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Abstract
Extended (or n-ary) similarity indices have been recently proposed to extend the comparative analysis of binary strings. 
Going beyond the traditional notion of pairwise comparisons, these novel indices allow comparing any number of objects 
at the same time. This results in a remarkable efficiency gain with respect to other approaches, since now we can compare N 
molecules in O(N) instead of the common quadratic O(N2) timescale. This favorable scaling has motivated the application 
of these indices to diversity selection, clustering, phylogenetic analysis, chemical space visualization, and post-processing 
of molecular dynamics simulations. However, the current formulation of the n-ary indices is limited to vectors with binary 
or categorical inputs. Here, we present the further generalization of this formalism so it can be applied to numerical data, 
i.e. to vectors with continuous components. We discuss several ways to achieve this extension and present their analytical 
properties. As a practical example, we apply this formalism to the problem of feature selection in QSAR and prove that the 
extended continuous similarity indices provide a convenient way to discern between several sets of descriptors.

Keywords Similarity · QSAR · Extended similarity · Descriptors

Introduction

Similarity and distance measures are cornerstones of a vast 
range of methodologies in the fields of molecular modeling, 
drug design and cheminformatics [1, 2]. In some common 
examples, their binary implementations are used to quantify 

the similarity of binary molecular fingerprints (with the 
Tanimoto coefficient unquestionably being the most popular 
one) [3], while their continuous implementations constitute 
the basics of clustering algorithms [4]. The applications of 
molecular similarity (as expressed by pairwise similarity 
calculations between binary fingerprints) in ligand-based 
virtual screening were thoroughly explored by the groups of 
Jürgen Bajorath [5, 6], Peter Willett [7, 8], and many others, 
with a large body of works from the latter group dedicated 
to data fusion practices [9, 10]. Binary similarity measures 
from many sub-fields were collected by Todeschini and col-
leagues [11], and further analyzed by our group to select 
ideal candidates for specific applications in metabolomics 
[12] and molecular design [13] studies. We have also shown 
that two similarity measures can be consistent with each 
other in a surprisingly high percentage of cases, even when 
they are poorly correlated [14].

Recently, we have introduced several methodological 
frameworks to extend the usage of similarity measures 
beyond the common cases mentioned above. Most impor-
tantly, we have demonstrated that the mathematical expan-
sion of the core concepts of similarity measures can provide 
a way to quantify the similarity of an arbitrary number of 

Anita Rácz and Timothy B. Dunn have contributed equally to this 
work.

 * Ramón Alain Miranda-Quintana 
 quintana@chem.ufl.edu

 * Károly Héberger 
 heberger.karoly@ttk.hu

1 Plasma Chemistry Research Group, Research Centre 
for Natural Sciences, Magyar Tudósok Krt. 2, 
1117 Budapest, Hungary

2 Department of Chemistry, University of Florida, Gainesville, 
FL 32611, USA

3 Medicinal Chemistry Research Group, Research 
Centre for Natural Sciences, Magyar Tudósok Krt. 2, 
1117 Budapest, Hungary

4 Quantum Theory Project, University of Florida, Gainesville, 
FL 32611, USA

http://orcid.org/0000-0003-2121-4449
http://crossmark.crossref.org/dialog/?doi=10.1007/s10822-022-00444-7&domain=pdf


158 Journal of Computer-Aided Molecular Design (2022) 36:157–173

1 3

objects at the same time. We first showed this on binary 
(molecular) fingerprints: the resulting similarity measures 
were termed extended (or n-ary) similarity measures [15]. 
They employ the core concept of similarity and dissimilarity 
counters, which have replaced the a, b, c and d terms that 
are commonly applied in the well-known, pairwise defini-
tions of the similarity measures to describe the number of 
bit positions where two fingerprints have co-occurring one 
(a) or zero (d) bits, or a one bit that is exclusive to either of 
the fingerprints (b and c). In our framework, the 1-similar-
ity, 0-similarity, and dissimilarity counters express the num-
ber of bit positions where the number of co-occurring one 
(or zero) bits is above, or below, a pre-defined coincidence 
threshold, respectively. For pairwise comparisons, these 
generalizations naturally revert to the well-known defini-
tions of the classical, pairwise similarity measures. We have 
shown that the new methodology is not only computation-
ally efficient, scaling as O(n) with the number of compared 
objects n, but it can be successfully applied for tasks such as 
diversity selection, clustering, as well as the visualization of 
large sections of chemical space [16–19]. A further generali-
zation involved the extension of this framework to allow for 
more than two possible characters (t = 2) in an object (vec-
tor), opening the possibility to apply the extended similarity 
measures in bioinformatics, for the comparison of nucleotide 
(t = 4) or protein sequences (t = 20) [20]. We have termed 
these, even further generalized definitions extended many-
item, or (t, n) similarity measures, to distinguish them from 
the above-mentioned, extended binary, or (2, n) similarity 
measures.

In this study, realizing the potential of further possible 
generalizations to extended similarity measures, we intro-
duce extended continuous, or (ℝ, n) similarity measures, 
to provide a way to compare an arbitrary number of vectors 
with real values. This generalization will employ the same 
concepts as mentioned above, with novel formulas for deter-
mining the number of similarity and dissimilarity counters. 
As we will show in Sect. 2.1, there are at least three ways to 
generalize the extended indices so they can handle continu-
ous-valued vectors. All of these variants were implemented 
and compared in the Results section.

