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Abstract
A major part of chemical conversions is carried out in the fluid phase, where an accurate modeling of the involved reactions 
requires to also take into account solvation effects. Implicit solvation models often cover these effects with sufficient accuracy 
but can fail drastically when specific solvent–solute interactions are important. In those cases, microsolvation, i.e., the explicit 
inclusion of one or more solvent molecules, is a commonly used strategy. Nevertheless, microsolvation also introduces new 
challenges—a consistent workflow as well as strategies how to systematically improve prediction performance are not evi-
dent. For the COSMO and COSMO-RS solvation models, this work proposes a simple protocol to decide if microsolvation is 
needed and how the corresponding molecular model has to look like. To demonstrate the improved accuracy of the approach, 
specific application examples are presented and discussed, i.e., the computation of aqueous  pKa values and a mechanistic 
study of the methanol mediated Morita–Baylis–Hillman reaction.
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Introduction

Currently available quantum chemical methods are fairly 
advanced for treating individual molecules or smaller clus-
ters of molecules in vacuum or an ideal gas phase where it is 
possible to make predictions within the experimental accu-
racy (between 0 and 1 kcal/mol) [1–3]. However, quantum 
chemistry is still not able to treat molecules in fluid environ-
ments in an equally accurate and yet computationally afford-
able manner. We estimate that around 90% of industrial 
chemistry and almost 100% of biochemistry takes place in 
solution (or in liquid bulk) and solvation effects on reaction 

thermodynamics and kinetics are of major importance in 
many cases. Thus, the availability of suitable models to 
describe these effects constitutes an important (and some-
times underestimated) bottleneck for the practical applicabil-
ity of quantum chemistry to problems in chemical research.

Currently, there are different approaches to account 
for solvent effects. A direct insight with high accuracy is 
obtained by ab initio molecular dynamics [4], which takes 
into account intermolecular interactions most straightfor-
wardly and in principle in the most appropriate way possible. 
However, large ensembles of molecules and long simulation 
times are required to obtain converged values of thermo-
dynamic functions (e.g. Gibbs free energies), which makes 
ab initio molecular dynamics prohibitive in many cases. A 
shortcut to this approach is the combination of quantum 
mechanics (QM) and molecular mechanics (MM): These 
QM/MM approaches treat the region of interest in the sys-
tem using quantum chemistry and the remaining part, which 
often corresponds to the surrounding solvent molecules, 
with classical molecular mechanics. This approach yields 
reasonable results if suitable force fields are available but 
is still computationally quite expensive [5]. In this context, 
also the Reference Interaction Site Model (RISM) [6] should 
be mentioned, which represents a cluster expansion method 
applied to molecular fluids. This approach allows to account 
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for preferred explicit interactions without the necessity of 
performing long dynamic simulation runs. The original 1D 
site–site theory by Chandler and Anderson [6] was extended 
to 3D RISM by several authors [7–10]. Kast et al. combined 
3D RISM with quantum chemical method via an embedded 
cluster approach (EC-RISM) [11].

Dielectric continuum solvation models enable the much 
more efficient alternative of static calculations [12] and 
are therefore widely used by the quantum chemical com-
munity. These approaches are based on the assumption of 
a continuous polarizable medium around the solute, which 
is fully characterized by its dielectric constant. This practi-
cally means, that the charge distribution of the solute polar-
izes the dielectric continuum which results in an external 
potential introduced into the Hamiltonian of the solute. The 
physics of the solute–solvent system has to obey the Pois-
son equation as a boundary condition. This approach led to 
the development of several solvation methods such as PCM 
[13–15], IEFPCM [16], IPCM [17], SMD [18], SM8 [19, 
20], COSMO [22], COSMO-RS [25, 26], etc.

The polarizable continuum method, mostly known as 
PCM, was the first implementation of the dielectric con-
tinuum solvation approach and was developed by Tomasi 
and co-workers almost four decades ago [13]. However, con-
tinuum solvation methods lead in best case to qualitative 
results of how the total energy of a molecule changes upon 
the transition from gas phase to solution. They are even less 
suited to predict free energies or entropies in solution as they 
do not provide access to changes of the molecular partition 
function upon solvation, which is required for the compu-
tation of most thermodynamic functions. Several improve-
ments of the original PCM method have been addressed in 
different flavors of PCM methods such as COSMO-PCM 
(CPCM), isodensity-PCM (IPCM), integral equation formal-
ism (IEFPCM) and surface and volume polarization for elec-
trostatic interaction (SVPE). However, all these approaches 
still exhibit some deficiencies with short range contributions 
caused by the description of the solvent as continuum with 
fixed or locally variable dielectric constant. A more recent 
series of solvation models developed by the Truhlar group 
and are the so-called SMx models [19, 20], where x is an 
alphanumeric label to indicate the version. These achieve 
slightly better results compared with the PCM methods. Fur-
ther, the solvation model based on density [18] (SMD) has to 
be mentioned due to its rather good prediction performance 
for Gibbs free energies in solution [21].

