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Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-containing enzyme that catalyzes the first and rate-limiting step in catabo-
lism of tryptophan via the kynurenine pathway, which plays a pivotal role in the proliferation and differentiation of T cells. 
IDO1 has been proven to be an attractive target for many diseases, such as breast cancer, lung cancer, colon cancer, prostate 
cancer, etc. In this study, docking-based virtual screening and bioassays were conducted to identify novel inhibitors of IDO1. 
The cellular assay demonstrated that 24 compounds exhibited potent inhibitory activity against IDO1 at micromolar level, 
including 8 compounds with  IC50 values below 10 μM and the most potent one (compound 1) with  IC50 of 1.18 ± 0.04 μM. 
Further lead optimization based on similarity searching strategy led to the discovery of compound 28 as an excellent inhibitor 
with  IC50 of 0.27 ± 0.02 μM. Then, the structure–activity relationship of compounds 1, 2, 8 and 14 analogues is discussed. The 
interaction modes of two compounds against IDO1 were further explored through a Python Based Metal Center Parameter 
Builder (MCPB.py) molecular dynamics simulation, binding free energy calculation and electrostatic potential analysis. The 
novel IDO1 inhibitors of compound 1 and its analogues could be considered as promising scaffold for further development 
of IDO1 inhibitors.

Keywords IDO1 inhibitor · Virtual screening · Molecular docking · Molecular dynamics simulations · MM-GBSA 
calculation

Introduction

Tryptophan is an essential amino acid not only used for pro-
tein synthesis, but also as a substrate to synthesize the neuro-
transmitter serotonin and catabolism through the kynurenine 
pathway (Kyn) [1–4].Over 90% of L-tryptophan depleted by 
humans is processed through kynurenine pathway (Kyn) [5]. 

The kynurenine pathway of tryptophan (Trp) catabolism is 
shown in Fig. 1. Indoleamine 2,3-Dioxygenase 1 (IDO1) is a 
heme-containing enzyme that catalyzes the oxidative cleav-
age of the C2-C3 double bond of the indole ring in trypto-
phan to provide N-formylkynurenine (NFK)[6, 7]. The diox-
ygenase reaction of Trptophan catalyzed by IDO1 is shown 
in Scheme 1. This reaction is known as the first and rate-
limiting step of the kynurenine pathway [8]. The generated 
N-Formylkynurenine is then converted into L-kynurenine, 
3-hydroxykynurenine, 3-hydroxyanthranilic acid, quinolinic 
acid, and picolinic acid in the metabolic pathway (Fig. 1) 
[9–11]. The tryptophan depletion results in inhibiting the 
proliferation of T lymphocytes, which are sensitive to low 
Trp levels. Production of bioactive metabolites induces the 
differentiation of regulatory T cells and apoptosis of effec-
tor T cells that gave rise to immunosuppression. Both are 
associated with the immunosuppressed state of the tumor 
microenvironment [12–14]. IDO1 overexpression has been 
observed in a variety of tumors, including breast [15], lung 
[16], colon [17, 18], prostate [19], bladder [20], melanoma 
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and neuroblastoma [21]. IDO1 is a promising target for can-
cer immunotherapy [22–24].

