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Abstract
Binding free energy calculations are increasingly used in drug discovery research to predict protein-ligand binding affinities 
and to prioritize candidate drug molecules accordingly. It has taken decades of collective effort to transform this academic 
concept into a technology adopted by the pharmaceutical and biotech industry. Having personally witnessed and taken part 
in this transformation, here I recount the (incomplete) list of problems that had to be solved to make this computational tool 
practical and suggest areas of future development.
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The theoretical foundation of binding free energy calcula-
tions (BFE)—free energy perturbation (FEP)—was laid 
down by Zwanzig [1] in the 1950s, and later refined by 
Bennett, who derived the optimal analysis to estimate the 
free energy differences from simulations [2], and others [3]. 
A related technique for free energy calculations, thermo-
dynamic integration (TI), was invented by Kirkwood even 
earlier [4]. In the 1980s, a number of groups demonstrated 
that such free energy methods could be used to compute 
the hydration free energies of small molecule solutes [5, 6] 
and the binding free energies between protein receptors and 
small molecule ligands [7–12]. Techniques were introduced 
to compute either the individual binding free energy between 
a ligand and a receptor (by so-called “absolute” binding free 
energy calculations, or ABFE for short) [13, 14], or the dif-
ference in the binding free energies between two ligands 
against the same receptor (by “relative” binding free energy 
calculations, or RBFE) [15, 16]. In the early days, however, 
BFE calculations were hard to set up and they took a long 
time to run, and they seemed a long way away from com-
monplace utility in drug discovery.

The simple and elegant theoretical foundation for BFE 
belies the subtleties in performing correct and efficient cal-
culations. The statistical precision of an FEP calculation 

depends on the extent of change in the equilibrium distribu-
tion of molecular configurations from the initial state to the 
end state of the alchemical transformations: the smaller the 
change, the higher the precision [17]. Key to efficient BFE 
calculations is to limit this change by restraining the ligand 
in position and in conformation during the transformations, 
in such a way that the restraints’ contribution to the free 
energies can be accounted for [13, 18]. A general set of cri-
teria for setting the restraints can be derived by separability 
of integrals in the partition functions.

One by one, the technical challenges of performing cor-
rect and precise BFE calculations have been resolved by a 
number of, primarily academic, groups. We have learned 
how to avoid numerical instabilities in BFE calculations by 
the introduction of softcore potentials [19, 20], how to treat 
ligands with net charges [21, 22], how to enhance the sam-
pling of the ligand binding pose and the conformation of 
the binding pocket [23–26], how to treat the non-negligible 
contribution of the omitted dispersion interactions between 
atoms beyond the cutoff distance by a mean field approxi-
mation [27], and how to best analyze the results [3, 28] and 
estimate the statistical errors [29]. BFE has been validated 
against the independent method of computing binding affini-
ties by long molecular dynamics (MD) simulations of revers-
ible protein-ligand binding [22]. The best practices for BFE 
are summarized in a recent review [30]. Academic drug 
hunters—and a few industrial early adopters—have devel-
oped their own BFE solutions and successfully applied BFE 
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in identifying potent drug candidates [31–37]. Expertise in 
BFE, however, was necessary in such early successes.

To bring binding free energy calculations (BFE) from 
academia to the drug discovery industry [38–40] (so that 
non-experts can use them effectively), one had to implement 
the simple and elegant idea from physics in the messy reality 
of chemistry, at scale, with sufficient accuracy and through-
put. An integrated tool chain has to be developed to pre-
pare the ligands (in their correct protonation and tautomeric 
states), parametrize their force field, generate their binding 
poses, map atoms from one ligand to another in RBFE cal-
culations, submit and monitor the many simulations in BFE, 
analyze the output, and report the predicted binding free 
energies with associated error estimates (Fig. 1).

As is common in developing an academic concept into an 
industrial product, one group needs to assemble in a com-
plete solution all the puzzle pieces worked out by many—
scattered in various papers, books, presentations, and per-
sonal communications—and then some.

