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Abstract
Protein–protein interactions (PPIs) play crucial roles in many cellular processes and their deregulation often leads to cellular 
dysfunctions. One promising way to modulate PPIs is to use peptide derivatives that bind their protein target with high affin-
ity and high specificity. Peptide modulators are often designed using secondary structure mimics. However, fragment-based 
design is an alternative emergent approach in the PPI field. Most of the reported computational fragment-based libraries 
targeting PPIs are composed of small molecules or already approved drugs, but, according to our knowledge, no amino acid 
based library has been reported yet. In this context, we developed a novel fragment-based approach called Des3PI (design 
of peptides targeting protein–protein interactions) with a library composed of natural amino acids. All the amino acids are 
docked into the target surface using Autodock Vina. The resulting binding modes are geometrically clustered, and, in each 
cluster, the most recurrent amino acids are identified and form the hotspots that will compose the designed peptide. This 
approach was applied on Ras and Mcl-1 proteins, as well as on A � protofibril. For each target, at least five peptides generated 
by Des3PI were tested in silico: the peptides were first blindly docked on their target, and then, the stability of the success-
fully docked complexes was verified using 200 ns MD simulations. Des3PI shows very encouraging results by yielding at 
least 3 peptides for each protein target that succeeded in passing the two-step assessment.

Keywords Protein–protein interface · Protein hotspot · Peptide sequence optimization · Protein-peptide docking · Molecular 
dynamics simulation.

Introduction

Many basic activities of cells, such as metabolic pathways or 
signal transduction, are carried out by series of associations 
and dissociations of biomolecules, especially proteins. Thus, 
deregulations of the network of protein–protein interactions 
(PPIs) often lead to cellular dysfunctions and to severe dis-
eases, such as cancers or degenerative diseases [1]. Accord-
ingly, targeting abnormal PPIs with modulator molecules 
offers an attractive opportunity to discover new therapeutic 
compounds [2]. It is noteworthy that, compared to strate-
gies that target isolated enzymes or receptors, targeting 
PPIs reduces the probability of drug resistances, since a 
mutation in one protein should need a second mutation in 
its partner to maintain the PPI functional [3]. However, in 

contrast to substrate binding sites in enzymes or receptors, 
protein–protein interfaces are generally broad and flat, and 
often need large molecules to be disrupted [4–6]. For this 
reason, peptide derivatives are particularly well appropri-
ate for efficiently modulating PPIs, given their intermediate 
size between small organic compounds and antibodies. Also, 
peptide derivatives have generally higher specificity for their 
target than small compounds, reducing the probability of 
undesirable side effects [7, 8]. Consequently, peptide deriva-
tives have emerged as promising therapeutic avenues [9, 10], 
and, at the present time, a dozen of peptides targeting PPIs 
are currently in clinical trials [11, 12].

Nonetheless, the peptide approach remains quite under-
exploited, mainly due to non-optimal pharmacokinetic prop-
erties inherent in peptides: they are easily degraded by the 
proteases, they have difficulties to pass physiological barri-
ers, and they can induce undesirable immune responses [10, 
13]. To overcome these limitations, it is recommended to 
reduce the peptidic nature of these molecules, for example 
by using non-natural amino acids or by cyclizing them. 
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Particularly, in addition to a lower sensitivity to proteases 
and a higher membrane permeability, cyclic peptides have 
a more constrained conformation than their linear coun-
terparts, which reduces the entropy cost of binding and 
improves the affinity to their target. It could be noted that 
cyclic peptide conformations generally have preferential ori-
entations of the amino acid side chains. To design peptides 
with side chain orientations optimal for binding a targeted 
protein, various computational techniques can be used to 
predict the conformations of cyclic peptides depending on 
their cyclization method (stapling, head-to-tail, disulfide, 
side chain to side chain...) and on the insertion of non-natu-
ral amino acids (N-methylated, �,�-disubstituted...) [14, 15].

That being said, the main challenge in the drug discov-
ery process remains to find the sequence of the peptide 
derivatives that will bind a target with high affinity and high 
specificity. Among the experimental approaches, the display-
based technologies [16, 17], especially the phage display 
screening [18, 19], are probably the most widely used for 
this purpose. Basically, the method consists in generating 
huge libraries of peptides displayed on phage capsids, in 
incubating these phages with proteins of interest attached to 
a surface, and in identifying those that can bind with high 
affinity the immobilized proteins. It is worthy to note that 
phage-displayed cyclic peptides can be obtained by forming 
a covalent bond between two cysteine residues or between a 
cysteine and an inserted non-canonical amino acid bearing 
an electrophilic reactive group [16, 20]. Despite the unde-
niable efficiency of phage display techniques to discover 
peptide binders of a protein, there is nonetheless no guar-
antee that the identified peptides bind the protein surface 
involved in the targeted PPI, especially for large proteins or 
those which interact with multiple partners. Furthermore, 
applying this technique to identify binders of amyloid pro-
tein aggregates seems to be tricky and no such application 
was reported in the literature, as far as we know. Thus, it still 
remains worthwhile to develop new methods for designing 
cyclic peptides targeting not only a protein but a specific 
protein surface.

When the three-dimensional structure of a targeted pro-
tein–protein complex is known, a traditional approach to iden-
tify a peptide hit is to isolate from the binding interface the 
short peptide segments that mostly contribute to the complex 
binding energy. Then, these so-called minimal recognition 
motifs, hot segments, or self-inhibitory elements are modi-
fied to optimize their affinity, specificity, and pharmacokinetic 
properties. In this regard, it is worthy to mention that sev-
eral computational tools were developed to find the optimal 
linkers to perform the cyclization of minimal recognition 
motifs [21–23]. If pharmacophores of a minimal recognition 
motif can be identified, then virtual screening of various pep-
tide libraries can be performed on these pharmacophores to 
discover peptide binders of the targeted protein [24]. To help 

in this task, several computational tools were developed to 
facilitate the generation of libraries of diverse peptides. For 
example, the Robetta server can easily generate libraries of 
helical, loop, or extended peptides [25]. Of particular interest 
is the program CycloPs which can simply generate large and 
diverse libraries of cyclic and constrained peptides from natu-
ral and commercially available non-natural amino acids [26].