The conductor-like screening model [22], usually abbre-
viated as COSMO, is another popular solvation method 
that employs the dielectric continuum solvation approach. 
Originally developed by Klamt and Schüürmann in 1995, 
it shows a high degree of similarity to PCM. The novelty 
of COSMO consists in using scaled conductor boundary 
conditions instead of the exact dielectric conditions. This 

modification of the boundary conditions strongly reduces the 
outlying charge error which leads to an easier to handle and 
computationally more efficient approach than standard PCM. 
Both PCM based and COSMO solvation models, have been 
successfully applied in numerous computational studies of 
chemical reactions when solvation effects cancel out [23, 
24]. Nevertheless, when applying COSMO or PCM to more 
challenging cases (and many problems of technical relevance 
fall into this category), several weaknesses of these approach 
were observed. One example is the inability to distinguish 
between rather different solvents with similar dielectric con-
stant, e.g., cyclohexane and benzene or methoxyphenol and 
heptanone. This limitation led to the development of a new 
strategy called conductor-like screening model for realistic 
solvation (COSMO-RS). It combines COSMO with a statis-
tical thermodynamics treatment of interacting molecular sur-
face charges [25, 26]. In contrast to simple solvation models, 
COSMO-RS contains some fitted parameters, but these are 
not chemistry-dependent, so that it still represents a theory 
that can in principle be applied to the whole periodic table. 
With the inclusion of different types of molecular interac-
tion, e.g., using specific parameters to describe hydrogen 
bonding and dispersive interactions, this approach allows to 
treat molecular systems in solution at variable temperature 
and mixtures in a more proper way. This opens the door 
for many application areas which previously had been inac-
cessible for continuum models. It should be mentioned that 
the abovementioned fitted parameters used in the (original) 
COSMO-RS solvation model are proprietary and unpub-
lished, apart from those of the very first few COSMO-RS 
versions.

Originally, the COSMO-RS model was rather designed 
for chemical engineering applications like phase diagram 
construction or solvent selection. Nevertheless, this theory 
can as well be used to obtain Gibbs free energies of for-
mation for species in solution, which allows for the treat-
ment of chemical reactivity [27, 28]. Despite its success in 
describing chemistry in solution for neutral molecules and 
even ionic systems with moderate ion–solvent interactions 
[29], the accuracy of COSMO-RS is significantly lowered 
when used to describe very strong intermolecular interac-
tions such as hydrogen bonding between protic solvents and 
highly localized charges. One workaround for improving 
these deficiencies is the inclusion of up to a few explicit 
solvent molecules into the molecular model of the solute 
while describing the effects of less strongly interacting fur-
ther solvent molecules with the same implicit solvation mod-
els as discussed before. Such approaches are called cluster-
continuum model or microsolvation.

Since more than three decades quantum chemists from 
time to time have included solvent molecules in their mod-
els for a more realistic description of solutes or to obtain 
converged bulk properties, as e.g., reviewed by Gadre 
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et al. [30]. A major step towards the use of microsolvation 
for a more predictive access to thermodynamics of ions 
was the paper of Pliego and Riveros from 2001 [31]. The 
authors used a “variational principle” not too dissimilar 
from the approach presented in this work to predict solva-
tion free energies of a number of singly charged ions. With 
the employed IPCM model, the number of explicit (water) 
solvent molecules required by their protocol was rather 
high (in several cases three, although very small cations 
and anions were considered), but the presented approach 
was able to reduce the error in solvation free energies by 
a factor of around 2.5 with respect to the neat continuum 
model. The same authors also applied microsolvation to 
 pKa prediction [32] as well as for the exploration of a reac-
tion mechanism (basic formamide hydrolysis) [33]. In both 
cases, a significantly improved agreement with the experi-
ment suggests that microsolvation in fact provided a much 
better—or more balanced—description of the solutes of 
interest. Klamt, the inventor of COSMO-RS, together with 
Eckert and Diedenhofen, also observed that the addition of 
one or two water molecules (with solvent H atom attached 
to anion acceptor sites and solvent O atom attached to 
cation acidic H atoms—in the neutral species the explicit 
solvent was kept at the same positions) leads to a better 
 pKa prediction for strong acids and bases, i.e., the slope 
of the correlation line of predicted vs experimental values 
was closer to 1 [34]. In the same work also the problem of 
a too high structural flexibility of clusters of water with 
less strongly interacting species is discussed, showing that 
there is not the one way towards better results. At the same 
time, Ho and Coote reported for a set of 55 carboxylic 
acids, that the addition of one explicit water molecule to 
both ions and neutral species led to improvements in pre-
dicted  pKa when using different solvent models [35]. Ho 
and Ertem also studied the effect of microsolvation by a 
varying number of solvent (water) molecules on solvation 
free energies and concluded that—as one would expect 
for entropic reasons—that there is no “the more—the bet-
ter” [36]. The same tendency was also found by Cramer 
and Truhlar when using SMx and SMD solvent models 
[18, 37] and Basdogan and Keith when investigating the 
Morita–Baylis–Hillman reaction [38]. This indicates that 
microsolvation can improve in a similar way the results of 
any implicit solvation model (if applied correctly). How-
ever, the one major drawback of microsolvation has also 
been the subject of more recent work by Florez, Restreppo 
et al. The conformational space strongly increases when 
adding several solvent molecules to a solute, which can 
make it quite difficult to identify the lowest-energy con-
former or, even worse, to end up with a meaningful con-
former ensemble [39, 40]. These observations show that 
although microsolvation clearly represents a way how to 
treat more complicated solutes in computations, there still 