Here I share a brief personal account of the inception 
and development of the FEP+ software, probably the most 
widely used commercial implementation of BFE in the phar-
maceutical industry today. Its intellectual seed was planted 
when I learned extensively about BFE in the academic 
research by my lab-mates in Ken Dill’s group [41], where I 
was a postdoc. Later, after working with my colleagues in 
D. E. Shaw Research (DESRES) to finish an early version 
of the DESMOND MD simulation program [42] in 2006, 
I started to develop BFE as an extension—which I called 
the Gibbs module—to DESMOND. In that same year, the 
computational chemistry software company Schrodinger 
expressed an interest in DESMOND, intending it to be a 
tool to sample the protein’s conformations in docking studies 
[43]. Soon that interest pivoted to developing a new software 
solution for BFE (to complement MCPRO+ [16]). A hand-
ful of scientific developers in DESRES and Schrodinger, in 
collaboration with a few academic groups, persisted through 
early disappointing results and prevalent skepticism (Outside 
the BFE experts, BFE was joked to be the most expensive 
random number generator). In 2013, almost three decades 
after the first proof-of-concept BFE calculation was pub-
lished and seven years after I implemented the bare-bone 
functionality of BFE in DESMOND, Schrodinger started 
to ship the new BFE solution, bundled with Schrodinger’s 
OPLS3 force field [44] and branded FEP+, to customers of 
pharmaceutical companies. A validation study on eight dif-
ferent targets was published in 2015 [45]. Others have since 
developed their own toolboxes for running BFE calculations 
using a variety of MD programs, including AMBER [46, 
47], OpenMM [48], and GROMACS [49, 50].

Two concurrent developments drove the adoption of 
BFE in drug discovery. First, graphic processing units 
(GPUs) became ubiquitous and a number of MD software 

packages implemented GPU-accelerated codes that were 
an order-of-magnitude faster than the CPU codes [51–53]. 
What used to take a month could now be completed in only 
three days, which fit in a typical weekly design-predict-
make-test-analyze (DPMTA) cycle in drug discovery. Sec-
ond, the force field models for both proteins and, impor-
tantly, small drug-like molecules were finally good enough 
to make BFE predictions adequately accurate for prioritiz-
ing the candidate molecules by their predicted affinities.

Fig. 1  The Tower of Binding Free Energy Calculations. Built on the 
simple foundations of free energy perturbation theory and enabled by 
advances in force field models and the readily available computing 
power afforded by graphic processing units (GPUs), BFE required an 
integrated tool chain for it to become a routine computational tool in 
industrial drug discovery
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The large-scale deployment of BFE exposed unexpected 
problems, each requiring its own solution. For example, 
during the RBFE calculations, the molecular geometry may 
be distorted when the system is in the midst of changing 
between two ligands and thus its Hamiltonian does not cor-
respond to one of a realistic molecular system, which leads 
to numerical instabilities. A solution to this problem was to 
introduce additional bonded interactions within an alchemi-
cal group that is no longer interacting with the rest of the 
molecular system: these extraneous interactions help main-
tain reasonable molecular geometries, their contributions 
to the BFE results canceling out because of the separabil-
ity of integrals in the partition functions. Another example 
is RBFE calculations between enantiomers: a restraining 
potential is required to ensure the correct chirality as one 
molecule is transformed to its mirror image. For each prob-
lem encountered, a programmatic solution must be coded 
into the standard tool chain, so that the same problem should 
never have to be solved more than once.

Despite the increasing adoption of BFE in drug dis-
covery projects [54, 55], the number of published studies 
reporting discovery and optimization of small molecule 
drugs by BFE is—albeit growing—still relatively small. 
Out of more than 790 citations (per Google Scholar) gar-
nered by Schrodinger’s landmark BFE paper [45], only 19 
(2.4%) reported drug discovery efforts resulting in new 
chemical matters or new activities [56–74], out of which 
four did not report the actual use of BFE [62–64, 69] 
and one was unclear [68]. Since 1988, 3646 papers have 
been published that contain key words related to binding 
free energy calculations, but only 145 (4%) of these are 
published in the medicinal chemistry and drug discovery 
journals (Fig. 2 and Supplementary Information). Even 
if the number of publications reporting drug discovery 
employing BFE is twice the total count in Fig. 2 (7 out 

of the above-mentioned 19 publications citing the Schro-
dinger paper are counted in Fig. 2, implying an under-
counting factor of (19 − 4.5)∕7 ≈ 2. ), it still represents a 
tiny fraction (0.4%) of the total number of publications 
in the medicinal chemistry and drug discovery journals 
(74,179 since 1988, Supplementary Information).

The following are some active areas of research that 
may help broaden the use of BFE in drug discovery.

The more dissimilar a pair of molecules are, the harder 
it is to compute their binding free energy difference by 
RBFE [75], but the more valuable such predictions are, 
because they allow larger chemical modifications—which 
often entails higher cost in synthesis—to be explored com-
putationally. For example, RBFE attained much wider 
adoption after it accommodated scaffold hopping [76, 77]. 
Its domain of applicability will continue to expand as we 
enable RBFE to predict the binding free energy changes 
associated with ever larger chemical transformations.

One type of change of particular interest to drug dis-
covery is a ligand modification associated with the dis-
placement of a water molecule inside the binding pocket 
[78], as large binding affinities may be gained if the dis-
placed water molecule is of high free energy. A number 
of approaches have been proposed to take into account 
such “water hopping” in RBFE [79–83]; this functionality 
should come standard in future BFE toolboxes.

