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Abstract
An activity cliff (AC) is formed by a pair of structurally similar compounds with a large difference in potency. Accordingly, 
ACs reveal structure–activity relationship (SAR) discontinuity and provide SAR information for compound optimization. 
Herein, we have investigated the question if ACs could be predicted from image data. Therefore, pairs of structural analogs 
were extracted from different compound activity classes that formed or did not form ACs. From these compound pairs, 
consistently formatted images were generated. Image sets were used to train and test convolutional neural network (CNN) 
models to systematically distinguish between ACs and non-ACs. The CNN models were found to predict ACs with overall 
high accuracy, as assessed using alternative performance measures, hence establishing proof-of-principle. Moreover, gradient 
weights from convolutional layers were mapped to test compounds and identified characteristic structural features that con-
tributed to successful predictions. Weight-based feature visualization revealed the ability of CNN models to learn chemistry 
from images at a high level of resolution and aided in the interpretation of model decisions with intrinsic black box character.

Keywords  Activity cliffs · Matched molecular pairs · Image analysis · Convolutional neural networks · Convolutional 
feature visualization

Introduction

In recent years, convolutional neural networks (CNNs) have 
gained increasing attention in chemical informatics and 
pharmaceutical research. For example, two-dimensional 
(2D) images of molecular graphs [1–5] and three-dimen-
sional (3D) images of activity landscapes [6] have been used 
for deriving CNN models and extracting specific features 
from image data. For example, the Inception-ResNet v2 
architecture was used to train CNN models on images from a 
large data set comprising 1.7 million compounds and predict 
physicochemical properties such as logP [1]. In addition, 
quantitative property predictions on the basis of compound 
images were reported using Chemception [2] and ChemNet 
[3]. Furthermore, the Toxic Colors approach [4] added 
atom labels, colored dots, and partial charge maps to image 

representations for compound toxicity predictions while 
Kekulescope [5] only used Kekulé structures as input for 
compound potency and cell line toxicity predictions. Taken 
together, these investigations have indicated the potential 
of various CNN architectures to extract specified molecu-
lar features from 2D image representations and use these 
features for property predictions. Different from molecular 
structure-based approaches, 3D images of activity landscape 
variants were used for feature extraction and classification of 
landscape models according to structure–activity relation-
ship (SAR) characteristics of the corresponding compound 
data sets [6].

While CNNs have thus far mostly been trained on 
2D compound images, to our knowledge, they have not 
been used to process images of pairs of closely related 
compounds and predict differences in properties at the 
level of pairs. Activity cliffs (ACs) represent a promi-
nent paradigm for compound pair-encoded property dif-
ferences [7]. ACs are defined as pairs or groups of similar 
compounds or structural analogs with large differences 
in activity (potency) [7, 8]. Accordingly, ACs embody 
the pinnacle of SAR discontinuity, i.e., small chemical 
modifications leading to large potency alterations, and 
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are a major source of SAR information [8]. An elegant 
formalism for the systematic identification of pairs of 
structural analogs is the matched molecular pair (MMP) 
concept and its algorithmic implementation [9]. An MMP 
is defined as a pair of compounds that share a common 
core structure and are only distinguished by a chemical 
modification at a single site (termed a chemical transfor-
mation) [9]. As such, MMPs are well suited for represent-
ing ACs, which has led to the introduction of MMP-cliffs 
[10]. An MMP-cliff is defined as an MMP formed by two 
compounds that are active against the same target and 
have a statistically significant difference in potency [10].

As a consistent molecular representation, MMP-cliffs 
have been used for predicting ACs at different levels. 
First, MMP-cliffs have been systematically distinguished 
from MMPs with only small or no potency differences 
using support vector machine classification on the basis 
of fingerprint representations and specialized compound 
pair-based kernel functions [11]. Subsequently, MMP-
cliffs have also been successfully predicted in a meth-
odologically simpler manner applying the condensed 
graph of reaction formalism [12]. In addition, potency 
differences encoded by MMPs have been quantitatively 
predicted using support vector regression [13]. To aid in 
the interpretation of machine learning models, fingerprint 
features determining correct AC predictions have been 
mapped back to the original compounds to delineate criti-
cally important substructures distinguishing MMP-cliffs 
from other MMPs [11].