Recently, there are several classes of IDO1 inhibitors have 
been discovered (Fig. 2). The first IDO1 inhibitor, 1-methyl-
D-tryptophan (D-1MT) with  Ki of 48 mM developed by New 
Link Genetics has advanced into clinical development for 
the treatment of cancer [10, 25]. INCB024360 (also named 
as epacadostat) developed by Incyte shows potent inhibitory 
activity  (IC50 = 72 nM) against IDO1 [26, 27]. Peng et al. 
identified an imidazoleisoindole derivative NLG919 as an 
IDO1 inhibitor, which was later licensed to Genentech as 
GDC-0919 [28]. GDC-0919 is in the phase 1 study for the 
treatment of advanced solid tumors [29, 30]. In addition, 
Shingo et al. reported an imidazothiazole derivative Amg-
1(IC50 = 36 μM) as an IDO1 inhibitor, which is the first case 
that the detailed structural information of the pocket B has 
been clarified. [6]. The amide side chain of Amg-1 is located 
at the expanded pocket B, and the methylenedioxyphenyl 
group is located near the two residues Phe226 and Arg231. 
The crystal structure of the Amg-1-IDO1 complex (Fig. 3 
shows the solid surface representation of crystal structures of 
Amg-1-IDO1 complex) is very important for structure-based 
drug design, which provides detailed structural information, 
where the IDO1 inhibitor interacts with the IDO1 protein at 
both Pocket A and Pocket B (refer to Fig. 3). Although sig-
nificant progress has been made in the research mentioned 
above, there are currently only a few drugs in clinical trials 
testing IDO1 inhibition as a strategy for the treatment of 
cancer (e.g. epacadostat and GDC-0919). Thus, it is still a 
need to discover novel and structurally diverse IDO1 inhibi-
tors with characterized therapeutic utility.

With the rapid development of computational methods, 
virtual screening (VS) has been successfully used in many 
hit compound discovery [8, 31–38]. In this study, we per-
formed a docking-based virtual screening and biological 
assays to identify potent lead compounds targeting IDO1. 
ChemDiv (version 2018) database containing 1,492,362 
molecules was used to perform the screening. The formation 
of coordination bonds between small molecules and heme 
iron atom is crucial for the binding of small molecules and 
IDO1 protein. Therefore, we use the coordination bond as 
an important basis for the selection of small molecules while 
small molecules occupy pocket A and pocket B of IDO1 pro-
tein. The cellular assay proved that 24 molecules with potent 
inhibitory activity in the micro molar range were discovered 
in our work. Among the 24 active molecules, 8 hits show 
 IC50 values of less than 10 μM and the best one shows an 
 IC50 value of 1.18 ± 0.04 μM. Then we find the analogues 
with the core scaffold structure of three promising IDO1 

inhibitors (compounds 1, 2, 8) from Chemdiv database. 
14 analogues were identified and purchased for bioassays. 
Among the resulted analogues, 7 hits show  IC50 values of 
less than 10 μM and the best one shows an  IC50 value of 
0.27 ± 0.02 μM. The interaction modes of two compounds 
(compound1and compound30) against IDO1 were further 
explored through MCPB.py molecular dynamics simulation, 
binding free energy calculation and electrostatic potential 
analysis. The results show that ligand-heme interaction 
took a large proportion in the binding affinity of inhibitors 
through metal coordination bond interaction, hydrogen bond 
interaction and hydrophobic interaction.

Materials and methods

Docking‑based virtual screening

Compared with the crystal structure of IDO1 in complex 
with 4-phenylimidazole (PDB ID:2D0T), the crystal struc-
ture of IDO1 in complex with Amg-1 (PDB ID:4pk5) was 
chosen as the template for molecular docking because of 
its relatively high resolution and more structural informa-
tion at pocket B [39].The protein preparation module in 
Schrödinger 2015 [40]. was used to assign bond orders, add 
hydrogens, create zero-order bond to metals, create disulfide 
bonds, deleting water molecules beyond 5 Å from het group, 
assign partial charge, assign protonation states at pH 7.0, 
and minimize the structure using the OPLS-2005 force field 
[41].The Glide 6.6 module in Schrödinger 2015 was used to 
generate grid, the grid was defined as a 20 × 20 × 20 Å box. 
In addition, one metal-coordination bond was constrained to 
heme iron during grid box generation. For the other param-
eters, the default values were assigned.

The ChemDiv  database (version 2018) was used as 
the source for screening. These compounds were filtered 
by applying Lipinski’s rule of five. [42] The Ligprep 3.3 
module in Schrödinger 2015 was used to generate stereoi-
somers, and the protonation states of ligands at pH 7.0 ± 2.0 
were generated with Epik 3.1. For the other parameters, the 
default values were assigned.