When the three-dimensional structure of only one partner 
of a protein–protein complex is known, and as long as the 
binding interface can be inferred, de novo design methods 
of cyclic peptides could be advantageous. Among the recent 
research in this direction, one can mention the stochastic 
evolutionary algorithm proposed by Soler et al.  [27] or 
the anchor extension strategy developed by Hosseinzadeh 
et al. [28]. Alternative approaches that have emerged these 
last years to design PPI modulators are the fragment-based 
methods. They consist in screening a library of molecular 
fragments according to their affinity for a targeted protein 
and selecting those with the best binding energies. The 
selected fragments are then linked to form one modulator 
molecule. These approaches are however tricky to be imple-
mented experimentally because small molecular fragments 
generally have low affinities for the target which are difficult 
to be measured by standard experiments. To overcome the 
experimental limits, in silico fragment-based approaches 
have been developed since computational methods, such as 
molecular docking, can quantify protein-ligand interactions 
even if the affinity is very low.

Nevertheless, when targeting large protein surfaces, 
the molecular fragments should not be too small to have 
an appreciable binding specificity. Thus, only two types of 
libraries were successfully used in fragment-based design 
of PPI modulators, those composed of FDA-approved 
compounds or those constituted of natural substances [2]. 
However, the molecules yielded by these fragment librar-
ies are far from being peptides and the chemical linking of 
already elaborated fragments can be tricky. In this context, 
we developed a novel in silico fragment-based approach to 
design peptidic PPI inhibitors. This method, called Des3PI 
(design of peptides targeting protein–protein interactions), 
performs docking calculations of a library of amino acids 
on a targeted protein surface and then links those with good 
binding energy in order to generate the sequence and struc-
ture of cyclic peptides which will likely bind the protein 
target with high affinity and specificity.

Methods

Building the fragment library

In this study, the fragment library is simply composed of 
the twenty natural proteinogenic amino acids. An initial 
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three-dimensional structure for each of them was generated 
by using the 2D to 3D structure conversion program Marvin-
Sketch 6.2.1 from ChemAxon [29]. Then, each amino acid 
structure was charged using the AM1-BCC model [30] and 
shortly minimized using 5 000 steepest descent steps and the 
Generalized AMBER Force Field (GAFF) [31]. It should 
be noted that all fragment amine and carboxyl groups were 
modeled in their neutral form, except the aspartate, gluta-
mate, lysine, and arginine side chains which were considered 
in their ionic state.

Finding the fragment preferential binding positions

First, the targeted protein surface was delineated by center-
ing and sizing an Autodock Vina search box [32] around the 
area of interest (Fig. 1A). Then, each fragment was docked 
50 times onto the defined protein surface using Autodock 
Vina [33]. For each docking, the 9 best scores were retained, 
yielding 9 × 50 × 20 = 9000 binding modes of all the 20 
amino acids on the protein surface.

Then, the positions of the �-carbons of all the binding 
modes were clustered using a hierarchical algorithm based 
on the method of centroids [34]. A criterion of 3.5 Å for 
the minimal distance between two centroids was chosen, 
this threshold being slightly lower than the mean distance 
between two successive �-carbons in proteins and peptides 
(3.8 Å) [35]. To avoid considering the sparsely populated 
clusters, those with less than 0.1% of the 9 000 binding 
modes were not further taken into account, yielding the 
most significantly populated clusters as the hotspots of the 
future modulator peptide (Fig. 1B). By default, this cutoff 

parameter was fixed to 0.1%, but it can be adjusted in order 
to have a manageable number of hotspots. For example, 
in the case of Mcl-1 protein, cutoff values of 0.1%, 0.5%, 
and 1% lead to 9, 8, and 6 hotspots, respectively (Fig. 3). 
Finally, the most frequently found amino acid in each clus-
ter is selected to generate the sequence of the peptide that 
Des3PI considers as a good binder of the targeted protein 
surface (Fig. 1C).

Linking the hotspots into a cyclic peptide

Once the hotspots and their relative positions were deter-
mined, it is possible to visually choose those that are close 
enough to form one peptide and manually link them to gen-
erate a cyclic sequence (Fig. 1D). Alternatively, it is possible 
to use an algorithm that we developed to automatically per-
form these two tasks. This independent module that we inte-
grated into Des3PI has been satisfactorily tested in several 
cases but may give some inaccurate or unexpected cyclic 
sequences when the hotspots do not have a clear cyclic 
geometry. This automated approach is presented below.

First, to identify the hotspots that are not too far from 
each other for forming one cyclic peptide, the positions of 
all previously found hotspots were clustered using the same 
method as above but with a criterion of 12.5 Å, which allows 
to separate groups of hotspots distant by more than 3 times 
the mean distance between two successive �-carbons in pro-
teins and peptides. Moreover, we considered that a group of 
hotspots can form a promising cyclic peptide if it is com-
posed of at least 4 hotspots.

Fig. 1  Des3PI workflow: (A) 
The library of amino acids 
is docked 50 times onto the 
targeted protein surface deline-
ated by a green rectangular 
box. (B) All the binding modes 
are clustered to determine the 
hotspot locations. (C) The 
most recurrent amino acids 
are identified for each hotspot. 
(D) The hotspots that are close 
from each other are linked with 
glycine residues. (E) Steps A, B, 
C, and D are repeated 20 times. 
(F) For each class of peptides, 
the amino acid occurrence in 
the generated sequences is cal-
culated, and (G) the five most 
promising peptide sequences are 
output. Lowercase g indicates 
glycine linkers
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Then, for a given group of hotspots, we determined the 
cyclic peptide sequence as follows: (i) The average plane of 
the group of hotspots was determined by using a principal 
component analysis of their positions, and the projections of 
the hotspots on this plane were calculated. (ii) The most pop-
ulated hotspot (which is arbitrarily defined as the first resi-
due of the sequence) is chosen as the origin of a reference 
frame of the plane, whose the axes are the two first principal 
components previously found. (iii) In this reference frame, 
the other hotspots are ordered according to their polar angle, 
from the lowest to the largest one, in the interval [− 180°; 
180°]. It should be noted that, in the case where two hotspots 
have close polar angle values (differing by less than 15°), the 
hotspot with the lowest radial distance is prioritized, except 
for the two last hotspots for which the highest radial distance 
is prioritized in order to close the peptide cycle.