Herein, we have attempted to predict MMP-cliffs from 
image data using CNNs. In addition to assessing classi-
fication performance, we have made use of recent devel-
opments in convolutional layer visualization [14–17] to 
identify and display key features contributing to correct 
AC predictions. Our proof-of-concept investigation fur-
ther extends the current spectrum of molecular image-
based modeling in chemical informatics.

Material and methods

Compound activity classes

From ChEMBL (version 26) [18], three compound activity 
classes with available high-confidence activity data were 
extracted. Compounds were tested against single human tar-
gets in direct interaction assays at highest assay confidence 
(ChEMBL confidence score 9). As potency measurements, 
assay-independent equilibrium constants (pKi values) were 
required. Multiple measurements for the same compound 
were averaged, provided all values fell within the same order 
of magnitude; otherwise, the compound was disregarded. 
Table 1 reports the targets and composition of these activity 
classes.

Matched molecular pairs and activity cliffs

For activity classes, all possible MMPs were generated 
by systematically fragmenting individual exocyclic single 
bonds and sampling core structures and substituents in index 
tables [9]. For substituents, size restrictions were applied 
to limit MMP formation to typically observed structural 
analogs [10]. Accordingly, a substituent was permitted to 
contain at most 13 non-hydrogen atoms and the core had to 
be at least twice as large as the substituent. Additionally, for 
MMP compounds, the maximum difference in non-hydrogen 
atoms between the substituents was set to eight, yielding 
transformation size-restricted MMPs [10].

An MMP qualified as an MMP-cliff if the two struc-
tural analogs had an at least 100-fold difference in potency 
(ΔpKi ≥ 2.0) [10]. To avoid potency difference-dependent 
boundary effects in AC prediction, compounds forming a 
non-AC MMP were restricted to an at most tenfold difference 
in potency. Furthermore, to balance structural heterogeneity 
of large activity classes originating from different sources, 
MMPs were only retained if their compounds and core struc-
tures were found in multiple MMPs. Table 1 reports MMP 
and MMP-cliff statistics for the activity classes.

Table 1   Activity classes

For each activity class, the total number of compounds, MMP-cliffs, non-AC MMPs, unique core struc-
tures, and substituents are reported

Target name ChEMBL 
target ID

MMP-cliffs Non-AC MMPs

MMPs Unique cores Unique 
substitu-
ents

MMPs Unique cores Unique 
substitu-
ents

Thrombin 204 456 61 168 3595 554 567
Tyrosine kinase Abl 1862 1122 37 251 6143 322 419
Mu opioid receptor 233 466 114 286 9712 1230 959
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Molecular image representations

Each MMP core and the associated substituents were 
treated as separate molecular objects using the RDKit 
application programming interface (API) [19]. For each 
unique core and substituent, high-resolution portable net-
work graphics (PNG) compound images with 500 × 500 
pixels were generated using the RDkit Chem.Draw pack-
age  (version 2020.03.5) [19]. In images, substituent 
attachment sites were replaced with an asterisk symbol. 
To represent an MMP core and the two substituents defin-
ing the transformation in combined form, core and sub-
stituent images were resized to 300 × 300 pixels and then 
horizontally concatenated in a single image of dimensions 
300 × 900 × 3 (height × width × color-channels). Figure 1 
illustrates MMP image generation. The pixel values of all 
image matrices were converted into 32-bit floating point 
format and normalized. Images were processed using 
openCV (version 4.4.0) [20–22].