To demonstrate the utility of the new class of similar-
ity metrics, we use them in descriptor selection. Quanti-
tative Structure–Activity Relationships (QSAR) are one 
of the earliest and most important concepts in molecular 
design [21]. QSAR realizes a linear or non-linear regres-
sion between numerical descriptors of compound struc-
ture and experimentally determined or calculated phys-
icochemical parameters and bioactivity. While multiple 
linear regression (MLR) has ruled the QSAR field for a 
long time as a classical regression algorithm, the last dec-
ades have seen the emergence of several new algorithms, 
many of them based on Machine Learning [22], including 

some interesting examples that are adapted from other 
fields [23]. In the meantime, new families of molecular 
descriptors were introduced: contemporary descriptor cal-
culator software (such as Dragon) can generate thousands 
of continuous (and, discrete and binary) descriptors. Also, 
public bioactivity repositories such as ChEMBL [24] or 
PubChem Bioassay [25] allow access to large molecular 
datasets for the more thorough training of QSAR models. 
The increasing number of descriptors, more complex algo-
rithms and larger training datasets are factors that drive up 
the computational demand of QSAR modeling: to mitigate 
this, it is common practice to apply one or more descriptor 
(feature) selection algorithms to reduce the input dataset 
of the modeling algorithm by pre-selecting the most mean-
ingful descriptors to work with [26]. In turn, descriptor 
selection has its own computational cost as a limiting fac-
tor: less sophisticated (less demanding) algorithms will 
sample the descriptor space only superficially, while more 
sophisticated options, such as genetic algorithms, will be 
more time-consuming [27]. A thorough review of descrip-
tor selection methods is given by Goodarzi et al. [28]. 
While we do not necessarily gain prediction accuracy from 
descriptor selection [29], a smaller number of descriptors 
will convey a significant speedup to QSAR modeling in 
most cases, especially if the descriptor selection approach 
is not laborious either.

Here, we apply the new class of extended continuous 
similarity metrics in a simple descriptor selection sce-
nario. Using a large and relevant ADME-related dataset 
of cytochrome P450 (CYP) 2C9 inhibitors (actives) and 
inactive species, we calculate group-wise similarities 
based on several descriptor families to find the best ones at 
discriminating the group of actives from the total dataset. 
Therefore, we provide a novel, simple variable selection 
tool for QSAR/QSPR analyses. This idea can constitute 
the basis of more complex descriptor selection approaches 
with a more thorough exploration of the descriptor space 
to yield the set of descriptors that can optimally distin-
guish the actives from the total set of ligands.

Materials and methods

Extended continuous similarity indices

There are several ways to extend the domain of defini-
tion of our n-ary indices such that they can be applied to 
quantify the similarity of an arbitrary number of vectors 
with continuous components. The strategies that we will 
consider here all start from a common point: scaling the 
input data between 0 and 1. In other words, we will work 
with vectors:
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where ∀i, j ∶ 0 ≤ xij ≤ 1.

Variant 1

The first way of quantifying the similarity of these vectors 
is to see how different the components are from the average 
of their column (e.g., how distant is a feature from its aver-
age value). Hence, the first step is to calculate the vector of 
column-wise averages:

where

We now have to subtract this average from the corre-
sponding normalized elements (e.g., centering) and find the 
absolute of these differences:

The next step is to sum all these differences across a given 
column and form a new vector with the results:

where

Now, analogously to the original binary extended similar-
ity indices, we need to define a new vector of “coincidences”:

where

This is directly related to our previous works [15, 16]. 
The key insight is that if the ith column of the normalized 
data has k 1’s and n − k 0’s, then �i = Δn(k) = |2k − n| , that 
is, the indicator we use in our original paper to quantify the 
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coincidence. The main difference is that the simpler |2k − n| 
expression is only defined over strings of 1’s and 0’s, while 
Eq. (8) is defined over real numbers in the [0, 1] interval.

Having established this connection, we can now follow 
a similar route as in the binary case. First, we defined a 
coincidence threshold, � , and if 𝛿i > 𝛾 then we use fs

(
�i
)
 to 

estimate the similarity, and if �i ≤ � then we use fd
(
�i
)
 to 

calculate the dissimilarity. By analogy of the 1- and 0-simi-
larities of the binary case, we can distinguish between “high-
content similarities” (where the column average is higher) 
and “low-content similarities” (where the column average 
is lower):

If n is odd:
�i will be a “high-content similarity” if 𝛿i > 𝛾 and 

ai ≥
(n− n mod 2)∕2+ n mod 2

n
 , moreover, �i will be a “low-con-

tent similarity” if 𝛿i > 𝛾 and ai ≤
(n− n mod 2)∕2

n
.

If n is even:
�i will be a “high-content similarity” if 𝛿i > 𝛾 and 

ai ≥ 0.5 , and �i will be a “low-content similarity” if 𝛿i > 𝛾 
and ai < 0.5.

This procedure extends many of the notions of the binary 
case in a natural way. However, while the notion of quan-
tifying similarity by measuring the distance to the mean is 
a common one, we should be aware that a high similarity 
in this case implies that the components of vector S (Eq. 5) 
can be very close to zero. This means that if we do not use 
a high enough coincidence threshold, we have the risk of 
identifying all the columns as corresponding to low-content 
similarities. The problem with this is that several indices 
will be ill-defined (e.g. they will involve division by zero), 
because their denominators only include high-content simi-
larities and dissimilarity counters. For instance, taking the 
more common case of the traditional binary similarity indi-
ces (and the standard convention that a, b + c, and d rep-
resent the number of common “on” bits, the mismatches, 
and common number of “off” bits, respectively), this situ-
ation will be equivalent to saying that a = b + c = 0. Hence, 
indices without d in their denominator (like Jaccard–Tani-
moto, Baroni–Urbani–Buser, etc., see Table 1) could not be 
calculated. Once again, this would not be a problem, if we 
select a large enough coincidence threshold. Nonetheless, 
the potential issues that could be caused by this prevalence 
of 0-similarities motivate us to explore another variant of 
extended continuous indices.

Variant 2

As noted above, the raison d’être for this new approach is to 
increase the number of high-content (as opposed to low-con-
tent) similarities. Here we also measure similarity according 
to the distance from the mean, so we also need to calculate 
the column-average vector (Eq. 2), and we need to form the 
matrix given in Eq. (4). The key difference is that now we 



160 Journal of Computer-Aided Molecular Design (2022) 36:157–173

1 3

Table 1  Formulae and notations of the extended continuous similarity indices

Additive indices

Label Typea Notationb Name Equations

cAC cAC_hc cACw Continuous Austin–Colwell
scAC(hc_wd) =

2

�
arcsin

�∑
hc−s fs(Δn(k))Cn(k)+

∑
lc−s fs(Δn(k))Cn(k)∑

s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k)

cACnw
scAC(hc_d) =

2

�
arcsin

�∑
hc−s fs(Δn(k))Cn(k)+

∑
lc−s fs(Δn(k))Cn(k)∑

s Cn(k)+
∑

d Cn(k)

cBUB cBUB_hc cBUBw Continuous Baroni–Urbani–Buser

scBUB(hc_wd) =

��∑
hc−s fs

�
Δn(k)