A flowchart of docking-based virtual screening is shown 
in Fig. 4. All structures were docked and scored by the Glide 
high-throughput virtual screening (HTVS) mode, and the 
10% top-ranked structures were saved. The saved struc-
tures from the previous step were redocked and scored by 
the Glide standard precision (SP) mode, and the 10% top-
ranked structures were saved. Finally, the chosen structures 
by SP were redocked and scored by the Glide extra precision 
(XP) scoring mode. The top 3800 molecules ranked by the 
Glide XP scoring mode were selected and clustered into 100 
groups. The compounds that form a metal-coordination with 

Fig. 1  The kynurenine (Kyn) pathway of tryptophan (Trp) catabo-
lism. Metabolites that are highlighted in red have been directly impli-
cated in immunosuppressive mechanisms and cancer development

◂
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heme iron in each cluster were selected by visual inspec-
tion. Finally, 25 compounds were selected and purchased 
from TOPSCIENCE company for further biological assay 
evaluation.

HeLa cellular IDO1 assays

The activity of the purchased compounds were evaluated by 
HeLa cellular IDO1 assays according to the protocol intro-
duced in the references [33, 43]. BMS-986205 was evalu-
ated in the assays as positive compound [44].To perform 
the HeLa cell based IDO1 assay, HeLa cells were seeded at 
50,000 cells per well into 96-well microplate in 100 μl of 
growth medium. Cells were incubated at 37 °C and 5% CO2 
overnight. The next day 100 μl per well of diluted inhibi-
tor in growth medium was added at a final concentration 
of 100 ng/mL human IFNγ. A series of dilutions are made 
in 0.1% DMSO in assay medium so that the final concen-
tration of DMSO is 0.1% in all of treatments. Cells were 
incubated at 37 °C in a  CO2 incubator for 24 h. The next 
day 140 μl of medium was removed into a new 96-well plate 
and 10 µl of 6.1 N trichloroacetic acid (TCA) was added. 
The plate was incubated at 50 °C for 30 min to hydrolyze 
N-formylkynurenine produced by IDO to kynurenine. The 
plate was then centrifuged at 2500 rpm for 10 min to remove 
sediments. 100 μl of supernatant per well was transferred to 
another 96-well plate and mixed with 100 μl of 2% (w/v) 
4-(Dimethylamino) benzaldehyde in acetic acid. The plate 

was incubated at RT for 10 min, the yellow color derived 
from kynurenine was recorded by measuring absorbance 
at 480 nm using a microplate reader ((PerkinElmer, USA). 
The absorbance data were analyzed using the computer soft-
ware, Graphpad Prism. In the absence of the compound and 
presence of 100 ng/mL IFNγ, the absorbance  (At) in each 
data set was defined as 100%. The absorbance of medium 
blank  (Ab) in each data set was defined as 0%. The per-
cent absorbance in the presence of each compound was 
calculated according to the following equation: % Absorb-
ance = (A-Ab)/(At-Ab), where A = the absorbance in the pres-
ence of the compound and IFNγ,  Ab = the absorbance of 
medium blank, and  At = the absorbance in the absence of 
the compounds and presence of IFNγ. The  IC50 values were 
calculated using GraphPad Prism 6.0 software.

Scheme 1  The dioxygenase reaction of Trptophan catalyzed by IDO1

Fig. 2  The molecular structures of the reported IDO1 inhibitors

Fig. 3  Solid surface representation of crystal structures of Amg-
1-IDO1 complex (PDB ID:4PK5). The protein is colored in cyan, 
cofactor heme and ligand Amg-1 are shown in brown stick model, 
iron ions is shown in orange balls, the coordination bond are colored 
in purple dash. The binding sites, pocket A and pocket B, are colored 
in pink
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Similarity searching

The Canvas 2.3 module in Schrödinger 2015 was used 
to find the analogues of compound 1 with the core scaf-
fold structure of promising IDO1 inhibitor from ChemDiv 
database.