The accuracy of BFE calculations is fundamentally 
limited by the accuracy of the underlying force field mod-
els. One promising avenue of research is multi-fidelity 
modeling: BFE first uses conventional force field mod-
els in the MD simulations, then more accurate but more 
computationally expensive energy models—such as QM/
MM models [84, 85] or ML models trained on QM results 
[86–89]—are applied sparingly, so that an energy differ-
ence between the models can be computed and applied to 
correct the BFE results by FEP.

Often not all relevant molecular conformations are sam-
pled in the simulations of BFE, and their contributions to 
the binding free energies are thus unaccounted for. A fruit-
ful area of research is to combine conformational free 
energy calculations with BFE to incorporate the effect of 
receptor conformational flexibility and potentially multiple 
binding poses of each ligand [90, 91] into BFE [23, 92, 
93]. For example, RBFE may be used to compute the dif-
ference in the binding free energies ΔΔGbind

ab,�
 between two 

ligands a and b to each receptor conformation � , and an 
enhanced conformational sampling method [94, 95] may 
be used to compute the conformational free energy differ-
ences between any two conformations � and � of either the 
apo receptor ( ΔΔGconf

��
 ) or the receptor in complex with a 

ligand a ( ΔΔGconf
a,��

 ), as illustrated in Fig. 3. From these 
results, the conformation-specific binding free energy, 

Fig. 2  The number of published applications of binding free energy 
calculations in drug discovery each year. Only journals in medicinal 
chemistry and drug discovery—including a few general journals—are 
considered (see Supporting Information for the Pubmed search query 
used). The empty bar represents the incomplete year of 2022. As dis-
cussed in the main text, the true numbers of publications reporting 
BFE applications in drug discovery may be twice as many



70 Journal of Computer-Aided Molecular Design (2023) 37:67–74

1 3

ΔGbind
a,�

 , of each ligand a to each receptor conformation � 
may be solved from the (over-determined) simultaneous 
equations

where ΔGconf
�

 (or ΔGconf
�

 ) is the conformational free energy 
of the apo receptor in conformation � (or � ). The collection 
of pairwise free energy differences in Eq. 1 may be planned 
and analyzed using an optimal measurement network of pair-
wise differences [96]. The overall binding free energy of a 
ligand a to the receptor is derived from the combination of 
the conformation-specific binding free energies:

where k is the Boltzmann constant and T the temperature. 
Note that in the above the binding free energies for a set of 
ligands are determined up to a constant ( ΔG0 in Fig. 3).

In drug discovery, many molecules need to be consid-
ered in each DPMTA cycle, which calls for an efficient 
plan of RBFE calculations between well-chosen pairs of 
molecules [97]. New computational methods have recently 
been published that optimize the organization of RBFE 
calculations for many molecules, using the theory of 
experimental design to minimize the total statistical uncer-
tainty in the calculations [96, 98, 99]. Bennett’s method 

(1)

ΔGbind
a,�

− ΔGbind
b,�

=ΔΔGbind
ab,�

(ΔGbind
a,�

− ΔGbind
a,�

) + (ΔGconf
�

− ΔGconf
�

) =ΔΔGconf
a,��

ΔGconf
�

− ΔGconf
�
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(2)ΔGbind
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= −kT ln
∑

�

exp
(

−(ΔGbind
a,�

+ ΔGconf
�

)∕(kT)
)

has also been extended to the analysis of such calculations 
[100].

A related and exciting area of research is to efficiently 
integrate BFE and other computational and experimental 
techniques in a seamless workflow to drastically accelerate 
(by 10∼100 times) the exploration of chemical space in the 
DPMTA cycle. For example, starting with 10,000 molecular 
designs from generative models [101–103], one may per-
form BFE on 100 diverse molecules chosen by a machine-
learning model of quantitative structure-activity relationship 
(QSAR) trained on previous experimental and computational 
results. The QSAR model is then updated by the new BFE 
results (and new experimental results when available) and 
guides the selection of another 100 molecules for a second 
round of BFE. So on and so forth. Such active learning [104] 
may enable tens of thousands of molecular designs to be 
computationally generated and ranked by a feasible number 
of rigorous BFE calculations each week and substantially 
shorten the times of hit-to-lead and lead-optimization in 
drug discovery.

I would like to end with a personal reflection. I was for-
tunate to enjoy the long-time friendship with many people 
who shared an unwavering interest in BFE. We believed 
that together we could harness our understanding of phys-
ics to make a difference in the development of medicine 
for patients. When there was limited acceptance of BFE in 
drug discovery, attending free energy workshops and being 
surrounded by these friends helped sustain my interest and 
spur me to contribute to this endeavor. It is no small comfort 
to see that the workshops grew bigger each year and that 
BFE has started to play a key role in the development of 
molecules currently in clinical trial [105].

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10822- 022- 00494-x.
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