functional forms, the most successful 
of which was a bounded exponential reward:

where R is the reward function, mfp is the morgan fin-
gerprint for each molecule, D̂S is the regression function 
used for docking score prediction. Threshold is the mini-
mum docking score that we expect generative molecules to 
achieve after reinforcement, set as -9. A is a scaling factor 
for numerical stability, such that predicted scores of 12 give 
rewards of 1. B controls the aggressiveness of the reward 

R (mfp) = min

(

1, A ∗ 10−B(̂DS(mfp)−threshold)
)
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above and below the target minimum value. Values were 
typically 0.5 and 0.1.

GMM‑VAE

The GMM VAE used is a modified version of the Genera-
tive Tensorial Reinforcement Learning (GENTRL) model 
provided by Zhavoronkov et al. [10] The most major change 
is the replacement of the self-organized map (SOM) reward 
function with a reward derived from a regression model of 
docking scores derived from a test data set. The remainder of 
the network structure was left intact, though several hyperpa-
rameters were adjusted for improved performance. First the 
initial learning rates were increased in the GMM-VAE (1e-4 
to 1e-3, and a 5% learning rate decay per epoch was added) 
and the reinforcement learning (RL, 2e-5 to 1e-5) training. 
The training penalty of − 5 for invalid SMILES was reduced 
to 0. Batch size in reinforcement learning was increased from 
200 to 500. These changes collectively reduced overfitting of 
the model and increased the diversity of molecules generated. 
The generative model was rewarded when the structures of 
generated molecules got excessive scores in reward function:

where �⃖RBatch is the average reward function values of mol-
ecules in current batch.
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