�
Cn(k)

��∑
lc−s fs

�
Δn(k)

�
Cn(k)

�
+

∑
hc−s fs

�
Δn(k)

�
Cn(k)

⎧
⎪
⎨
⎪
⎩

��∑
hc−s fs

�
Δn(k)

�
Cn(k)

��∑
lc−s fs

�
Δn(k)

�
Cn(k)

�
+

∑
hc−s fs

�
Δn(k)

�
Cn(k) +

∑
d fd

�
Δn(k)

�
Cn(k)

⎫
⎪
⎬
⎪
⎭

cBUBnw

scBUB(hc_d) =

��∑
hc−s fs

�
Δn(k)

�
Cn(k)

��∑
lc−s fs

�
Δn(k)

�
Cn(k)

�
+

∑
hc−s fs

�
Δn(k)

�
Cn(k)�√

[
∑

hc−s Cn(k)][
∑

lc−s Cn(k)]+
∑

hs−s Cn(k)+
∑

d Cn(k)

�

cCT1 cCT1_hc cCT1w Continuous Consonni–Todeschini (1)
scCT1(hc_wd) =

ln(1+
∑

hc−s fs(Δn(k))Cn(k)+
∑

lc−s fs(Δn(k))Cn(k))
ln(1+

∑
s fs(Δn(k))Cn(k)+

∑
d fd(Δn(k))Cn(k))

cCT1nw
scCT1(hc_d) =

ln(1+
∑

hc−s fs(Δn(k))Cn(k)+
∑

lc−s fs(Δn(k))Cn(k))
ln(1+

∑
s Cn(k)+

∑
d Cn(k))

cCT2 cCT2_hc cCT2w Continuous Consonni–Todeschini (2)
scCT2(hc_wd) =

ln(1+
∑

s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k))−ln(1+
∑

d fd(Δn(k))Cn(k))
ln(1+

∑
s fs(Δn(k))Cn(k)+

∑
d fd(Δn(k))Cn(k))

cCT2nw
scCT2(hc_d) =

ln(1+
∑

s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k))−ln(1+
∑

d fd(Δn(k))Cn(k))
ln(1+

∑
s Cn(k)+

∑
d Cn(k))

cFai cFai_hc cFaiw Continuous Faith
scFai(hc_wd) =

∑
hc−s fs(Δn(k))Cn(k)+0.5

∑
lc−s fs(Δn(k))Cn(k)∑

s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k)

cFainw
scFai(hc_d) =

∑
hc−s fs(Δn(k))Cn(k)+0.5

∑
lc−s fs(Δn(k))Cn(k)∑

s Cn(k)+
∑

d Cn(k)

cGK cGK_hc cGKnw

scGK(hc_d) =

2min
�∑

hc−s fs
�
Δn(k)

�
Cn(k),

∑
lc−s fs

�
Δn(k)

�
Cn(k)

�
−∑

d fd
�
Δn(k)

�
Cn(k)

2min(
∑

hc−s Cn(k) ,
∑

lc−s Cn(k))+
∑

d Cn(k)

cHD cHD_hc cHDnw
scHD(hc_d) =

1

2

⎛
⎜
⎜
⎝

∑
hc−s fs(Δn(k))Cn(k)∑
hc−s Cn(k)+

∑
d Cn(k)

+
∑

lc−s fs(Δn(k))Cn(k)∑
lc−s Cn(k)+

∑
d Cn(k)

⎞
⎟
⎟
⎠

cRT cRT_hc cRTw Continuous Rogers–Tanimoto
scRT(hc_wd) =

∑
s fs(Δn(k))Cn(k)∑

s fs(Δn(k))Cn(k)+2
∑

d fd(Δn(k))Cn(k)

cRTnw
scRT(hc_d) =

∑
s fs(Δn(k))Cn(k)∑

s Cn(k)+2
∑

d Cn(k)

cRG cRG_hc cRGw Continuous Rogot–Goldberg
scRG(hc_wd) =

∑
hc−s fs(Δn(k))Cn(k)

2
∑

hc−s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k)

+
∑

lc−s fs(Δn(k))Cn(k)

2
∑

lc−s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k)

cRGnw
scRG(hc_d) =

∑
hc−s fs(Δn(k))Cn(k)

2
∑

hc−s Cn(k)+
∑

d Cn(k)

+
∑

lc−s fs(Δn(k))Cn(k)

2
∑

lc−s Cn(k)+
∑

d Cn(k)

cSM cSM_hc cSMw Continuous Simple matching, Sokal–Michener
scSM(hc_wd) =

∑
s fs(Δn(k))Cn(k)∑

s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k)

cSMnw
scSM(hc_d) =

∑
s fs(Δn(k))Cn(k)∑
s Cn(k)+

∑
d Cn(k)

cSS2 cSS2_hc cSS2w Continuous Sokal–Sneath (2)
scSS2(hc_wd) =

2
∑

s fs(Δn(k))Cn(k)

2
∑

s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k)

cSS2nw
scSS2(hc_wd) =

2
∑

s fs(Δn(k))Cn(k)

2
∑

s Cn(k)+
∑

d Cn(k)
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Table 1  (continued)

Asymmetric indices

Label Type Notation Name Equations

cCT3 cCT3_hc cCT3w Continuous Consonni–Todeschini
(3)

scCT3(hc_wd) =
ln(1+

∑
hc−s fs(Δn(k))Cn(k))

ln(1+
∑

s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k))

cCT3nw
scCT3(hc_d) =

ln(1+
∑

hc−s fs(Δn(k))Cn(k))
ln(1+

∑
s Cn(k)+

∑
d Cn(k))

cCT3_lc cCT3lcw
scCT3(lc_wd) =

ln(1+
∑

s fs(Δn(k))Cn(k))
ln(1+

∑
s fs(Δn(k))Cn(k)+

∑
d fd(Δn(k))Cn(k))

cCT3lcnw
scCT3(lc_d) =

ln(1+
∑

s fs(Δn(k))Cn(k))
ln(1+

∑
s Cn(k)+

∑
d Cn(k))

cCT4 cCT4_hc cCT4w Continuous Consonni–Todeschini
(4)