Molecular dynamics (MD) simulations

The MD simulations of two active compounds (compound 
1, 30) in complex with IDO1 were conducted to investigate 
how the R2 groups in the analogues of compound 1 affect 
the inhibitory activity against IDO1. The docked structures 
of the inhibitors in complex with IDO1 were used as the ini-
tial structures for MD simulations. MCPB.py [45], a python 
based metal center parameter builder was used to generate 
prmtop and coordination parameters for further molecular 
dynamics simulations. The charge of Fe is set as + 3 state 
[46].AM1-BCC charge method of antechamber module was 
used to generate the charges for HEM and ligand. The Gauss-
ian 09 [47] program was used to perform quantum chemistry 
calculations for metal ion and surrounding atoms by using 
B3LYP with 6-31G* basis set. The general AMBER force 

field (gaff) [48] and ff14SB [49] force field were used for the 
inhibitor and IDO1 respectively. The systems were solvated 
in a 10 Å cubic box with TIP3PBOX water molecules. Chlo-
ride ions are added to neutralize the system. The molecular 
dynamics simulations were performed in four steps. Firstly, 
energy minimization was performed to remove possible 
steric stresses in the system. The systems were subjected 
to 2500 steps of the steepest descent minimization followed 
by 2500 steps of conjugated gradient ionization. Then each 
system was heated from 0 to 300 K in the NVT ensemble 
with a force constrained of 2.0 kcal  mol−1A−2. After that, 
each system was equilibrated with force constant decreasing 
from 2.0 to 0 kcal  mol−1A−2 in 1 ns. Finally, the production 
run of 250 ns was performed for each system in the NPT 
ensemble at 300 K with 1.0 atm pressure. The snapshots for 
all the trajectories were saved per 2 ps. all the simulations 
were accomplished by the pmemd module in AMBER18 
[50]. The root-mean-square deviation (RMSD), The root-
mean-square fluctuations (RMSF), Radius of gyration (Rg), 
and hydrogen bond occupancy were calculated using the 
cpptraj module in AMBER18.

MM‑GBSA calculation

The binding free energy of compound (1, 30) to IDO1 was 
analyzed by molecular mechanics generalized born surface 
area (MM-GBSA) method [51–54]. 100 snapshots were 
extracted from the stable 20 ns trajectories and used for 
MM-GBSA calculation [55]. For each complex system, the 
binding free energy was calculated according to the equa-
tion below:

where  Gcomplex,  Greceptor,  Gligand are the free energy of com-
plex, receptor and ligand molecules, respectively.  Egas is the 
gas-phase energy;  Eint is the internal energy;  Eele and  EvdW 
are the Coulomb and van der Waals energies,  Gsol is the 
solvation free energy and can be decomposed into polar and 
nonpolar contributions.  GGB is the polar solvation contribu-
tion calculated by solving the GB equation.  Gnonpl, sol is the 
nonpolar solvation contribution and was estimated by the 
SASA determined using a water probe radius of 1.4 Å. The 
surface tension constant γ was set to 0.0072 kcal/(mol·Å2) 

(1)ΔGbind = Gcomplex − (Greceptor + Gligand)

(2)Gbind = ΔH − TΔS = Egas + Gsol − TΔS

(3)Egas = Eint + Eele + Evdw

(4)Gsol = GGB + Gnonpl,sol

(5)Gnonpl,sol = � ∗ SASA

Fig. 4  Flowchart of docking-based virtual screening. Numeral indi-
cates the number of molecules in each stage
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[56].T and S are the temperature and solute entropy, respec-
tively. Entropy contributions can be estimated by classical 
statistical thermodynamics using normal-mode analysis 
[57]. The entropy cannot be calculated in this protein system 
because the IDO1 contains heme iron ions. The parameter 
settings in MM-GBSA calculation were referred to our pre-
vious works [58–63].

Results and discussion

Docking‑based virtual screening and IDO1 
inhibitory activity evalulation

The ChemDiv database was used as ligand database for vir-
tual screening. These compounds were filtered by applying 

Lipinski’s rule of five. Then the remaining molecules were 
prepared to dock into the catalytic site of IDO1 (PDB ID: 
4PK5). The top 3800 compounds ranked by Glide dock-
ing score were selected and clustered into 100 groups. The 
compound of each cluster was selected manually with the 
following principles: (1) Lower molecular weight; (2) Form-
ing metal ligand interaction with the heme iron; (3) Occu-
pying pocket A and pocket B. Finally, 25 compounds were 
selected and purchased from TOPSCIENCE company for 
further biological assay evaluation.