Convolutional neural network architecture

Figure 2 shows the CNN architecture designed for image 
analysis, consisting of convolutional, pooling, dropout, and 
dense layers. Two convolutional layers with kernel size of 
32 and respective filter sizes of 3 × 3 and 5 × 5 were used to 
extract key features from MMP images. The convolutional 
layers were followed by a pooling, dropout, and dense layer. 
Max-pooling was used as pooling layer to compute the maxi-
mum value in each patch of each convolved feature map. A 
dropout layer was added to avoid overfitting. After ‘flatten-
ing’ the weights, the softmax function was applied to nor-
malize learned weights and yield a probability distribution. 
CNN layers were implemented using TensorFlow (version 
2.2.0) [23] and Keras (version 2.2.4) [24].

Performance measures

CNN models were trained to systematically distinguish 
between MMP-cliffs and corresponding non-AC MMPs. 
The classification performance of CNN models was eval-
uated using receiver-operator characteristic (ROC) curves 

Fig. 1   Generation of MMP images. i Two compounds forming an MMP are shown. ii The common core and the two substituents defining the 
chemical transformation are displayed. iii Separate core and substituent images are horizontally concatenated yielding a single image
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and the area under the ROC curve (AUC). In addition, 
model performance was assessed with four performance 
measures including overall accuracy (A), balanced accu-
racy (BA), weighted mean F1 score [25], and Mathews 
correlation coefficient (MCC) [26], defined as:

TP, TN, FP, and FN denote true positives, true nega-
tives, false positives, and false negatives respectively.

Convolutional layer feature visualization

Spatial information from the convolutional layers of 
trained models was extracted using the Grad-Cam algo-
rithm [17]. Channel-based mean values of the result-
ing convolutional feature map activation weights were 
mapped to the original image for feature visualization.

MCC =
TP × TN − FP × FN

√
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Results and discussion

Convolutional neural network models

CNN models were derived to distinguish between MMP-
cliffs and non-AC MMPs on the basis of molecular images 
generated for three distinct activity classes including throm-
bin inhibitors (target/activity class ID 204), tyrosine kinase 
Abl inhibitors (class 1862), and mu opioid receptor ligands 
(class 233). As shown in Fig. 1, MMP images for CNNs 
combined the shared core structure with the pair of sub-
stituents representing the chemical transformation. Images 
of the three structures constituting an MMP were concat-
enated horizontally to obtain a single image. In contrast to 
displaying two compounds forming an MMP side-by-side, 
this image format contained no redundant substructure 
(duplicated core).

CNN models were separately trained in 10 independent 
trials on a set of 4050–10,178 images, dependent on the 
activity class. Training images were obtained by randomly 
selecting half of the MMP-cliffs per class (228–561; 
Table 1) and half of the non-AC MMPs (1797–4856). 
The resulting models were then tested on the remaining 
half of the MMP-cliff and non-AC MMP images. ROC 
curves for the best performing individual classification 
models are shown in Fig. 3. These CNN models yielded 
accurate AC predictions, with ROC-AUC values of 0.97 
(204), 0.93 (233), and 0.92 (1862). In addition, Table 2 
reports the mean prediction accuracy of the CNN models 
for each activity class on the basis of alternative perfor-
mance measures. Although training and test sets were 
imbalanced, i.e., they containing many more non-AC 

Fig. 2   The CNN model architecture used for MMP image analysis is shown
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MMPs than MMP-cliffs, the predictions were generally 
stable (i.e., yielding very low standard deviations) and 
consistently successful on the basis of all performance 
measures. Overall, CNN classification accuracy was high-
est for thrombin inhibitors (class 204), with mean AUC 
of 0.97 (AUC = 0.97), F1 = 0.85, MCC = 0.83, A = 0.97, 
and BA = 0.90, followed by class 1862 and 233. Although 
AUC and A values were also high for class 233 (0.92 
and 0.96, respectively), predictions for this class yielded 
lowest F1 = 0.36, MCC = 0.39, and BA = 0.63 values, 
indicating that the majority class (non-AC MMPs) was 
predicted here more accurately than the minority class 
(MMP-cliffs). In this case, only < 5% of all MMPs rep-
resented MMP-cliffs. Thus, these results were expected. 
The use of balanced training sets would likely further 
increase prediction accuracy, which is meaningful from 
a machine learning perspective. However, for AC predic-
tions, balancing MMP-cliff and non-AC MMP training 
sets would represent an unrealistic scenario because ACs 
are generally rare among qualifying compound pairs [8]. 
Regardless, even in the presence of class label imbal-
ance, image-based classification of MMP-cliffs vs. non-
AC MMPs was overall surprisingly accurate, more so than 
we anticipated.