scCT4(hc_wd) =
ln(1+

∑
hc−s fs(Δn(k))Cn(k))

ln(1+
∑

hc−s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k))

cCT4nw
scCT4(hc_d) =

ln(1+
∑

hc−s fs(Δn(k))Cn(k))
ln(1+

∑
hc−s Cn(k)+

∑
d Cn(k))

cCT4_lc cCT4lcw
scCT4(lc_wd) =

ln(1+
∑

s fs(Δn(k))Cn(k))
ln(1+

∑
s fs(Δn(k))Cn(k)+

∑
d fd(Δn(k))Cn(k))

cCT4lcnw
scCT4(lc_d) =

ln(1+
∑

s fs(Δn(k))Cn(k))
ln(1+

∑
s Cn(k)+

∑
d Cn(k))

cGle cGle_hc cGlew Continuous Gleason
scGle(hc_wd) =

2
∑

hc−s fs(Δn(k))Cn(k)

2
∑

hc−s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k)

cGlenw
scGle(hc_d) =

2
∑

hc−s fs(Δn(k))Cn(k)

2
∑

hc−s Cn(k)+
∑

d Cn(k)

cGle_lc cGlelcw
scGle(lc_wd) =

2
∑

s fs(Δn(k))Cn(k)

2
∑

s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k)

cGlelcnw
scGle(lc_d) =

2
∑

s fs(Δn(k))Cn(k)

2
∑

s Cn(k)+
∑

d Cn(k)

cJa cJa_hc cJaw Continuous Jaccard
scJa(hc_wd) =

3
∑

hc−s fs(Δn(k))Cn(k)

3
∑

hc−s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k)

cJanw
scJa(hc_d) =

3
∑

hc−s fs(Δn(k))Cn(k)

3
∑

hc−s Cn(k)+
∑

d Cn(k)

cJa_lc cJalcw
scJa(lc_wd) =

3
∑

s fs(Δn(k))Cn(k)

3
∑

s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k)

cJalcnw
scJa(lc_d) =

3
∑

s fs(Δn(k))Cn(k)

3
∑

s Cn(k)+
∑

d Cn(k)

cRR cRR_hc cRRw Continuous Russel–Rao
scRR(hc_wd) =

∑
hc−s fs(Δn(k))Cn(k)∑

s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k)

cRRnw
scRR(hc_d) =

∑
hc−s fs(Δn(k))Cn(k)∑
s Cn(k)+

∑
d Cn(k)

cRR_lc cRRlcw
scRR(lc_wd) =

∑
s fs(Δn(k))Cn(k)∑

s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k)

cRRlcnw
scRR(lc_d) =

∑
s fs(Δn(k))Cn(k)∑
s Cn(k)+

∑
d Cn(k)

cSS1 cSS1_hc cSSw Continuous Sokal–Sneath (1)
scSS1(hc_wd) =

∑
hc−s fs(Δn(k))Cn(k)∑

hc−s fs(Δn(k))Cn(k)+2
∑

d fd(Δn(k))Cn(k)

cSSnw
scSS1(hc_d) =

∑
hc−s fs(Δn(k))Cn(k)∑

hc−s Cn(k)+2
∑

d Cn(k)

cSS1_lc cSSlcw
scSS1(lc_wd) =

∑
s fs(Δn(k))Cn(k)∑

s fs(Δn(k))Cn(k)+2
∑

d fd(Δn(k))Cn(k)

cSSlcnw
scSS1(lc_d) =

∑
s fs(Δn(k))Cn(k)∑

s Cn(k)+2
∑

d Cn(k)
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carry out an additional transformation of this matrix before 
calculating the similarities, namely, we work instead with a 
new matrix defined by:

The rationale behind this is quite simple: in Eq. (4) a high 
similarity will correspond to a very small element, while in 
Eq. (9) a high similarity will correspond to an element that 
is close to 1.

From here we proceed as usual, first calculating the vector 
of column sums:

with:

In this case, we will follow a simpler recipe to determine 
the character of the counters:

From purely theoretical arguments, we should expect 
this variant to be better than the previous one, if anything 
because it will lead to indices that can be calculated regard-
less of the coincidence threshold selected. Nonetheless, it 
still measures similarity by taking the mean as a reference, 
so it seems desirable to explore yet another option, which 
measures similarity directly from the normalized values.

(9)

(
1 − ||x11 − a1

||, 1 − ||x12 − a2
||, ..., 1 − ||x1m − am

||
)

(
1 − ||x21 − a1

||, 1 − ||x22 − a2
||, ..., 1 − ||x2m − am

||
)

...
(
1 − ||xn1 − a1

||, 1 − ||xn2 − a2
||, ..., 1 − ||xnm − am

||
)

(10)S =
(
s1, s2, ..., sm

)

(11)si =

j=n∑

j=1

(
1 −

|||xji − ai
|||
)
= n −

j=n∑

j=1

|||xji − ai
|||

(12)

2si − n > 𝛾 → high - content

n − 2si > 𝛾 → low - content

||2si − n|| ≤ 𝛾 → dissimilarity

Variant 3

Starting from the scaled data (Eq. 1), we only need to 
calculate the sums along each column:

Then, we use these numbers to assign the type of coun-
ters, analogously to what we did in variant 2:

Notice that this method is essentially equivalent to the 
original binary case (the analogy is clear if we notice that 
if all the xij are either 0 or 1, then �i = ki in our original 
notation).

This variant has two potential advantages: its simplic-
ity, and the ability of looking at the data from a different 
point of view (since it does not rely on the calculation 
of the average). However, the latter can bring a potential 
problem: by not referring to an average and using the raw 
normalized values to directly calculate the similarity, this 
variant should be more prone to depend on the scaling 
(normalization) procedure. This can lead to a pathologi-
cal behavior, since a normalization method that gives very 
small values for the xij will lead to an input that suffers 
from the overly abundance of low-content similarities of 
variant 1. This will once again imply that we will not be 
able to calculate all indices, unless we use a very high 
coincidence threshold.