Finally, having the sequence of hotspots in the designed 
peptide, Des3PI determines how many linkers are required 
to link two consecutive hotspots. In this study, we chose the 
glycine as a linker and we added between two consecutive 
hotspots a number of linkers equal to the integer part of their 
separating distance divided by 4.5 Å (Fig. 1D). This param-
eter was determined by using a trial and error approach on 
Mcl-1 protein: a too small value (below 4.0 Å) yielded too 
many glycine residues between hotspots and too large pep-
tides. Conversely, a too large value (above 5.0 Å) led to 
too few linkers and too compact peptides. Subsequently, 
both too large and too compact peptides could not be cor-
rectly docked onto the targeted protein surface close to the 
hotspot positions determined by Des3PI (see the validation 
subsection).

Generating the most promising peptide sequences

At this point, it should be noted that, when repeating steps 
A to D, different peptides can be obtained because of the 
stochastic search algorithm implemented in Autodock 
Vina [33]. To provide sequence diversity, the whole pro-
tocol described above was repeated 20 times to generate 20 
peptides (Fig. 1E). The latter were categorized into differ-
ent classes according to the number of hotspots and their 
geometry (Fig. 1F). We considered here that two peptides 
have a similar geometry when the RMSD between their 
hotspots is below 1.75 Å. This parameter was fixed by 
using a trial and error approach on Ras protein: we tested 
different values from 1.0 to 2.0 Å and visually inspected 
whether similar hotspot geometries were effectively in the 
same class, and conversely, whether different geometries 
could be separated in different classes (Fig. 2). Once the 
peptide classes were defined, we output for each of them 
the amino acid occurrence at each position of the pep-
tide sequences, which can be visualized using the PSSM-
Search server [36]. Finally, a score is attributed to each 

amino acid proportional to its occurrence and the peptide 
sequences with the highest sum of these scores are con-
sidered as the most promising cyclic peptides for binding 
the targeted protein surface (Fig. 1G).

To complete the description of Des3PI, the numbers of 
runs (20) and of docking calculations (50) are shortly dis-
cussed hereinafter. Their impact on the sequences gener-
ated by Des3PI was assessed in the case of Mcl-1 protein 
(Fig. S1). This benchmark shows that, for 10 runs, the amino 
acid occurrences in the generated sequences slightly differ 
when the number of docking varies from 25 to 75. For 20 
runs, the occurrences seem to converge for a number of 
docking larger than 50, and, for 30 runs, they are similar for 
all tested numbers of docking. From these tests, we decided 
to fix the default numbers of runs and docking calculations 
to 20 and 50, respectively.

Validation using blind docking

To validate the method, the peptides proposed by Des3PI 
have to be synthesized and their affinity and/or PPI inhibi-
tion activity have to be experimentally quantified. However, 
these experimental validations can be difficult and long to 
implement. Thus, we propose here a two-step procedure to 
computationally support whether or not the generated pep-
tides are likely to succeed.

The first step consists in a blind docking of the best 
cyclic peptides designed by Des3PI on the targeted protein, 
and to verify whether they preferentially bind the targeted 
surface. It should be stressed here that, unlike the previous 
dockings of the single amino acids which were restricted to 
protein surfaces involved in protein–protein interfaces, the 
blind dockings of the designed peptides were performed on 
the entire proteins without specifying any targeted surface. 
Among the protein-peptide docking programs that could 
deal with cyclic flexible peptides, we chose AutoDock 
CrankPep (ADCP) [37, 38] which just requires to input the 
protein PDB file and the peptide sequence string. It is note-
worthy that ADCP could yield different results depending 
on the first and last residues of the cyclic sequence given as 
input. Thus, for each peptide composed of n residues, we 
performed n docking calculations with different inputs of 
the first and last residues of the cyclic sequence. Each dock-
ing run consisted in 50 independent searches of 2,500,000 
Monte Carlo steps, and generated 100 best binding modes. 
Finally, the 100 × n preferential binding modes of each 
peptide were analyzed by computing the root-mean-square 
deviation (RMSD) of the �-carbons relative to the hotspots 
generated by Des3PI. Then we checked for each peptide 
whether one or several binding modes among the 5% best 
scores were found close to the targeted protein surface with 
a C � RMSD relative to the Des3PI hotspots lower than 10 Å.
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Checking complex stability using MD simulations

In a second step, we selected the protein-peptide complex 
with the lowest peptide RMSD (among the 5% best scores), 
and verify its stability by using molecular dynamics simula-
tions performed with the GROMACS 2019.1 package [39]. 
The AMBER99SB-ILDN [40] and GAFF [31] force fields 
were used for the protein and peptide, respectively. Each 
complex was placed in a cubic box, so that the minimal dis-
tance between the solute and the cube faces was equal to 
1 nm. Then the complex was solvated with TIP3P water mol-
ecules and neutralized with 0.15 mol/L of sodium chloride. 
The Lennard-Jones potentials were cut off at 1.2 nm and the 
Coulomb interactions were treated using the smooth PME 
method [41]. Each system was first minimized using 10 000 
steps of the steepest descent method, then submitted to two 
short equilibration runs of 1 ns each, the first one to heat 
the system to 310 K using a Berendsen thermostat and the 
second one to equilibrate the pressure around 1 bar using the 
Parinello-Rahman method. After that, a 200 ns production 
run was performed in the isothermal-isobaric (NPT) ensem-
ble using the Nose-Hoover and Parrinello-Rahman coupling 
algorithms [42–44] with the time constants �

T
= 0.5 ps and 

�
P
= 2.5 ps. The Newton’s equations of motion were inte-

grated using the leap-frog algorithm with a time step of 2 fs, 

while keeping constant the length of all covalent bonds using 
the LINCS procedure [45]. MD trajectory frames were saved 
every 20 ps for subsequent analysis. Notably, contact resi-
dues were computed using the GROMACS gmx mindist tool 
and a cutoff value of 0.5 nm.

