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Abstract
We applied the COSMO-RS method to predict the partition coefficient logP between water and 1-octanol for 22 small drug 
like molecules within the framework of the SAMPL7 blind challenge. We carefully collected a set of thermodynamically 
meaningful microstates, including tautomeric forms of the neutral species, and calculated the logP using the current COS-
MOtherm implementation on the most accurate level. With this approach, COSMO-RS was ranked as the 6st most accurate 
method (Measured by the mean absolute error (MAE) of 0.57) over all 17 ranked submissions. We achieved a root mean 
square deviation (RMSD) of 0.78. The largest deviations from experimental values are exhibited by five SAMPL molecules 
(SM), which seem to be shifted in most SAMPL7 contributions. In context with previous SAMPL challenges, COSMO-RS 
demonstrates a wide range of applicability and one of the best in class reliability and accuracy among the physical methods.
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Introduction

The logP is defined as the logarithm of the partition coef-
ficient between two phases, 1-octanol and water. It is used 
to measure the hydrophilicity/hydrophobicity of a chemical 
compound. logP is an important descriptor of substances 
for their bioavailability and pharmacological relevance. 
As a part of the Lipinski’s rule of five [1, 2], the logP is a 
criterion which is used to estimate the drug likeness of a 
compound. Furthermore, the logP has an impact in environ-
mental science, agrochemistry and toxicology.

It is also not always possible to determine the partition 
coefficient experimentally. A typical reason is the very small 
(or no) available amount of substance in early drug devel-
opment or virtual screening stages. Other challenges where 
in-silico prediction are invaluable may include reaction 
intermediates, degradation states or metabolite intermedi-
ates as well as toxic or otherwise dangerous substances, e.g. 
when analyzing the environmental fate of warfare agents. 
There is a strong demand for accurate logP predictions in 
a number of industrial fields, where life-science is just the 
most prominent example.

There exist many different approaches, all aiming at an 
efficient and accurate calculation of logP, e.g. quantitative 
structure–property relationship (QSPR), linear-energy rela-
tionship (LFER), classical or quantum chemical physical 
methods, and empirical methods based on machine learning 
and artificial intelligent. The variety of methods is reflected 
in the last Statistical Assessment of Modeling of Proteins 
and Ligands (SAMPL) series of blind predictive challenges. 
Within the SAMPL competition, computational models are 
tested on their predictivity of properties related to chal-
lenges in the field of drug discovery. Initiated in 2008 [3], 
these blind challenges hosted from the Drug Design Data 
Resource initiative (D3R) [4] are aimed to advance compu-
tational techniques und give the opportunity to benchmark 
different methods against each other.

COSMO-RS performed very well in the last years 
SAMPL5 [5] and SAMPL6 [6] challenges. The task in 
SAMPL5 was to predict the logarithmic distribution coef-
ficient logD of drug-like compounds between water and 
cyclohexane. The two phases represent two of the most 
extreme liquid phases occurring in nature regarding the 
hydrophilicity/hydrophobicity character. Inside a biologi-
cal cell, they may reflect the different phases, cytosol and 
lipid membrane. The appropriate partition coefficient is of 
high relevance in order to predict the permeability through 
the biological membrane inside a living cell.
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The two most recent SAMPL challenges, SAMPL6 and 
SAMPL7, focused on the prediction of the partition coef-
ficient between water and 1-octanol phase. COSMO-RS 
achieved the most accurate logP prediction in the SAMPL6 
challenge [6]. The pKa predictions in the SAMPL6 challenge 
with the lowest RMSE by Pracht et al. [7] used COSMO-RS 
computed free energies of solvation in combination with 
the conformational search with the MF-MD-GC//GFN-xTB 
workflow [8].