Having reached this point in any of the previous vari-
ants, we can easily classify each column as contributing to 
the high-content, low-content similarity, or dissimilarity 
between the compared objects. Notice that, as in the binary 

(13)�i =
∑

j

xji

(14)

2𝜎i − n > 𝛾 → high - content

n − 2𝜎i > 𝛾 → low - content

||2𝜎i − n|| ≤ 𝛾 → dissimilarity

Table 1  (continued)

Asymmetric indices

Label Type Notation Name Equations

cJT cJT_hc cJTw Continuous Jaccard–Tanimoto
scJT(hc_wd) =

∑
hc−s fs(Δn(k))Cn(k)∑

hc−s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k)

cJTnw
scJT(hc_d) =

∑
hc−s fs(Δn(k))Cn(k)∑
hc−s Cn(k)+

∑
d Cn(k)

cJT_lc cJTlcw
scJT(lc_wd) =

∑
s fs(Δn(k))Cn(k)∑

s fs(Δn(k))Cn(k)+
∑

d fd(Δn(k))Cn(k)

cJTlcnw
scJT(lc_d) =

∑
s fs(Δn(k))Cn(k)∑
s Cn(k)+

∑
d Cn(k)

a hc high-content similarity; lc low content similarity
b w weighted, nw non-weighted
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case, the minimum possible value for � in all these cases 
is also equal to n mod 2 . Once we have classified all the 
counters, the process to calculate the similarity indices is 
exactly the same as in the binary case (see Table 1 for the 
list of all the expressions). Notice that here we can also 
decide whether to include or not weight functions in the 
denominator of the indices, leading to the weighted (w) or 
non-weighted (nw) alternatives, respectively.

The formulae of n-ary continuous indices are enumerated 
in Table 1 (notice that the cJa and cJa0 differ in that in the 
latter we do not differentiate between high-content and low-
content similarities). Notice how the original formulation of 
some of these indices (e.g., the asymmetric indices, like Gle, 
Ja, etc.) distinguished between the high- and low-content 
similarities, assigning a more important role to the former. 
As we showed in our original paper, we can generalize these 
indices by replacing every occurrence of the high-content 
similarity by the sum of the high- and low-content simi-
larities, which leads to more symmetrical expressions (and 
novel ways to quantify similarity).

Dataset and descriptors

A large dataset of cytochrome P450 (CYP) 2C9 ligands from 
Pubchem Bioassay (AID 1851) was used as a case study to 
highlight the applicability of the n-ary indices for continu-
ous variables [30]. Cytochrome P450 enzymes are impor-
tant mediators of drug metabolism, therefore they are widely 
studied in the field of QSAR/QSPR: many compounds were 
evaluated against this enzyme family and they are recur-
ring targets in machine learning classification studies as well 
[31]. In total, 12,161 molecules were applied after the data 
curation and preparation step. The dataset contained 4016 
inhibitors with a potency of 10 µM or better (actives) and 
8145 inactive species. Dragon 7 software was used for the 
calculation of 2D descriptors [32, 33]. Table 2 shows the 19 
different 2D descriptor groups, which were calculated in the 
study (the groups are predefined by the applied software). 
We have applied the same numbering system for the descrip-
tor sets as it was used in the Dragon software. The excluded 
numbers (13–20, 26–27) are connected to 3D descriptors. 
Highly correlated variables (above 0.997) and constant 
variables were excluded from the sets [34]. The details and 
descriptions of the different descriptor sets can be found in 
the DRAGON software manual.

Statistical analysis

First, we had to normalize the descriptor sets before the 
calculation of the continuous n-ary indices. Two different 
methods were used for this step: rank transformation and 
mean scaling. The equations are the following:

and

After the normalization of the dataset, 16 different con-
tinuous n-ary indices were calculated for the 19 descriptor 
sets. We have calculated the n-ary indices for the active and 
inactive groups, as well as the total dataset, corresponding 
to three different levels of similarity. We assume the active 
group to be more coherent—based on earlier examples from 
our research group, where a small number of descriptors was 
sufficient to define simple multicriteria optimization rules 
for kinase [35] and GPCR ligands [36], distinguishing them 
from a larger set of commercially available compounds. By 
comparison, the inactive set should display a lesser degree of 
similarity, while the total dataset (containing both the active 
and inactive sets) should be the most diffuse, i.e. less similar 
overall. A further level of comparison was introduced by cal-
culating the absolute differences between the similarities of 
the active group vs. the total dataset (from here on, denoted 
as |active-total| values). Here, a larger difference corresponds 
to more discriminatory power of the given descriptor set 
and similarity metric. The datasets—with the 16 continuous 
n-ary metrics in the columns and the descriptor sets in the 

(15)ymean
(
xi
)
=

xi −minX

maxX −minX

(16)yrank
(
xi
)
=

rank
(
xi
)
− 1

max rank(X) − 1

Table 2  The applied 2D descriptor packages with the number of 
descriptors

Dragon number 2D Descriptor Size

1 Constitutional 45
2 Ring descriptors 32
3 Topological indices 72
4 Walk and path counts 46
5 Connectivity indices 37
6 Information indices 50
7 2D matrix-based descriptors 436
8 2D autocorrelations 213
9 Burden eigenvalues 96
10 P-VSA-like descriptors 55
11 ETA indices 21
12 Edge adjacency indices 324
21 Functional groups count 128
22 Atom-centred fragments 98
23 Atom-type E-state indices 88
24 CATS 2D 145
25 2D Atom Pairs 746
28 Molecular properties 14
29 Drug-like indices 12
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rows—were evaluated and compared with factorial ANOVA 
and the multicriteria decision making tool, sum of ranking 
differences (SRD) [37]. The SRD procedure is not a simple 
extension of the Spearman footrule to equal numbers (ties) 
in the input matrix [38], but contains two validation steps: 
(i) comparison of ranks with random numbers (CRRN) [39], 
and (ii) cross-validation [40]. It is a generally applicable 
multicriteria decision making tool [41], whose applications 
were demonstrated in a wide range of fields from food chem-
istry [42] to medical applications [43], as well as politics 
[44] and sports [45]. The SRDs is calculated as the city 
block (Manhattan) distance (dkj) between the rank values of 
the gold standard and the rank values of the original data. 
In the calculation process, always the columns of the dataset 
are compared to the reference column. SRD helped to com-
pare and rank the descriptor sets and the n-ary continuous 
indices. SRD was carried out separately for the similarities 
of the active and inactive sets, as well as the absolute differ-
ences between the actives and the total dataset (|active-total| 
values). In all cases, the maximum values were used as the 
reference column. When the novel similarity metrics were 
compared, the dataset contained those in the columns and 
the descriptor sets in the rows, while in the comparison of 
the descriptor sets, the mentioned dataset was transposed. 
It is important to note, that in every SRD calculation, the 
variables with smaller SRD values are the better ones (these 
are closer to the reference). The scaled (between 0 and 100) 
and cross-validated SRD values were applied for the final 
evaluation by ANOVA.