Results and discussion

Peptides generated by Des3PI

Des3PI was first applied to identify cyclic peptides targeting 
three proteins which are involved in three different types of 
protein–protein interfaces: the protein Ras which binds Raf 
via an �-helix and a �-strand, Mcl-1 which interacts with the 
�-helical BH3 motif of PUMA, and a protofibril of A � which 
mainly involves �-strand/�-strand interactions.

The three-dimensional structure of Ras was taken from 
a crystallographic structure of Ras-Raf complex (PDB ID: 
3KUD [46]). The 20 runs of Des3PI on Ras generated pep-
tides with either 4, 5, or 6 hotspots. The 20 peptides could 
be categorized in four classes whose amino acid occurrences 
are displayed in Fig. 2. From the occurrences, we output the 
five best peptide sequences in each class. When compar-
ing the positions and amino acid compositions of class IV 

Fig. 2  Des3PI generated 4 classes of peptides potentially binding Ras protein. The five best peptide sequences of each class were generated 
according to the amino acid occurrences in the peptide hotspots
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hotspots with the Raf residues in contact with Ras, hotspots 
2 and 6 which are mainly populated with Arg are located at 
the same positions as two Lys residues. Furthermore, hotspot 
3 which is essentially a Val is retrieved at the same loca-
tion as a Raf Val residue. The three other hotspots are not 
clearly related to the RAF residues observed around their 
positions. Overall, half the six hotspots are composed of 
amino acids with similar properties as the Raf residues at 
the same locations.

In experimental efforts to discover inhibitors of the onco-
genic K-Ras proteins, Wu et al. performed a screening of 
about 3 millions cyclic peptides against the K-Ras G12V 
mutant and identified 20 sequences that can bind K-Ras 
with submicromolar affinity and disrupt its interactions with 
Raf [47]. Interestingly, these identified sequences are rich in 
aromatic residues and Arg, similarly to the sequences out-
put by Des3PI. Notably, their most promising cyclic peptide 
(compound 12) has the sequence dNle-Fpa-Arg-dNal-Arg-
Arg, where dNle is a D-norleucine, Fpa a fluorophenylala-
nine, and dNal a D-2-naphthylalanine [47]. The similarity in 
composition of their sequence with those of Des3PI Class IV 
peptides suggests that our computational approach generated 
relevant peptide binders of Ras.

For Mcl-1, we applied Des3PI on a three-dimensional 
structure extracted from the first model of the NMR structure 
of Mcl-1 in complex with PUMA (PDB ID: 2ROC [48]). In 
one run, Des3PI only found 3 hotspots, and in the other 19, 
the algorithm generated 6 hotspots (representing at least 1% 
of the 9 000 binding modes of the 20 amino acids, instead of 
the default threshold of 0.1%). In the latter case, the hotspots 
have a very similar geometry and can be grouped into one 
class of peptides. However, although the sixth hotspot was 
close enough to the other five to form a peptide (according 
to the clustering criterion of 12.5 Å), it led to a non obvious 
cyclic geometry (Fig. 3). Therefore, we decided to manually 
remove this hotspot and only keep the remaining five that 
were able to form a cyclic peptide. The amino acid occur-
rences in the 19 peptides and the derived five best peptide 
sequences are reported in Fig. 3. It could be noted that these 
five hotspots only partially occupy the Mcl-1 binding groove 
which normally accommodate the PUMA �-helix. More 
specifically, referring to the pocket nomenclature of Mcl-1 
binding groove by Denis et al. [49], the Des3PI hotspots are 

located in the hydrophobic pockets P2 and P3. It is therefore 
not surprising that the amino acids most frequently found at 
hotspots 2, 3, 4, and 5 are mainly hydrophobic ones. An Asn 
residue is always found at hotspot 1, close to the position of 
a Puma Arg residue (which makes an intramolecular salt 
bridge with an Asp). Overall, the amino acids frequently 
found at these five hotspots are consistent with those of 
Puma involved in binding Mcl-1.

Among the known inhibitors of Mcl-1, many are small 
organic compounds with a central indolic, heterocyclic, or 
aromatic scaffold which occupies the P2 pocket, another 
hydrophobic group connected to the central scaffold which 
occupies the P3 pocket, and a carboxylic acid group which 
interacts with Mcl-1 Arg263 [49]. Alternatively, peptide 
inhibitors of Mcl-1 have been identified by screening BH3-
based libraries [50, 51]. It was observed that these helical 
peptide binders had very similar sequences to natural BH3 
helix ones, with four hydrophobic residues on one side of 
the �-helix which occupy the four Mcl-1 binding pockets, 
and one Asp residue between the third and fourth ones which 
makes a salt bridge with Mcl-1 Arg263. In comparison, 
Des3PI also found four hydrophobic hotspots but they are 
not aligned as those in BH3-like helices and only occupy two 
over the four Mcl-1 binding pockets (P2 and P3). Moreover, 
we did not retrieved an Asp residue close to Mcl-1 Arg263. 
Instead, Des3PI output an Asn at hotspot 1 which could 
easily make a hydrogen bond with it. Overall, the peptides 
designed by Des3PI have different topology from BH3-based 
�-helices, but might tightly occupy half of the Mcl-1 bind-
ing groove.