Method

The dataset of the SAMPL7 logP challenge consists of 22 
small drug like molecules (SM) (Supplemental Fig. S1). 
All 22 SM share a similar chemistry. Common to all SM 
are the structural elements of a NH-acide group and an eth-
ylbenzene. With a small deviation for SM41–SM46, where 
the ethyl bridge of this ethylbenzene group is replaced 
by a heteroaromatic ring, SM 29 to 46 build a consistent 
homologous series, therefore we constructed a matrix of 
homologues (Fig. 1) based on these 18 SM, comprising 
the following functional groups: oxetane, thietane, thietane 
1-oxide, thietane 1,1-dioxide, isoxazole, and triazole. These 
structural elements appear in combination with three differ-
ent sulfone groups: methyl sulfone, phenyl sulfone, and ter-
tiary sulfonamide. The range of the experimental logP values 
reaches from 0.58 (SM41) to 2.96 (SM33) and shows only a 
part of the experimentally accessible [9] and pharmaceutical 
relevant logP values [1, 2].

The Conductor like Screening Model for Realistic Sol-
vation (COSMO-RS) (Klamt1995 [10]) method has been 
described in previous publications for the SAMPL chal-
lenges 5 and 6 [5, 6]. For further and deeper explanations of 
the methodological foundation and definitions of the energy 
interaction terms, we refer to a review article [11].

In the following paragraph we will explain the concept of 
a COSMO surface and σ-profile, which is needed to under-
stand Fig. 3. The COSMO surfaces consisting of charge 
elements σ are determined by quantum chemical density 
functional theory calculations within a virtual conductor 
implemented in an implicit solvation model (COSMO [10]). 
The COSMO reference state is a virtual conductor, mean-
ing it is assumed all charges of the molecule are perfectly 
screened. [10]). σ is the charge which is needed to compen-
sate the charge of the molecule at that place. σ is noted in the 
perspective of the conductor environment. A histogram of all 
σ of a molecule ordered by their charge is called a σ-profile. 
For a construction of a COSMO surface, all σ surface seg-
ments are mapped on the appropriate geometrical position 
on the molecular surface. The color represents the charge 
of a σ surface segment. The charge of a σ segment ranging 
from -0.03 to +0.03 e∕A2 is mapped to the color spectrum 
spanning from blue to red. That means, a negative-blue σ 
charge is compensating a positive charge of the molecule at 
that position, and a positive-red σ charge is compensating a 
negative charge of the molecule at that position.

This year, the task for the physical property logP chal-
lenge was to submit transfer energies between water and 
wet 1-octanol of all 22 SM [12]. Equation 1 gives the 

Fig. 1  Matrix of homologous series showing the structural relation 
of compounds SM29–SM46. 18 SM are ordered with respect to their 
characteristic functional groups. Bridging groups sorted in columns: 
oxetane, thietane, thietane 1-oxide, thietane 1,1-dioxide, isoxazole, 
and triazole group. Sulfone groups sorted in rows: methyl sulfone 

(-Me), phenyl sulfone (-Ph), and tertiary sulfonamide (-NMe2) group. 
Orange boxes are highlighting the five outliers (SM33, SM36, SM41, 
SM42, and SM43). The largest deviations between predicted and 
experimentally determined logP values are indicated with Δ values
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relation of the transfer energy to the logarithm of the parti-
tion coefficient P. We calculated the transfer energies with 
the COSMO-RS method based on the difference of the 
chemical potential μ at infinite dilution in both phases, 
modelling the wet 1-octanol phase with a mole fraction of 
0.2705 of water and the second phase as pure water. By 
adding the quotient of the molar volumes  (V2/V1) to we 
converted the mole fraction based reference state typically 
used in COSMO-RS into a molar concentration-based 
framework (Eq. 2).1