Factorial ANOVA analysis is dedicated to compare the 
group averages according to the different factors. For the 
original datasets (containing the 16 similarity metrics for the 
active, inactive and the complete dataset of molecules), we 
have used several factors such as the n-ary indices (16 lev-
els), the molecular descriptor sets (19), the different thresh-
old limits (0.05–0.95 fraction of the total size of the set, with 
steps of 0.05) and the applied groups of molecules (active, 
inactive, total). For the final comparison of the descriptors 
based on their SRD values, we have used (i) the descriptor 
sets, and (ii) the actives, inactives and |active-total| groups 
as factors.

Results and discussion

The calculated n-ary continuous indices were used for 
descriptor (variable) selection in the case study of a large 
dataset of CYP 2C9 inhibitors and inactives. Moreover, the 
16 different continuous similarity measures (weighted and 
non-weighted versions) were compared and ranked to find 
the most optimal ones for the task. We have calculated the 
similarity measures for three different sets of the dataset: 
actives, inactives and the complete dataset (total). As the 

optimal coincidence threshold limit (γ) is case-dependent, 
in each variant (1, 2, 3) of the similarity calculation, a coin-
cidence threshold analysis was carried out to select the 
best threshold limit. In the next step, the most important 
descriptor sets, and the optimal similarity measures have 
been selected based on the continuous similarity values for 
the “active”, “inactive” and “total” groups. In the optimal 
situation, the best similarity measures should return bigger 
similarity values for the group of active ligands, somewhat 
smaller similarities for the inactive ligands, and the lowest 
similarity for the most diffuse “total” group. An additional 
parameter, the absolute difference between the similarity 
of “active” and “total” groups was calculated to select and 
rank the examined descriptors and similarity indices with 
the SRD analysis, based on their ability to distinguish the 
active group within the total dataset. The whole process was 
carried out for the three different continuous n-ary similarity 
calculation variants; thus, we could compare their efficien-
cies for the task and finally select the most applicable one. 
Figure 1 shows the mentioned workflow of the study in an 
illustrative way.

Variant 1

As we have two different normalization procedures for 
the descriptors: rank and mean normalization; as well as 
weighted and non-weighted versions for the continuous 
similarity calculations, the coincidence thresholds were 
compared for all the four cases. Figure 2 shows the depend-
ence of the similarity values on the applied threshold limits 
in the x axis. The similarity of the groups of molecules: 
“actives”, “inactives” and “total” are compared in the fac-
torial ANOVA plot. It is clear that the weighted and non-
weighted versions have the same shape or pattern, but the 
range of the similarity values are different. Naturally, we can 
say that in the optimal case, the groups are separated, espe-
cially the actives from the total. For the non-weighted ver-
sion, this separation is slightly better based on the covered 
similarity range, while the use of rank normalization of the 
descriptors clearly gives us better results. We have selected 
0.70 as the coincidence threshold limit for the further SRD 
analysis, based on the non-weighted and rank scaled version 
of the plots. In this case the active, inactive, and total groups 
are the farthest from each other.

The continuous n-ary similarity measures were also 
compared with factorial ANOVA. Molecule groups were 
selected as the second factor in this case as well. Figure S1 
in the Supplementary Information shows the result of the 
factorial ANOVA, where the similarity values are plotted 
against the different similarity measures. The same pattern 
can be noticed as in the case of the threshold limit selec-
tion. Again, the rank normalized version coupled with the 
non-weighted similarity calculation provides a much better 
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result. Since it would be hard to select the most proper 
measures based on the ANOVA plot, the rank-normalized 
and non-weighted results were used for the SRD analysis 
for further evaluation. Figure 3 shows the result of the 
SRD analysis, where the scaled SRD values were used 
for factorial ANOVA, instead of the original similarity 
values. The SRD analyses were carried out for the active, 
inactive and the additionally calculated |active-total| simi-
larity values separately. This latter parameter is relevant 
because the bigger the difference between the similarities 
of the active group and the total dataset, the better the final 
model could be. In the SRD analyses, the maximum values 
were used as the reference. It means that those similar-
ity measures, which had higher values for the different 
groups of molecules (or the difference between the actives 
and total set), are ranked better. In other words, the best 
similarity indices should be the most sensitive in finding 
the similarities amongst the actives and providing bigger 
differences in similarity between the actives and the total 
dataset. The result of the three SRD analyses were merged 
for the final ANOVA analysis. It is justified because the 
SRD values are scaled to the same range in each case. The 
smaller the SRD values, the better the similarity measure. 
We must make note of a difference between the use of the 
original similarity values and the calculated SRD values in 
the ANOVA analysis. For the original similarity values, all 
of the results with the various coincidence thresholds were 
used. For the SRD analysis, only the optimal threshold 

limit with non-weighted similarities and rank normaliza-
tion was used, based on the conclusions from the ANOVA 
of the similarity values.

The active, inactive and the |active-total| versions had dif-
ferent behaviors. As cCT1 has the best ranks in the active 
and inactive cases and still good SRD values for the |active-
total| case, we can recommend that measure as the best one 
for variant 1. The cRR similarity measure can be considered 
the worst one based on the SRD values of the three cases.

Similarly, the molecular descriptor sets have been com-
pared based on the original similarity values and the SRD 
values as well. The factorial ANOVA of the original values 
can be found in the Supplementary Information as Fig. S2. 
The original similarity values showed that the first half of 
the descriptor sets have better discrimination between the 
similarities of the groups. The SRD analysis of the active, 
inactive and |active-total| similarity sets provided extra infor-
mation about the best descriptor sets. Figure 4 shows the 
factorial ANOVA result of the three cases. Descriptor sets 
3 and 8 have the smallest SRD values in all the three cases 
together, although the results are not consistent: where the 
difference between the active and total is bigger (thus the 
SRD value is smaller), the inactive group has a worse result. 
(Descriptor set 3 contains the topological indices, while 
descriptor set 8 contains the 2D autocorrelation descriptors.) 
Many descriptor sets cannot rank the |active-total| better than 
random, e.g., No. 1 and 21–25. Some of the descriptor sets 
evaluate the active and |active-total| very similarly, e.g., No. 