As shown In Table 1 and Fig. 5, among them, 24 com-
pounds showed  IC50 values in the range from 1.18 ± 0.04 μM 
to 35.03 ± 0.96  μM. Eight hits (refer to Table  1, com-
pound1-8) have  IC50 values less than 10 μM.The chemical 
structures of the 25 molecules are shown in Fig. 5. The com-
pounds 1, 2, 8 have the same core scaffold with 1, 3, 4-oxa-
zole ring and urea structure. The concentration-dependent 

Table 1  The XP docking scores, 
physicochemical properties and 
IDO1 inhibition activities of the 
screened compounds

a Hydrogen donor
b Hydrogen acceptor
c Calculated octanol/water partition coefficient
d Number of rotatable bonds
e Molecular weight
All experiments performed in duplicate. Data are expressed as means ± standard deviation(SD).NA means 
no activity at the tested concentrations up to 100uM

compd donorHa accptHb logPcalc B_rotNd mol  MWe docking score IC50(μM)

1 2 6 4.24 4 444.49  − 8.88 1.18 ± 0.04
2 2 7.5 3.52 5 474.47  − 10.14 1.51 ± 0.11
3 1 8 2.73 7 435.50  − 10.47 1.82 ± 0.05
4 1 5.25 3.55 7 336.39  − 9.57 2.82 ± 0.39
5 1 6.5 3.52 7 416.44  − 9.71 4.99 ± 0.15
6 1 7.5 2.17 6 390.46  − 9.33 5.76 ± 0.09
7 1 6.75 3.46 6 383.42  − 9.78 8.10 ± 1.58
8 1 5.5 3.00 7 408.46  − 9.77 8.46 ± 0.01
9 1 6.5 2.91 7 408.49  − 8.57 10.85 ± 6.34
10 2 6.75 3.99 10 429.49  − 9.68 12.68 ± 2.20
11 2 9 2.17 7 419.46  − 10.93 14.39 ± 2.88
12 2 8.25 2.66 8 392.43  − 9.86 15.74 ± 2.08
13 1 8.5 2.36 7 397.41  − 9.61 16.54 ± 0.42
14 2 7 3.66 7 404.91  − 8.97 16.76 ± 0.72
15 0 6.25 2.84 5 391.44  − 9.59 17.05 ± 0.94
16 1 6.5 4.54 4 381.43  − 10.04 19.66 ± 2.88
17 2 7 2.97 7 374.43  − 8.64 20.26 ± 1.84
18 0 7.2 1.15 6 343.40  − 9.09 20.31 ± 1.43
19 1 6 3.86 8 472.96  − 8.95 23.52 ± 1.18
20 2 7 3.56 7 408.88  − 8.61 24.07 ± 4.10
21 4 6.75 4.46 8 365.41  − 10.09 26.50 ± 5.99
22 2 7 3.40 7 390.89  − 8.98 26.72 ± 1.90
23 1 6.75 1.81 8 399.46  − 9.60 30.46 ± 0.84
24 2 7.95 2.03 10 385.42  − 9.05 35.03 ± 0.96
25 1 6 3.06 5 357.414  − 9.57 NA
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Fig. 5  Chemical structures of positive control compound and 25 compounds identified by docking-based virtual screening
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inhibition of IDO1 activities for control inhibitor, BMS-
986205 (a) compound 1(b), compound 2(c) and compound 
8(d) are shown in Fig. 6. The concentration-dependent inhi-
bition of IDO1 activities for the other compounds are dis-
played in the supporting information (Fig. S2).

Molecular docking and binding mode prediction.