We started our workflow of preparing the SAMPL mol-
ecules with a systematic tautomer search by using COS-
MOquick [13–15]. The search algorithm for tautomers and 
conformers consists of several steps. First, we used COS-
MOquick to generate possible tautomeric states. Irrelevant 
states where discarded due to an internal energy threshold 
of 25 kcal/mol implemented in COSMOquick. By a sub-
sequent manual check, we sorted out destroyed molecules 
and failed calculations. Second, we conducted a conforma-
tional search of every microstate with COSMOconf using 
up to 150 conformers. The conformational search based on 
Balloon [16] and RDkit [17, 18]. Different start conforma-
tions are generated in a random manner by using a dis-
tance geometry approach. In subsequent steps, the gener-
ated conformers are filtered by an identity check to delete 
redundant conformers and by an alignment und clustering 
step. A diversity clustering approach limits the amount to 
150 conformers. The applied COSMOconf procedure per-
forms a geometry optimization using the BP86 functional 
[19, 20] with a TZVP basis set [21] and the COSMO [22] 
solvation scheme for each conformer. A key step in the 
COSMOconf workflow is to reduce the number of con-
formers without changing the quality of the conformer set. 
Conformers are deleted in a systematic way, under the pre-
condition that the Gibbs free energy does not change more 
than 0.2 kcal/mol. Subsequently, a single point energy cal-
culation was done for the surviving conformers, using the 
BP86 functional with a def2-TZVPD [23] basis set and the 
FINE COSMO cavity [22]. All density functional theory 
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calculations were carried out with the TURBOMOLE 7.5 
[24] program package. The final set of microstates was 
generated by merging the conformer sets of all tautomeric 
forms of each individual SAMPL molecule and contains 
only those conformers and microstates that are relevant in 
liquid solutions.

To predict the transfer energies between water and wet 
1-octanol, we calculated the free energy difference in 
the respective phases for each molecule set. Within the 
COSMO-RS workflow, an ensemble of microstates is used. 
The microstates are weighted automatically by COSMO-
therm according to their total free energy in the respective 
liquid phase, i.e. different weights are used in water and wet 
1-octanol. For the free energy calculations we used the COS-
MOtherm 2020 [10, 25–27] implementation of COSMO-RS 
in combination with the BP-TZVPD-FINE 20 parameteriza-
tion. The applied COSMO-RS version in the parametriza-
tion BP-TZVPD-FINE 20 shows a general root mean square 
deviation (RMSD) of 0.6 kcal/mol in our internal data sets 
and with regard to experimental 1-octanol/water partition-
ing data. The COSMO-RS method by itself has no statistical 
error and a numerical error of smaller 0.01 kcal/mol. The 
overall workflow including the conformational search has a 
statistical noise smaller than 0.1 kcal/mol on average.

Fig. 2  Correlation plot of experimental measured logP [28] and 
logP predicted with COSMO-RS. The outliers SM33, SM36, SM41, 
SM42, and SM43 are indicated with red dots. The linear regression 
between COSMO-RS predicted and experimental measured logP val-
ues gives a regression line (blue dotted line) with a functional equa-
tion y = 0.97 x + 0.36. Including the outliers, the squared Pearson’s 
correlation coefficient  R2 is 0.49

1 Originally, we submitted transfer free energies in the mol-fraction 
based reference state (Eq. 2 without the additional term of molar vol-
umes). After realizing that the concentration-based framework was 
asked, we got the opportunity to resubmit our predicted transfer free 
energies in the relevant reference state by adding the logarithm of the 
quotient of the molar volumes (like in Eq. 2).
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Result

COSMO-RS predicts logP values of small drug like mol-
ecules with an overall good accuracy. A correlation plot 
(Fig. 2) suggests, except for a few outliers, an overall good 
agreement of COSMO-RS predicted and experimentally 
measured logP values. The Kendall’s tau correlation coef-
ficient, which is especially suited for ranking purposes, is 
0.53, which is the highest value among all physical-based 
method submissions. We achieved an RMSD of 0.78 log 
units for our prediction of the 22 SM. Compared to the best-
ranked method, TFE MLR with an RMSD of 0.58, we are 
just 0.2 log units off.

We identified five outliers in our logP prediction deviat-
ing more than 0.90 log units from the experimental data [28] 
(see also Supplemental Table S1): SM33 (+ 1.28), SM36 
(+ 1.54), SM41 (+ 0.90), SM42 (+ 1.72), SM43 (+ 1.74). We 
discuss the consequences of the outliers to the performance 
later in the discussion section.