Fig. 1  The applied workflow 
of the study, emphasizing the 
most important aspects of the 
analysis
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3, 8, 11 and 28. The actives are found to be the most similar 
according to sets No. 1, 21, 22, 23.

Variant 2

In the case of variant 2, the same process was carried out as 
in the case of variant 1. First, we have compared the coin-
cidence thresholds with the different pretreatments (rank/
mean, weighted/non-weighted). Figure 5 shows the factorial 
ANOVA of the original similarity values. With the mean 
transformation, the curve has a long plateau part; then, it 
drops quickly, while in the case of rank normalization, the 
curve has an inflexion point. In this point, at 0.5–0.55, the 
similarity of the three groups (active, inactive, total) are the 
farthest: large similarity for the active set, and small simi-
larity for the inactive and total sets. Thus, we have selected 
0.50 as the coincidence threshold limit for the further SRD 
analysis.

The continuous n-ary similarity measures are compared 
in Fig. S3 in the Supplementary Information in the four 
pretreatment scenarios (with all the threshold limits), but 
we have also tested how the optimal threshold limit affects 
the result. In Fig. 6A, where we use only the 0.50 thresh-
old limit data, the lines of the different groups are further 
from each other compared to Fig. S3. However, it would be 
still hard to find the most optimal similarity measure based 
on this figure, because most of them are in the same range 
and the lines are at about the same distance from each 
other. In the optimal case, the similarity metric should 
provide higher similarity within the group of actives and 
smaller similarity within the total dataset: this holds for 
all metrics. Figure 6B shows that SRD values can more 
easily select the most prominent continuous measures. 
As in this case, the smaller the SRD value, the better the 
applied measure, here we can highlight the cCT1, cCT3 
and cCT4 metrics, because they have the smallest SRD 

Fig. 2  Threshold dependence for similarity values in the weighted 
and non-weighted variants of the continuous indices. First row: non-
weighted version; second row: weighted version; first column: mean 
normalization; second column: rank normalization. Active molecules: 

blue line; inactive molecules: red line; total dataset: green line. Simi-
larity values are plotted against the different coincidence threshold 
limits
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values consistently in all the three cases (active, inactive, 
|active-total|).

In the case of descriptor set selection, the same analyses 
have been made. Figure S4 in the Supplementary Informa-
tion shows the factorial ANOVA with the descriptor sets 
and molecule groups as factors for the four preprocessing 
scenarios. Figure 7 presents the results focusing only to the 

optimal threshold limit 0.50 based on the original data and 
the scaled SRD values.

The line of the active group is further away from the oth-
ers with the use of the optimal threshold limit, but we can 
safely say (based on Fig. 7A) that descriptor sets 21–25 have 
no discriminative power between the active and the other 
groups, which is not advantageous for their use in QSAR 

Fig. 3  SRD values [%] to the 
gold standard for the active 
and inactive sets, and |active-
total| values. The coincidence 
threshold was determined 
by variant 1. The continuous 
extended, individual similar-
ity measures are plotted on the 
x axis (for their formulae, see 
Table 1). The similarity of the 
active group is marked with a 
blue line, the similarity of the 
inactive group is marked with a 
green line and the absolute dif-
ference between the active and 
the total group is marked with 
a red line

Fig. 4  Factorial ANOVA of the 
SRD values [%] as a function of 
descriptor sets (Table 1) in the 
case of variant 1. The different 
descriptor sets are plotted in 
the x axis. The similarity of the 
active group is marked with a 
blue line, the similarity of the 
inactive group is marked with a 
green line and the absolute dif-
ference between the active and 
the total group is marked with 
a red line



168 Journal of Computer-Aided Molecular Design (2022) 36:157–173

1 3

models. In the descriptor selection phase, those descriptor 
sets can be more important, which are capable to find the 
active molecules that are more similar to each other than 
the whole dataset. Based on Fig. 7B, descriptor sets 3 and 
4 have remarkably good SRD values in all the three cases 
(active, inactive and |active-total|). These descriptor sets are 
the topological indices (3) and the walk and path counts (4), 
which together contain 118 descriptors. Moreover, all the 
mean SRD values of the descriptor sets tend to be closer to 
zero compared to the variant 1 results, which is a favorable 
feature in the case of variant 2.

Variant 3

In the case of variant 3, the calculation is much simpler and 
less robust than the other two variants. This resulted in dif-
ferent plots compared to the others, such as in the case of 
the optimal threshold limit determination. Figure 8 shows 

that mean normalization is not able to select any thresh-
old limit, but in the case of rank normalization the group 
similarities are separated better, but only in the beginning of 
the plot. The “typical” curve shape that we had in the other 
two cases, is now missing. In the case of mean, a linearly 
or slightly convex decreasing curve can be seen, while in 
the case of rank transformation the curve plateaus off at the 
end. Therefore, we have decided to use the “min” threshold 
limit, which is the minimum coincidence threshold possible, 
calculated as nmod2. In this case, based on the rank trans-
formed data, the three group similarities can be separated 
better. The SRD analyses were carried out with the “min” 
coincidence threshold data.

The continuous n-ary similarity measures were also com-
pared. The Supplementary Information contains the facto-
rial ANOVA for the four cases together as Figure S5. Here 
we show the result of the factorial ANOVA based on the 
scaled SRD values in Fig. 9. It is still true, that the original 

Fig. 5  The factorial ANOVA for the four different scenarios of 
the similarity calculations in the case of variant 2. First row: non-
weighted version; second row: weighted version; first column: mean 
normalization; second column: rank normalization. Active molecules: 

blue line; inactive molecules: red line; total dataset: green line. Simi-
larity values are plotted against the different coincidence threshold 
limits
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similarity values cannot be used for the selection of the most 
optimal similarity measure. SRD analysis with the selected 
coincidence threshold limit (“min”) data could extend the 
results and provide a more consistent picture about the com-
parison of the indices. Figure 9 clearly shows that cCT1 can 
be selected as the most optimal continuous similarity meas-
ure. On the other hand, all the  cCTi measures are somewhat 
better than the others, especially in returning higher similari-
ties for the active set.