Regarding the design of peptides targeting A � protofibril, 
the results provided by Des3PI are more diverse than for Ras 
and Mcl-1, due to a larger area of the targeted surface. The 
latter is the surface perpendicular to the principal axis of the 
dimeric S-shaped protofibril of A � resolved by solid-state 
NMR (PDB ID: 5KK3 [52]). We extracted from the PDB 
structure the inner 2 × 5 A � molecules of the protofibril 
and applied Des3PI to the axial surface composed of the 
chains C and L. In several runs, Des3PI was able to find 2 or 
3 groups of hotspots close enough to form cyclic peptides. 
Over the 20 runs, Des3PI identified three different areas that 
could be potential peptide binding sites (Fig. 4). The first 
one was systematically retrieved in the 20 runs, and Des3PI 

Fig. 3  Des3PI generated one 
class of peptides potentially 
binding Mcl-1 protein. The five 
best peptide sequences were 
generated according to the 
amino acid occurrences in the 
peptide hotspots
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provided here one class of cyclic peptides with 4 hotspots. 
The second area was identified 17 times over 20 runs, and, 
here also, Des3PI found only one class of cyclic peptides 
with 4 hotspots. The third area was retrieved 11 times over 
20 runs, but our algorithm generated here 4 different classes 
of cyclic peptides, all of them having 4 hotspots except the 
last one which has 5 (Fig. 4). All together, we could provide 
12 different peptide sequences that potentially bind 3 differ-
ent areas of the surface perpendicular to the A � protofibril 
axis.

The nature of the amino acids which most frequently 
occur in Des3PI hotspots are generally consistent with the 
A � residues at the protein–protein interface. In class I pep-
tides, an Ile is mainly encountered at hotspot 2 which is 
located at the same position as an A � Ile residue. At hotspots 
3 and 4, two Ser were found close to two A � Gly and one 
His. Lastly, an Arg is always found at hotspot 1 close to 
A � Glu and His residues. In class II peptides, hydrophobic 
amino acids are always found at the hotspots 1, 2, and 4 
which are located in the area of four A � hydrophobic resi-
dues (two Phe, one Ala, and one Val). The Thr found in 
hotspot 3 is situated at an A � Val residue position. Simi-
larly, the class VI peptides have four hotspots composed of 
hydrophobic amino acids and positioned in the vicinity of 
two Phe, one Ala, and one Val. A Gly is always retrieved 

in the hotspot 4 which is situated at the place of an A � Lys 
residue (Fig. 4). Overall, except for class I peptides which 
rather bind the A � C-terminal segment, Des3PI mainly 
generated hydrophobic peptides which target the 18VFFA21 
central region.

This observation is an encouraging outcome of our com-
putational approach since the A � self-recognition element 
16KLVFFA21 is a major target of A � aggregation inhibi-
tors. Naturally, many of them are peptides or peptidomi-
metics designed from this sequence [53], including cyclic 
peptides  [54–56]. Nonetheless, high throughput screen-
ing approaches allows to identify peptide inhibitors with 
more diverse sequences than the self-recognition one. For 
instance, Richman et al. synthesized a library of head-to-
tail cyclic D,L-�-hexapeptides and identified among them 
the two sequences lLwHsK and sHwHsK (where lower and 
upper case letters denote D- and L-amino acids, respec-
tively) which can inhibit A � aggregation [57]. In another 
study, Wang et al. performed an in silico screening of amy-
loidogenic hexapeptide databases to find those which are 
prone to dimerize into a �-sheet. Among 11 identified ones, 
6 hexapeptides exhibited strong binding affinity to A � in 
SPR experiments, and among them, the two sequences 
CTRIYWG and GTVWWG could strongly inhibit A � aggre-
gation in ThT fluorescence assays [58]. It could be noted that 

Fig. 4  Des3PI generated six classes of peptides potentially binding A � protofibril. For each class, at most five best peptide sequences were gen-
erated according to the amino acid occurrences in the peptide hotspots
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these two experimental studies revealed peptides with amino 
acids (Ile, Leu, Thr, Trp, and Tyr) similar to those which 
frequently appear in Des3PI sequences. This suggests that 
our approach could design potential good peptide binders 
and inhibitors of A � oligomers.

Validation of Des3PI peptides by blind docking

To validate the method, we set up a two-step computational 
procedure to check whether or not the generated peptides 
are likely to succeed. First, the selected peptides were 
blindly docked on the protein target by using the ADCP 

program [37, 38]. We considered that a peptide passes this 
test if at least one binding mode among the 5% lowest scores 
is retrieved close to the Des3PI hotspots with a RMSD of the 
peptide C � atoms lower than 10 Å. Secondly, we selected 
the protein-peptide complex with the lowest peptide RMSD 
(among the 5% best scores), and verify its stability by molec-
ular dynamics simulations.

For Ras protein, the graphs displaying the ADCP scores 
versus RMSD of the docked peptides (Figs. 5 and 6) show 
that all 20 peptides generated by Des3PI have at least one 
low energy binding mode close to the targeted surface. 
It should be noted that the peptides with only 4 hotspots 

Fig. 5  ADCP score of the bind-
ing modes on Ras protein of the 
20 best peptides (class I and II) 
generated by Des3PI as a func-
tion of their RMSD relative to 
the hotspot positions
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(class II) have overall moderate binding energies, as might 
be expected. However, although the peptides with 6 hotspots 
(class IV) have binding energies among the lowest ones, 
they did not outperform those of class I which have only 
5. This indicates that the presence of specific amino acids 
in the peptides is more important for the binding than their 
size. For the second step of the validation procedure, we 
could have checked the stability of all the 20 peptides in 
complex with Ras, but, because of our limited computa-
tional resources, we chose to submit only one representative 
peptide of each class to the MD simulation step (QRAWR, 
NWAR, DVWGR, and DRVWAW).