The isoxazole series (SM41, SM42, and SM43) deserve 
a special role in the SAMPL challenge. We predict a contra-
dicting trend of logP shift compared to experimental values. 
Transitioning from the thietane 1,1-dioxide group (SM38, 
SM39, and SM40) to the isoxazole group (SM41, SM42, 
and SM43), the average shift in experimental logP values 
is -0.52 whereas for COSMO-RS prediction it is + 1.04 log 
units (Supplemental Table S2). The isoxazoles appear more 
hydrophobic based on our calculations than based on experi-
mental measurements. The COSMO surfaces and σ-profiles 
illustrates the more hydrophobic character of the SAMPL 
molecules of the isoxazole group compared to the SAMPL 
molecules of the thietane 1,1-dioxide group (Fig. 3), which 
is due to the higher amount of neutral surface area.

Discussion

The COSMO-RS logP predictions showed an overall very 
good agreement with experimental values in the last SAMPL 
blind challenges. In the last years, we achieved the highest 
accurate logP prediction in SAMPL5 (2016) and SAMPL6 
(2019). COSMO-RS demonstrated to predict reliable logP 
values of high quality [5, 6] independent of the solvent and 
chemical diversity. In SAMPL5 COSMO-RS predicted most 
accurately the partition coefficient between hexane and water 
[5]. Last year, we achieved a very accurate result for logP 
(1-octanol–water) of SAMPL molecules with multiple func-
tional groups of chemical diversity, for example also includ-
ing halogens. This year, empirical machine learning based 
submissions achieved a higher accuracy. COSMO-RS was, 
however, the 2nd most accurate physical method and deliv-
ered the highest ranking correlation coefficient in this class.

In SAMPL7, COSMO-RS quite accurately predicted 
logP values (RMSD of 0.78), apart from five outliers (SM33 
(+ 1.28), SM36 (+ 1.54), SM41 (+ 0.90), SM42 (+ 1.72), 
and SM43 (+ 1.74)). To deepen our understanding about the 
nature of the large deviation in these cases, we compared the 
experimental logP values between the homologous series 
(Fig. 1). We grouped the SAMPL molecules depending on 
their characteristic functional group and ordered 18 of the 22 
SM in a regular matrix (Fig. 1), revealing structural relation-
ships. We checked for the consistency of the experimental 
logP values by calculating average shifts in logP between 
the functional groups ordered in rows and columns of the 
homology matrix (Supplemental Fig. S2). By this analy-
sis, the experimental logP values show consistent trends 
in logP shifts between the homologous series, except for 
SM33, SM36 and the isoxazole group (SM41, SM42, and 
SM43) (Supplemental Fig. S2). Comparing the shifts in logP 
between the first (-Me: methyl sulfone group) and the sec-
ond row (-Ph: phenyl sulfone group) reveals a notably small 
shift of the transition going from SM32 to SM33 and from 

Fig. 3  Comparison between SM39 and SM42 as an example of a 
transfer of the functional group from thietane 1,1-dioxide to isoxa-
zole. a 2D structural representation of SM39 (red) and SM42 (green). 
The average shift in logP going from the thietane 1,1-dioxide group 
(SM38, SM39, and SM40) to the isoxazole group (SM41, SM42, and 
SM43) are given for experimental values (− 0.13) and COSMO-RS 
prediction (+ 1.62). b σ-profiles. p(σ) of SM39 (red), SM42 (green), 
water (blue), and 1-octanol (magenta) are represented in the units 
elementary charge e divided by Å2. The COSMO surfaces, calculated 
in a conductor environment, are represented as insets for SM39 and 
SM42 on the left and right side, respectively. Black circles empha-
size key sigma surface elements and the black arrow point to their 
peaks in the corresponding σ-profile. The green COSMO surface at 
the phenyl next to the isoxazole group of SM42 indicates the more 
hydrophobic character of an enlarged mesomeric system. These neu-
tral σ-surface segments of isoxazole SM are dominating the increase 
in solubility in 1-octanol and therefor the increase of logP
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SM35 to SM36 (Supplemental Fig. S2A). Surprisingly, the 
shift of logP is even negative for the transition from SM35 
to SM36, meaning that a substitution of a methyl group by a 
phenyl group leads to increase of hydrophilicity. The shifts 
in logP from SM33 to SM36 and from SM36 to SM39 are 
deviating strongly from the average shift in logP between 
thietane to thietane 1-oxide and thietane 1-oxideto thietane 
1,1-dioxide group. Due to this large deviation in the logP 
shifts from common trends, caution has to be taken by com-
paring predicted logP values of SM33 and SM36 with the 
experimental logP values.