The molecular descriptor sets were compared with the 
same workflow as in the case of variant 1 and 2. The results 
of the factorial ANOVA based on the original similarity 

values with the four different pretreatment scenarios are 
shown in the Supplementary Information as Fig. S6. Finally, 
the results of the factorial ANOVA based on the scaled SRD 
values are shown in Fig. 10. In Fig. S6, the similarity values 
calculated with this variant have no discriminative power. 
Even the SRD analysis could not select the best sets prop-
erly, because it was not sensitive enough. However, the inac-
tive molecules can be ranked worse for almost all descriptor 
sets, with two definite but diverse exceptions (No. 12 and 
29) As the variant 3 is a simpler and less robust version of 
the calculation, it could not provide a definite selection for 
the task.

Fig. 6  The factorial ANOVA of the original similarity values (A) and 
the scaled SRD values (B) with the continuous similarity measures 
and molecule groups as factors. (For the formulae of the similarity 
metrics, see Table  1.) The similarity of the active group is marked 

with blue line, the similarity of the inactive group is marked with 
green line and the absolute difference between the active and the total 
group is marked with red line

Fig. 7  The factorial ANOVA of the original similarity values (A) 
and the scaled SRD values (B) with the descriptor sets and molecule 
groups as factors. The similarity of the active group is marked with a 

blue line, the similarity of the inactive group is marked with a green 
line and the absolute difference between the active and the total group 
is marked with a red line
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Conclusion

We have generalized our recently introduced n-ary similarity 
indices for vectors with continuous components. This greatly 
expands the domain of applicability of the extended similar-
ity framework, which can now be applied to the selection of 
molecular descriptors for QSAR/QSPR modeling. We pro-
posed three ways to calculate the extended (or n-ary) contin-
uous similarity indices, depending on the way of defining the 
similarity between the different elements to be compared. 
We also considered how different factors impact the charac-
teristics of these indices, including the way of normalizing 
the data, and the inclusion or omission of weight factors in 
the denominators of the similarity indices. A case study of 
a publicly available dataset of CYP 2C9 inhibitors (actives) 
and inactives was used for comparing the various possible 

similarity metrics and coincidence thresholds (cutoff values 
to determine whether a certain variable/descriptor contrib-
utes to the similarity or dissimilarity of the given dataset).

The first variant for the calculation of extended continu-
ous similarities is based on how different the elements of an 
array (in this case, a column vector) are from their average. 
This is an intuitive measure that can be easily related to the 
original n-ary formalism for binary fingerprints, but it has 
some important disadvantages. For instance, indices without 
low-content similarity counters in the denominator could 
be ill-defined for relatively small values of the coincidence 
threshold. Overall, for the descriptor selection case study, 
cCT1 showed the best ranks in the active and inactive cases 
and still good SRD values for the |active-total| case, so we 
can recommend this measure as the best one.

The second variant attempts to remedy the issues of 
Variant 1 by converting the low-content similarities to 

Fig. 8  The factorial ANOVA for the four different scenarios of 
the similarity calculations in the case of variant 3. First row: non-
weighted version; second row: weighted version; first column: mean 
normalization; second column: rank normalization. Active molecules: 

blue line; Inactive molecules: red line; total dataset: green line. Simi-
larity values are plotted against the different coincidence threshold 
limits
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high-content similarities, but it also quantifies similarity by 
measuring how distant are the different components to the 
corresponding column average. Here, the cCT1, cCT3 and 
cCT4 indices have the smallest SRD values consistently in 
all three cases (active, inactive, |active-total|). Descriptor 
sets 21–25 have no discriminative power between the active 
and the other groups. On the other hand, descriptor sets 3 

(topological indices) and 4 (walk path counts) have remark-
ably good SRD values in all the three cases (together, these 
sets contain 118 descriptors).

Finally, the third variant takes a different approach to 
measuring the similarity between the elements of a set, 
by directly assessing how related are the components in 
each column of the normalized matrix (just like it is done 

Fig. 9  The result of factorial 
ANOVA based on the SRD 
values [%] in the case of variant 
3. The continuous similarity 
measures are plotted in the x 
axis (for their formulae, see 
Table 1). The similarity of the 
active group is marked with a 
blue line, the similarity of the 
inactive group is marked with a 
green line and the absolute dif-
ference between the active and 
the total group is marked with 
a red line

Fig. 10  Factorial ANOVA of 
SRD values [%] in the case of 
variant 3. The different descrip-
tor sets are plotted in the x axis. 
The similarity of the active 
group is marked with blue line, 
the similarity of the inactive 
group is marked with green 
line and the absolute difference 
between the active and the total 
group is marked with red line
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to calculate the counters in the binary case). Now, cCT1 
can once again be selected as the most optimal continuous 
similarity measure. More generally, all the cCTi measures 
(i = 1, … 4) are somewhat better than the others, especially 
in returning higher similarities for the active set. However, 
this variant places almost all descriptor sets in the same posi-
tion, so it is not as clear to give a precise indication of the 
best conditions for this option.

Overall, this work bridges the missing gap in the applica-
bility of extended similarity indices, which can now handle 
more general types of input. While we have shown here dif-
ferent ways in which one can handle continuous inputs, Vari-
ant 2 seems to be the more robust of these options, mainly 
because the original similarity indices used in cheminfor-
matics tend to favor high-content-similarities (1-similarity in 
the binary case). This means that using this variant we will 
have access to a more diverse toolkit of extended similarity 
measures. We have shown that the extended similarity meas-
ures with the use of ANOVA and SRD methods can be suc-
cessfully applied for the selection of continuous molecular 
descriptor sets, but this formalism opens the way for other 
applications, including the analysis of three-dimensional 
structures and conformations of biological ensembles, since 
we could directly represent them via their coordinates in real 
space. We are currently exploring this line of research, by 
studying the different conformations obtained via molecular 
dynamics simulations. These results will be presented else-
where in due course.
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