Image feature visualization

Convolutional features naturally retain spatial information, 
which is lost in fully-connected layers. Therefore, the Grad-
Cam algorithm was applied to visualize convolutional layer 
activation weights [17]. Figures 4, 5 and 6 show examples 
of original images onto which channel-based mean values of 
activation weights of the corresponding convolutional fea-
ture map were superimposed. All MMPs shown in Figs. 4 
and 5 were correctly predicted while Fig. 6 also shows a 
false positive prediction. Visualization of convolutional lay-
ers revealed that most of the key image features were cap-
tured by the first convolutional layer. However, in a number 
of instances, the second convolutional layer was also capa-
ble of extracting and emphasizing key features, as shown in 
Fig. 7. Accordingly, addition of the second convolution layer 
typically further improved classification accuracy.   

Learning structural features from compound images

The convolutional layer weights of the best performing 
CNN model (class 204) for MMP images from the test set 
were systematically extracted and visualized. A compelling 
observation was that weights from the CNN models detected 
specific structural features in MMP images. For example, 
convolutional layers were capable of recognizing primary, 
secondary, and tertiary amines as well as various ring struc-
tures. Moreover, the model was able to differentiate between 
substituents with different structures. In Fig. 4, the model 
distinguished between ring and aliphatic substituents, which 
is clearly evident by comparing mapped convolutional layer 
weights. Different weight distributions led to accurate pre-
dictions of MMP-cliffs and non-AC MMPs with very high 
probabilities of at least 94%. Furthermore, the model learned 
to differentiate between alternative cyclic structures, hence 
accounting for molecular topology.

In Fig. 5, the CNN model assigned high weights to sec-
ondary and tertiary amines in rings of substituents of cor-
rectly predicted MMP-cliffs and non-AC MMPs. Notably, 
the presence of different amines was a characteristic feature 
of all MMPs originating from class 204. However, by com-
paring the MMP-cliff and non-AC MMP in Fig. 5b and c, 
respectively, it becomes clear that detecting a tertiary amine 

Fig. 3   ROC curves. The performance of the best CNN prediction 
models is monitored in ROC curves. For each curve (activity class, 
indicated by target ID), the resulting AUC is reported

Table 2   Mean prediction 
accuracy

For MMP-cliff/non-AC MMP classification models, the mean AUC, F1, MCC, global accuracy (A) and 
balanced accuracy (BA) values ± standard deviations over 10 independent trials are reported

Target AUC​ F1 MCC Accuracy

A BA

204 0.97 ± 0 0.85 ± 0.02 0.83 ± 0.02 0.97 ± 0 0.90 ± 0.02
1862 0.92 ± 0.01 0.54 ± 0.08 0.50 ± 0.07 0.88 ± 0.01 0.70 ± 0.05
233 0.92 ± 0.02 0.36 ± 0.10 0.39 ± 0.08 0.96 ± 0 0.63 ± 0.05
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alone was not sufficient to distinguish between the MMP-
cliff and non-AC MMP because this feature was shared 
by both. In this case, the core structures of these MMPs 
were distinct and different core features were detected and 
assigned high weights, hence illustrating core contributions 
to accurate predictions. In the MMPs shown in Fig. 6a and 
b, primary and secondary amines were also detected as dis-
tinguishing features in aliphatic substructures. Furthermore, 
Fig. 6c reports a false positive MMP-cliff prediction. On 
the basis of the MMP alone, this prediction error cannot 
be rationalized. To these ends, weights in similar MMPs 
with different class labels must be compared, as illustrated 
in Fig. 5. Nonetheless, this example was interesting because 