To analyze if the outliers are only present in COSMO-
RS we compare how all other methods perform on these 
molecules. We calculated the Average prediction of the Best 
5 submissions (AB5)2 (Supplemental Equation S1), which 
are yielding a smaller RMSD than COSMO-RS, as well as 
the Average prediction Weighted by their Inverse overall 
RMSD of all 17 ranked submissions (AWI17)4 (Supple-
mental Table S1 and Supplemental Equation S2). AB5 and 
AWI17 show the same trend as our predictions, an increase 
of average logP shift from the thietane 1,1-dioxide group 
to the isoxazole group by 0.74 (AB5) and 0.96 (AWI17) 
log units, respectively (Supplemental Table S2). The largest 
deviation of AB5 and AWI17 to experimental logP values 
occurs at SM33 (− 0.68, − 0.71), SM36 (− 1.72, − 1.53), 
SM41 (− 0.98, − 1.00), SM42 (− 1.11, − 1.40), and SM43 
(− 1.04, − 1.24) (Supplemental Table S1). The AB5 and 
AWI17 analysis reveals that all submissions show the same 
deviations from the experimental logP values (Supplemental 
Table S1, Supplemental Fig. S3). Therefore, we conclude 
that SM33, SM36, SM41, SM42, and SM43 are not only 
outliers in COSMO-RS, also for various other methods [29].

The large deviation between predicted and experimental 
determined logP values of isoxazoles remain to be answered. 
By additional single point calculations with different QM 
methods, we can so far exclude that the tautomer relation and 
therefore the composition of our ensemble is independent of a 
specific choice of QM method (see also Supplemental Fig. S6 
and Table S3). To understand the nature of this deviation we 
would have to apply further investigations to systematically 
evaluate the major source of the deviation. In order to con-
duct a broad study with many isoxazole derivatives, reliable 
experimental logP measurements would be crucial.

We assessed the accuracy of COSMO-RS method without 
the outliers (SM33, SM36, SM41, SM42, and SM43). The 
performance of COSMO-RS based on the remaining 17 SM 
without the five outliers would increase significantly. The 
RMSD would decreases to 0.38 log units. The correlation 
coefficient  R2 would increase to 0.76 (Supplemental Fig. 

S4). The Kendall’s tau correlation coefficient would rise to 
0.78. These statistics without the outliers is in good agree-
ment with previous performance evaluation of COSMO-RS 
[5, 6]. We also analyzed the RMSD of all 17 ranked submis-
sions without the five outliers (Supplemental Fig. S5).3 All 
methods would perform better. A consequence of a statistical 
analysis without outliers is that the top eight submissions 
would lie close together in the RMSD range of 0.39–0.66 
(Supplemental Fig. S5). In this regime, some empirical 
methods would swap their places in ranking. This outcome 
underlines the robustness and reliability of physical methods 
like COSMO-RS.

Conclusion

COSMO-RS performed quite well in the logP prediction 
challenge SAMPL7. We achieved an accuracy of 0.78 log 
units, which is only 0.2 log units above the best submission.4 
With that result our submission was ranked to the 6th place 
according to accuracy (MAE) and the 3rd place according 
to the ranked correlation coefficient Kendall’s tau (τ = 0.53). 
Among the physical methods, COSMO-RS performed 2nd 
best. In comparison with SAMPL5 and SAMPL6, the per-
formance and ranking of COSMO-RS submission dropped 
significantly, indicating the impressive improvement of 
machine learning techniques and their increasing applica-
bility for physical properties predictions. Based on these 
outcomes, we aim to improve the COSMO-RS theory with 
machine learning techniques in the next years.
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