In contrast, the blind docking of the peptides generated by 
Des3PI for Mcl-1 is more ambivalent than for Ras (Fig. 7). 
Among the five selected peptides, only NFWIW clearly has 
low energy binding modes in the targeted surface of Mcl-
1. Nevertheless, for each of the two peptides NFFKW and 
NWFIW, one binding mode was found at the boundary of the 
criteria for validating the test. Compared to Ras protein, this 
mitigated success for Mcl-1 might be due to the shape of its 
binding interface with PUMA BH3 �-helix which is longer 
and narrower than the rather flat targeted surface of Ras. This 
might explain not only the lower number of peptide classes 
found by Des3PI for Mcl-1 (Fig. 3) when compared to Ras 

Fig. 6  ADCP score of the bind-
ing modes on Ras protein of the 
20 best peptides (class III and 
IV) generated by Des3PI as a 
function of their RMSD relative 
to the hotspot positions
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(Fig. 2) but also the medium success rate of the peptide blind 
docking on Mcl-1, given the fact that the designed peptides 
are cyclic, rather plane and not helical. Despite this, we con-
tinued the validation procedure of the 3 mentioned peptides 
(NFWIW, NFFKW, and NWFIW) by checking the stability of 
their complex with Mcl-1 using MD simulations.

Regarding the 12 peptides designed by Des3PI for target-
ing A � , the results of their blind docking (Fig. 8) show that 
(i) none of the 5 peptides of class I could be successfully 
docked close to the Des3PI hotspots. Nevertheless, the pep-
tide RISS had one binding mode at the boundary of the test 
criteria and was further considered in the second validation 
step; (ii) each of the two sequences LFTW and LWTW of 
class II has one binding mode satisfying the criteria for vali-
dating the test; and (iii) 3 over the 5 last peptides generated 
by Des3PI (WYGK, WYGW, and WYIG) were successfully 
docked to their target. Given the very large area of the A � 
protofibril targeted surface, we estimate that the success rate 
of 6 peptides over 12 is rather encouraging. These 6 peptides 
were further evaluated by submitting their complexes with 
A � protofibril to MD simulations.

All together, over the 37 peptides targeting Ras, Mcl-1, or 
A � , 29 of them could be successfully docked onto the pro-
tein targeted surfaces. This satisfactory success rate (78%) 
attests that Des3PI can generate cyclic peptide sequences 
with high probabilities to bind a targeted protein interface.

Checking protein‑peptide complex stability by MD 
simulations

The best binding mode (i.e. that one with the lowest 
RMSD with respect to the Des3PI hotspots among the 5% 

best scores) of each of the 4 peptides NWAR, DVWGR, 
QRAWR, and DRVWAW on Ras protein was used as the 
starting conformation for two independent MD simulations. 
In all 8 simulations, the Ras protein RMSD relative to its ini-
tial conformation are stabilized between 1 and 2 Å (Fig. S2). 
Overall, the 4 peptides remain on the targeted surface of Ras 
(Fig. 9), except in one simulation of peptide NWAR (class 
II) and, in a lesser extent, in one simulation of DVWGR 
(class III), corroborating the moderate binding energies out-
put from their docking calculations (Figs. 5 and 6). The 2 
peptides QRAWR (class I) and DRVWAW (class IV) have 
the most stable positions on the protein surface. Notably, the 
6 hotspots DRVWAW peptide largely occupies the Ras sur-
face that is involved in the binding to Raf and appears to be 
the most promising potent inhibitor of Ras-Raf interactions.

Regarding Mcl-1, all MD simulations of its complexes 
with the 3 peptides that were successfully docked show that 
the ligand positions in the protein binding cavity are stable 
during 200 ns (Fig. 10). It is interesting to note that, given 
the rather plane shape of these cyclic peptides which does 
not fit well the rather long and narrow binding site of Mcl-
1, we expected that their binding to the protein would not 
be very stable. However, our MD simulations indicate the 
opposite tendency which can be accounted for by the fact 
that Mcl-1 can distort to well accommodate the cyclic pep-
tides [59]. Indeed, as shown in Fig. S3, the protein RMSD 
increased to larger values (between 3 and 4 Å) than those 
of Ras which does not need to deform to bind the cyclic 
peptides. At the end, the 3 peptides NFWIW, NFFKW, and 
NWFIW successfully passed the two-step assessment.

In the MD simulations of the 6 peptides bound to A � , 
the protofibril RMSD stabilized at higher values (between 3 

Fig. 7  ADCP score of the bind-
ing modes on Mcl-1 protein of 
the 5 best peptides generated 
by Des3PI as a function of their 
RMSD relative to the hotspot 
positions
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and 7 Å) than those of the globular proteins Ras and Mcl-1 
(Fig. S4). Regarding the peptides, the following observations 
can be made (Fig. 11): (i) the RISS peptide unbound the 
A � protofibril in one of its simulations, crossed the simula-
tion box, and bound the opposite surface of the protofibril 
(figure not shown). In the second simulation, the peptide 
remained overall attached to the targeted surface but tran-
siently unbound the protofibril, indicating that this peptide is 
not tightly held in place; (ii) the peptides LFTW and LWTW 
of class II remained attached and quite close to the protofi-
bril targeted surface, even if translations away from their 
initial position could be observed in half of their simulations. 

It should be noted that these translations may led these pep-
tides to interact with the A � residues symmetrical to those 
initially contacted; (iii) the 3 last assessed peptides also 
remained bound to the targeted surface of A � protofibril. 
Nevertheless, the peptides WYGW and WYIG also moved 
away from their putative binding site in half of their simu-
lations, contrary to WYGK which firmly stayed around its 
targeted surface in both its simulations.

To sum up, three quarters of the peptides targeting Ras, 
three over three targeting Mcl-1, and two thirds of those 
targeting A � were shown to form steady dynamic complexes 
with their targeted protein. This success rate of 77% suggests 

Fig. 8  ADCP score of the bind-
ing modes on A � protofibril of 
the 12 best peptides generated 
by Des3PI as a function of their 
RMSD relative to the hotspot 
positions
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again that the peptides designed by Des3PI have good 
chances to bind in a stable way a targeted protein surface.