To demonstrate the receptor-ligand interaction patterns, the 
docking poses generated by Glide XP scoring were ana-
lyzed. The monomer of IDO1 contains two pockets, pocket 
A and pocket B[64–67] (Fig. 3). The crystal structure of 
IDO1 bound to an imidazothiazole derivative,Amg-1(PDB: 
4PK5) demonstrated that the nitrogen atom of the scaffold 
bound to the heme iron, the p-tolyl group occupied pocket 
A, and the methylenedioxyphenyl group was accommodated 
in another hydrophobic pocket at the entrance to the bind-
ing site, pocket B (Fig. 7a).The predicted binding mode of 
compound 1 complex with IDO1 was compared with the 
X-ray crystal structure of Amg-1 complex with IDO1.As 
shown in Fig. 7b, compound 1 displays a similar binding 
mode to Amg-1,and one nitrogen atom of the 1,3,4-Oxazole 
ring coordinated with the heme iron. The major difference 
between the binding modes of these two compounds is at 

the binding pocket B, where 3, 4-dimethoxyphenyl group 
of compound 1 occupies the pocket B that extends upwards. 
Compound 1, 2 and 8 (Fig. 7. b, c, d) share the same pock-
ets. The size and shape of pocket B differ depending on the 
bound ligands [1].

Structure–activity relationships of the analogues

In order to understand the structure–activity relationships 
(SARs) of the analogues of compound 1 and discover 
more potent IDO1 inhibitors with scaffold of 1, 3, 4-Oxa-
zole ring, the similarity search was employed to screen the 
Chemdiv database. 14 analogues (see supporting informa-
tion Fig. S1) of compound 1 were identified and purchased 
for biological assay. The concentration-dependent inhibi-
tion of IDO1 activities for the analogues are displayed in 
the supporting information (Fig. S2). As shown in Table 2, 
the structure–activity relationship of compounds 1, 2, 8 and 
14 analogues is discussed. The results suggested that the 
analogues of compound 1 also exhibited inhibitory activity 
against IDO1, which further indicated compound 1 could 
be characterized as a structurally novel IDO1 inhibitor. We 
further analyzed the SARs of compound 1 and its analogs 
to find clues for future structural optimization. Based on 

Fig. 6  Contration-dependent inhibition of IDO1 activity for positive control compound and three active molecules(compound 1,2,8)
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the experimental data shown in Table 2, preliminary SARs 
were discussed below. Our initial array focused on the 
substitution at R1. Their structures could be divided into 
three types according to the different R1 groups. When 
R1 is substituted by p-methylphenyl or methylenedioxy-
phenyl group rather than phenyl, the inhibitory activity of 
the compound 1(IC50 = 1.18 ± 0.04 μM) and compound 2 
 (IC50 = 1.51 ± 0.11 μM) increases significantly compared 
compound 26(no inhibitory activity).Then, we examined 
the influence of R2 group. The compounds (1, 27, 28, 8, 
29, 30, 31, 32) sharing identical R1 groups with p-meth-
ylphenyl were compared. The electron-donating substitu-
ent groups at meta or para position of the phenyl group of 
R2, such as compound 1 showed stronger inhibitory activ-
ity than electron-withdrawing groups (compound 28 and 
30).Moreover, the comparison between compound 28 and 

30 showed that the inhibitory activity was affected by the 
electron-withdrawing ability, the stronger the electron-with-
drawing ability (-F > -COCH3) of the group, the weaker the 
inhibitory activity of the compound. Besides, the lack of 
inhibitory effect of compound 32 may be due to the large 
steric hindrance caused by more substituents on the benzyl 
group of the R 2 group. Similarly, the compounds (33, 34, 
35, 2, 36, 37, 38) sharing identical R1 groups with methyl-
enedioxyphenyl group were compared. The electron donat-
ing group may enhance the compound’s inhibitory activity 
by comparing compounds 33 and 38. Finally, we compared 
compounds 1 and 39.We found that when 1, 3, 4-oxadiazole 
and urea are located in the meta position of the benzene ring, 
the compound has a good inhibitory activity (compound1 
 IC50 = 1.18 ± 0.04 μM), when 1, 3, 4—oxadiazole and the 