Fig. 4   Mapping of activation weights. For four exemplary MMPs 
from class 204, mean gradient weights of the first convolutional layer 
are displayed on the respective structures and color-coded according 
to the given continuous color spectrum. Classification probabilities 
for each class (AC, non-AC) are given (%) and the correct class label 
of each MMP is colored in yellow. Shown are a a non-AC MMP with 
phenyl and cyclohexyl substituents, b and c MMP-cliffs with similar 
core structures and substituents, and d a non-AC MMP with different 
aliphatic ring substituents

Fig. 5   Mapping of activation weights. For three similar MMPs from 
class 204, mean gradient weights of the first convolutional layer 
are displayed. The representation is according to Fig.  4. a and b 
show MMP-cliffs and c shows a non-AC MMP. Highly weighted sec-
ondary or tertiary amines are encircled

Fig. 6   Mapping of activation weights. For three MMPs from class 
204, mean gradient weights of the first convolutional layer are dis-
played. The representation is according to Fig. 4. a and b show a cor-
rectly predicted MMP-cliff and non-AC MMP, respectively. Highly 
weighted primary or secondary amines are encircled. c shows a false 
positive MMP-cliff prediction. Highly weighted primary and second-
ary amines are shared by the substituents. The distinguishing single 
and double bonds were detected with medium weights and are encir-
cled



1163Journal of Computer-Aided Molecular Design (2021) 35:1157–1164	

1 3

the replacement of a single bond with a double bond, i.e., a 
change in bond order representing a minute chemical modi-
fication at the level of images, was detected with medium 
weights as a distinguishing substituent feature.

Taken together, these convolutional layer weight-based 
visualizations demonstrated the capacity of the CNN model 
to detect signature features of compounds from a given 
activity class (such as the presence of various amines) as 
well as specific chemical features that distinguished cores 
and/or substituents of MMPs, including different ring struc-
tures, individual functional groups, or bond orders. Map-
ping weights from different convolutional layers often fur-
ther emphasized such features or identified additional ones, 
as illustrated in Fig. 7. The correct detection of specific 
features distinguishing MMPs with different class labels 

provided a rationale for the overall accuracy of the AC pre-
dictions. Differences between substituents detected by the 
CNN model can be analyzed at the level of individual MMP 
images, while understanding differently weighted core fea-
tures requires comparisons of multiple MMPs. Visualization 
of key features in MMP cores and substituents aids in the 
interpretation of CNN model decisions that typically have 
black box character, hence improving model accessibility.

Conclusion

In the work, we have attempted the prediction of MMP-
cliffs, which are an intuitive AC representation, on the basis 
of MMP image data using CNN models. To our knowledge, 
these are the first molecular image-based property predic-
tions at the level of compound pairs. In our proof-of-concept 
investigation, encouraging accuracy was achieved in sys-
tematically distinguishing between MMP-cliffs and non-AC 
MMPs. While ACs were successfully predicted before using 
other machine learning approaches, we have been particu-
larly interested in the question whether CNNs are capable 
of extracting chemical features and small feature differences 
from images of pairs of structural analogs that correctly dis-
tinguish between SAR continuity (embodied by non-ACs) 
and discontinuity (ACs). Mapping of convolutional layer 
weights to test compounds and visualizing corresponding 
structural features put the analysis on a level beyond statisti-
cal assessment of prediction accuracy. Visualization revealed 
the ability of CNN models to detect specific chemical fea-
tures including distinct substructures and individual func-
tional groups that distinguished structural analogs or MMPs 
with different properties. Thus, the models were capable to 
learn chemistry from MMP images, which resulted in suc-
cessful AC predictions.

Acknowledgements  J.I. is supported by a PhD fellowship from the 
German Academic Exchange Service (DAAD) in collaboration with 
the Higher Education Commission (HEC) of Pakistan.

Funding  Open Access funding enabled and organized by Projekt 
DEAL.. 

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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