Analyzing the targeted protein contact residues

For each of the three targeted proteins, the most promis-
ing inhibitory peptides exhibit, after blind docking and MD 

simulations, RMSD relative to the Des3PI hotspots between 
0.4 and 1.1 nm. These values which can be considered as 
significant indicate that the peptide binding modes observed 
in simulations are not exactly those expected by Des3PI and 
reflect some conformational changes, global rotations, and/
or translations of the peptides on the protein surface. Nev-
ertheless, as illustrated in Figs. 9 and 10, in most of the 
simulated protein-peptide complexes, the ligand steadily 
occupied a large part of the interface area and might there-
fore competitively inhibit the protein partner binding. To 
support this assumption, we compared the protein residues 
that are contacted by the peptides during simulations with 
those that are in contact with the partners in experimental 
complex structures.

Regarding Ras protein, over the 10 residues of Ras 
involved in the interface with Raf, 7 residues (Ile21, Gln25, 
Ile36, Glu37, Asp38, Ser39, and Tyr40) are contacted by 
the Des3PI peptides during an extensive part of all the MD 
trajectories, except in the first MD of Ras-NWAR complex 

Fig. 9  Time evolution of the peptide C � RMSD relative to the 
Des3PI hotspots in the Ras-peptide complex MD simulations. Snap-
shots in the left and right columns represent the complex initial and 
final structures, respectively. Green patches on protein surface indi-
cate Ras residues in contact with Raf (PDB ID: 3KUD [46])

Fig. 10  Time evolution of the peptide C � RMSD relative to the 
Des3PI hotspots in the MD simulations of their complexes with Mcl-
1. Snapshots in the left and right columns represent the complex ini-
tial and final structures, respectively. Green patches on protein surface 
indicate Mcl-1 residues in contact with PUMA (PDB ID: 2ROC [48])

Fig. 11  Time evolution of the peptide C � RMSD relative to the 
Des3PI hotspots in the MD simulations of their complexes with 
A � protofibril. Snapshots in the left and right columns represent 
the complex initial and final structures, respectively. Green patches 
on protofibril surface indicate A � residues initially in contact with 
docked peptides or residues symmetrical to the former ones
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(Fig. 12). This indicates that the three peptides DVWGR, 
DRVWAW, and QRAWR steady occupy a large portion of 
the Ras-Raf interface and thus might be potent inhibitors of 
this complex.

In the six MD simulations of Mcl-1 complexes, the pep-
tides could not occupy the whole binding groove which 
accommodates the PUMA �-helix in the 2ROC struc-
ture  [48]). Indeed, the four residues Phe299, Phe300, 
Val302, and Gln303, which are located at one extremity of 
the groove (right side of the binding site colored in green 
in Fig. 10), are never contacted by the three simulated pep-
tides (data not shown). Nevertheless, over the 18 residues 
that constitute the rest of the Mcl-1 interface with PUMA, 
at least 10 residues (His205, Ala208, Phe209, Met212, 
Lys215, Val230, His233, Val234, Thr247, and Phe251) are 
in contact with the peptides during a large part of the MD 
trajectories (Fig. 13). By stably occupying about half of the 

Mcl-1 binding groove, the three designed peptides might 
be considered as promising inhibitors of Mcl-1 interactions 
with PUMA.

About A � protofibrils, the targeted binding surface is 
composed of the residues 11–42 of two chains and is clearly 
too large to be entirely occupied by the six peptides designed 
with Des3PI. That is why we compared here the A � most 
frequently contacted residues in simulations with those from 
the docking calculations to check the stability of the bind-
ing modes of the docked peptides. As displayed in Fig. 14, 
the first simulated peptide, RISS, could not remain in the 
same location as the one predicted by docking, confirming 
that this binding mode is not stable. About the two peptides 
LFTW and LWTW, Fig. 14 shows that, overall, they both 
kept their docking position on the A � protofibril surface 
during the simulations. It should be noted that, in the first 
MD simulation, LFTW slightly shifted to region 25–34 of 

Fig. 12  Percentage of the MD trajectory times for which Ras residues are contacted by the inhibitory peptides (black bars). Red bars indicate 
Ras residues in contact with Raf in the 3KUD structure [46])

Fig. 13  Percentage of the MD 
trajectory times for which 
Mcl-1 residues are contacted by 
the inhibitory peptides (black 
bars). Red bars indicate Mcl-1 
residues in contact with PUMA 
in the 2ROC structure [48])
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the A � first chain, while it significantly moved toward the 
symmetrical residues 14–20 and 30–34 of the A � second 
chain, in the second trajectory. Regarding the peptides of 
the last class, we can observe a similar dynamic behavior 
for the two peptides WYGK and WYIG, which, overall, 
remained in the same area as their docking position, but 
slightly moved toward the A � region 36–41 during their 
simulations (Fig. 14). In contrast, WYGW is more mobile 
and can span across the binding surface to reach the sym-
metrical A � chain. Altogether, these analyses suggest that 
the four peptides LFTW, LWTW, WYGK, and WYIG are 
good binders of the A � protofibril targeted surface and might 
be potential good inhibitors of A � aggregation.

Peptide pharmacological properties

As highlighted by Vinogradov et al., a major challenge in 
cyclic peptide design remains to optimize their pharmaco-
logical properties [10]. We think that this task is beyond the 
scope of this study which mainly aims at finding peptide 
sequences with potential high affinity for a targeted protein 
surface. Nevertheless, we would like to briefly discuss here 
some pharmacological properties of the most promising pep-
tides found by DesPI (Table 1).