Fig. 7  The binding mode of Amg-1 (a), compound 1 (b), compound 
2 (c) and compound 8 (d) in complex with IDO1. The binding modes 
of compounds 1, 2, and 8 were predicted by molecular docking. Key 

residues for ligand binding are shown as sticks. The hydrogen bond 
between acceptor and ligand are colored in red dash
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Table 2  The molecular 
structures and IDO1 inhibition 
activities of the analogues of 
compound 1

compd R1 R2 IC50

26 NA

1 1.18±0.04

27 1.72±0.12

28 5.41±0.07

8 8.46±0.04

29 48.91±1.13

30 49.62±0.36

31 78.02±1.44

32 NA

33 0.27±0.02

34 0.63±0.31

35 0.70±0.43

2 1.51±0.11

36 1.87±0.75

37 5.55±0.48

38 21.31±0.73

39 NA

All experiments performed in duplicate. 
Data are expressed as means±standard deviation(SD).
NA means no activity at the tested concentrations up to 100uM.
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urea are in the para position of the benzene ring, the com-
pound has a no inhibitory activity (Compound 39).

Molecular dynamics simulations

Trajectories generated from MD simulations were further 
analyzed. The ligand structure and the number of ligand 
nitrogen and oxygen atoms in the two complex systems 
(compound1-IDO1, compound 30-IDO1) for molecular sim-
ulations are shown in Fig. 8. The root-mean-square deviation 

(RMSD) value is a useful basis for quantifying conforma-
tional changes in the same protein. As shown in Fig. 9a, The 
RMSD plots showed that the compound 30-IDO1 systems 
reach a convergence after 10 ns.The compound 1-IDO1 
complex finally reached a stable state after a period of 200 ns 
of MD trajectory. The RMSD distributions of two systems 
were shown in Fig. 9b. The smaller RMSD values of com-
pound 30-IDO1 complex may be due to the smaller radius 
of the F atom in the R2 group, which induces a smaller B 
pocket. Radius of gyration (Rg) reflects the compactness 

Fig. 8  The structure of ligands in molecular dynamics simulation systems

Fig. 9  a RMSD for backbone atoms of the IDO1 binding with compound 1 and compound 30. b The RMSD distribution of two systems. c The 
mass-weighted radius of gyration. d RMSF values of IDO1 residue backbone atoms
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of the structure. As shown in Fig. 9c. Rg values of the two 
complexes were stable during simulations. The root-mean-
square fluctuations (RMSF) values are used to determine the 
flexibility of binding pocket residues during the simulation. 
The simulations were observed to have similar RMSF trend 
and more fluction was found C- and N-terminals of IDO1 
protein (Fig. 9d).

The hydrogen bond analysis results for MD trajectory 
were shown in Table 3. It is revealed that strong H-bond 
interactions with high occupancies mainly involving the 
backbone oxygen atom in Gly251, the backbone oxygen 
atom in Leu 223 with nitrogen atom on the urea group of 
the ligand. For compound 1-IDO1 complex, Oxygen 2 atom 
of compound 1 as a hydrogen bond acceptor in the R2 group 
additionally forms a hydrogen bond with the NH group of 
backbone of Lys227 of IDO1 protein, which may be one of 
the reasons why compound 1 have better inhibition activity 
against IDO1.

In order to explore the binding affinity of the two ligands, 
the binding Enthalpy change (ΔH) was calculated using 
MM-GBSA method. A total of 100 snapshots were extracted 
from the stable 20 ns trajectory for ΔH analysis. As sum-
marized in Table 4.The predicted ΔH for compound 1, 
compound 30 are − 61.74 kcal/mol, − 47.87 kcal/mol respec-
tively. Compound 1 has stronger binding affinity to IDO1 
than compound 30 according to MM-GBSA method, which 
is consistent with the experimental results. The ΔH compo-
nents showed in Table 4 suggest that ΔEele and ΔEvdw are 
the major contributions for the of ΔH the two compounds, 
where the polar solvation energies generate the unfavorable 
contributions.