Unsurprisingly, the cyclic peptide molecular weights 
exceed the Lipinski’s threshold of 500 Da [61], and, due to 
the large number of backbone hydrogen bond donors and 

Fig. 14  Percentage of the MD trajectory times for which A � residues are contacted by the inhibitory peptides (black bars). Red bars indicate 
here A � residues in contact with each peptide after the blind docking. Orange bars indicate the A � residues symmetrical to the previous ones



619Journal of Computer-Aided Molecular Design (2022) 36:605–621 

1 3

acceptors, their polar surface areas are much larger than the 
140 Å2 criteria of Veber et al. [62]. It could also be noted 
that, despite the presence of many hydrophobic side chains 
in Des3PI peptides, they are globally rather hydrophilic as 
indicated by their negative octanol-water partition coeffi-
cient LogP. All together, these data suggest that our pep-
tides could hardly diffuse through biological membranes and 
would have a poor oral bioavailability. Nevertheless, beyond 
the fact that many drugs do not satisfy the rule of 5 [63], it 
is possible to improve the peptide passive diffusion through 
biological membranes by reducing the number of backbone 
hydrogen bond donors. This could be achieved by using 
N-methylated amino acids, such as in the orally bioavail-
able immunosuppressant cyclosporine, a cyclic 11-residue 
peptide containing seven N-methylated amino acids [64].

Finally, it should be noted that SwissADME [60] pre-
dicts that our peptides are between poorly and moderately 
soluble in water, as indicated by their LogS values between 
− 10 and − 4. This is probably due to the presence of many 
hydrophobic and aromatic side chains in Des3PI peptides. 
Unfortunately, improving the peptide solubility by modify-
ing these side chains would probably lead to a deterioration 
of both their affinity for the protein and their membrane per-
meability. As for about 40% of the approved drugs, strategies 
to administer poorly soluble compounds remain to use drug 
delivery systems, such as emulsion, liposome, or polymer 
encapsulation [65].

Computation times

Before concluding, we would like to give an idea about the 
time needed for finding new peptide binders of a targeted 
protein with Des3PI (Table 2). The generation of the peptide 
hotspots and sequences per se is a process that takes less 

than a day, at the end of which the user is provided with sev-
eral peptide candidates which can be synthesized and tested 
experimentally. An increased confidence in Des3PI results 
can be achieved by running protein-peptide blind docking 
calculations, at the cost of a few extra computation hours. 
Naturally, the protein-peptide complex stability assessment 
by MD simulations is by far the most time consuming pro-
cess, but we consider this step as optional if experimental 
studies can be envisaged in a near future.

Conclusion

Given a protein surface involved in a protein–protein interac-
tion that we want to perturb with a cyclic peptide, Des3PI 
aims at identifying sequences that potentially bind the tar-
geted surface with high affinity. In this report, the principle 
and algorithm of the fragment-based approach implemented 
in Des3PI were described in detail in the Methods section. 
Des3PI was applied to three different protein interfaces, one 
composed of �-helices (Mcl-1), a second one of �-strands 
(A� protofibrils), and a third one comprising both of them 
(Ras). For each of these targets, Des3PI was able to provide 
at least five different peptide sequences with potential high 
affinity for the proteins. For large and flat protein surfaces, 
such as Ras or A � protofibril, Des3PI can even generate a 
dozen or more peptide hits.

The ability of the peptides designed by Des3PI to cor-
rectly and stably bind their targeted protein surfaces were 
tested by a two-step validation protocol consisting in a 
blind docking of the peptides onto the targeted proteins, 
followed by stability tests of the complexes found among 
the 5% best scores and with the lowest peptide RMSD 
with respect to Des3PI hotspots. For Ras, all the 20 pep-
tides provided by Des3PI were successfully docked, and 4 
representative ones in complex with Ras were submitted 
to MD simulations. Three of them exhibited a good stabil-
ity of their binding to Ras targeted surface. Among the 5 
peptides that Des3PI yielded for Mcl-1, three successfully 
passed both the blind docking and stability test. Finally, 

Table 1  Some pharmacological properties of the most promising 
Des3PI peptides

All these quantities were estimated using the SwissADME web-
server [60]. Mass weight and polar surface area are in g/mol and Å 2 , 
respectively. The reported logP and logS values are the average val-
ues of five and three predictions, respectively [60]

Peptide Mass weight Polar surface area LogP LogS

DVWGR 841.87 381.46 − 4.46 − 4.92
QRAWR 985.06 477.16 − 6.07 − 4.88
DRVWAW 1099.16 455.45 − 4.16 − 8.03
NFFIW 993.07 349.88 − 1.21 − 8.77
NFFKW 1009.10 377.52 − 2.99 − 8.10
NWFIW 1032.11 365.67 − 1.49 − 9.32
LFTW 775.85 268.82 − 0.62 − 7.11
LWTW 814.89 284.61 − 0.75 − 7.67
WYGK 763.82 296.46 − 2.87 − 5.96
WYIG 747.80 268.82 − 1.04 − 6.64

Table 2  Computation time of each step of Des3PI approach for the 
three proteins studied herein

These times were obtained on a local Linux workstation with 12 CPU 
of 3.7 Ghz. ∗Each peptide blind docking consists in n docking calcu-
lations where n is the peptide number of residues

Peptide genera-
tion (50 x 20 x 20 
docking) (h)

Peptide blind 
docking (n dock-
ing∗ ) (h)

Complex stability 
(1 simulation of 200 
ns) (h)

Ras 16 2 252
Mcl-1 20 3 353
A� 19 3 505
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when targeting A � protofibril, Des3PI generated 12 differ-
ent peptides, half of them were successfully docked, and 
4 over 6 exhibited steady binding to the targeted surface 
perpendicular to the protofibril axis.

At the end, the overall success rate of the two-step vali-
dation procedure is about 60% for the three protein tar-
gets studied herein. This encouraging result suggests that 
our peptide design program Des3PI is a reliable tool to 
identify in the immense space of peptide sequences those 
which are most likely to bind a protein surface target. Of 
course, these identified peptides require to be synthesized 
and tested in vitro to fully validate this approach. These 
experimental studies have been initiated for the peptides 
targeting Mcl-1 and A � protofibril, and are in progress.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10822- 022- 00468-z.
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