Clustering analysis of the IDO1-inhibitor complex struc-
tures was carried out to obtain more detailed structural infor-
mation of these two systems. Each trajectory was divided 
into five clusters by average linkage algorithm. Five snap-
shots were selected as the representative structures of these 
five clusters and named as C0, C1, C2, and C3 and C4.For 
each system, the most stable cluster is C0 and summarized 
in Table 5, which will be used for molecular electrostatic 

potentials analysis. We extract the ligands in the representa-
tive structures of C0 cluster and then calculate the single 
point energy of these structures. The grid data of fragmental 
electron density potential were generated by Multiwfn [68] 
and visualized by VMD [69].

The results demonstrate that nitrogen 2 atom in 1, 3, 4- oxa-
diazole has the tendency to form coordination bond with heme 
iron. So we focus on the difference in electrostatic potential on 
the nitrogen 2 atom of 1, 3, and 4- oxadiazole. As we can see 
from Fig. 10, for compounds 1(a) and compound 30(b), the 
ESPs around the iron coordinating nitrogen 2 atom of 1,3,4- 
oxadiazole are -41.50 and -39.17, respectively. The large nega-
tive value of the coordinating atom of compound 1 was own-
ing to eletron-donating substituent group (-OCH3) of R2.As 
the charge on the coordinating atom decreased, there was an 
increase in binding affinity to heme iron[70]. This suggested 

Table 3  Analysis of hydrogen 
bond interaction between IDO1 
and two compounds

Ligand Acceptor Donor Occupancy (%) Distance (Å) Angle(°)

Compound 1 Gly251@O ligand@HN3 92.93 2.95 145.94
Leu223@O ligand@HN4 72.68 2.94 135.40
Leu223@O ligand@HN3 49.61 3.10 130.27
Gly251@O ligand@HN4 32.85 3.28 133.78
ligand@O2 Lys227@HN 52.61 3.22 156.58

Compound 30 Gly251@O ligand@HN3 84.92 2.97 142.54
Leu223@O ligand@HN4 79.23 2.94 140.06
Leu223@O ligand@HN3 54.54 3.12 133.05
Gly250@O ligand@HN4 35.40 3.23 135.23
Gly251@O ligand@HN4 30.54 3.27 132.31

Table 4  ΔH (Enthalpy change) for the two compounds bound to 
IDO1 by MM-GBSA calculations (Kcal/mol)

Energy Compound1 Compound30

ΔEele  − 40.12  − 38.59
ΔEvdw  − 71.59  − 55.84
ΔEgas  − 111.71  − 94.43
ΔGGB 57.53 52.64
ΔGnonpl,sol  − 7.56  − 6.08
ΔGsol 49.96 46.56
ΔH(GB)  − 61.74  − 47.87
IC50 1.18 ± 0.04 (μM) 49.62 ± 0.36 (μM)

Table 5  The clustering analysis on the binding conformation of two 
IDO1 inhibitors

Structure Population (%)

C0 C1 C2 C3 C4

Compound 1 43.0 40.0 8.0 5.2 3.8
Compound 30 67.0 14.7 12.5 3.7 2.2
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that ligand-heme coordination interaction take a large propor-
tion in the binding affinity of inhibitors.

Conclusions

In this study, among the 39 compounds identified by the 
structure-based virtual screening and similarity search, 
35 showed obvious IDO1 inhibitory activities. In total, 15 
hits have the  IC50 values below 10 μM, and two hits below 
1 μM. Besides, SARs analysis showed that the compound 
had good inhibitory activity when R1 was substituted by 
p-methylphenyl or methylenedioxyphenyl instead of phenyl 
group and substituent of benzyl group on R2 is an electron-
donating group. It is important that the compound has good 
inhibitory activity when 1, 3, 4-oxadiazole and urea are in 
the meta position. MD simulations were performed to study 
the protein–ligand interactions of above two inhibitors with 
IDO1 in motion Then ESP analysis was employed to provide 
in-depth explanations on the important role of heme during 
ligand binding. Ligand-heme interaction took a large pro-
portion in the binding affinity of inhibitors through metal 
coordination bond interaction, hydrogen bond interaction 
and hydrophobic interaction The scaffolds of these inhibitors 
discovered in current work can be used as the starting hits 
for further lead optimization.
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