is no clear concept how to predictively apply it on a daily 
basis in projects focusing on diverse chemical problems.

The reason why an explicit consideration of the solvent is 
needed, even if in principle advanced solvation models are 
used, is simply because interactions a chemist would still 
call “intermolecular” can become as strong or even stronger 
than actual chemical bonds. Computed gas-phase enthalp-
ies of interaction (obtained by the authors with the same 
protocol as described below in “Computational Details” 
apart from optimizing structures in the gas phase and—of 
course—not adding solvation contributions, either) can give 
an idea of which interactions a solvation model has to be 
able to deal with. Enthalpies of hydrogen bond formation 
between neutral species are in the range of only up to 20 kJ/
mol (e.g.  HOH…OH2: − 14.9 kJ/mol; HOH⋯NH3: − 20.0 kJ/
mol; FH⋯FH: − 16.7 kJ/mol). However, if hydrogen bonding 
interactions take place with ionic species, interaction enthal-
pies can be ten times larger (e.g.  HOH…OH−: − 142.0 kJ/
mol;  H2OH+⋯OH2: − 152.6 kJ/mol; FH⋯F: − 207.3 kJ/
mol). Consequently, for such systems solvation models 
have to account for interactions that are as strong as (more 
labile) chemical bonds (e.g.  O2N…NO2: − 52.5  kJ/mol; 
F⋯F: − 128.9 kJ/mol;  HO…OH: − 206.9 kJ/mol). This dem-
onstrates why the incorporation of explicit solvent molecules 
into a molecular model sometimes is a must to yield a more 
realistic description of the considered system: Interactions 
as strong as chemical bonding lead to significant structural 
relaxation and changes in electron density—and these effects 
are simply not covered by any implicit solvation model.

This work investigates under which conditions microsol-
vation should be applied when using COSMO or COSMO-
RS as implicit solvation models. Application to the predic-
tion of aqueous  pKa values shows a clear improvement when 
using microsolvation, compared to isolated free ions treated 
by implicit solvation only. As an even more critical use case, 
calculations on the mechanism of the Morita–Baylis–Hill-
man are presented. Because this reaction starts from neutral 
reactants and involves intermediates with highly localized 
negative charge in organic media, it represents a major chal-
lenge for any solvation treatment. Significant improvements 
are observed when applying microsolvation, although the 
results still are not in quantitative agreement with experi-
ments. These results highlight that there is still significant 
room for improvement in methods and protocols for the 
computational treatment of such systems.

Computational details

All computations were performed at the density functional 
theory (DFT) level using the TURBOMOLE 7.3 pro-
gram package [41, 42]. For all species as well as transi-
tion states (with and without explicit solvation molecules) 
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a conformational sampling was performed to identify the 
energetically lowest conformer. A set of initial conformers 
was generated by rotating all single bonds (separately) by 
a defined angle, usually 120°. The investigated systems are 
rather small, so only terminal symmetrical groups, e.g.,  CH3 
or bonds to DABCO substituents were excluded from that 
treatment. For transition states additional constraints were 
made and the bond lengths of the bonds involved in the reac-
tion were kept constant. Any molecular model containing 
explicit solvent molecules was also subjected to the same 
generation of initial structures and conformational sampling. 
More details on the placing of the explicit solvent molecules 
are given in the section “Computation of acid–base reactions 
and  pKa values”.

In the conformational sampling, the geometries of all con-
formers were optimized at the TPSS level [43], employing 
the triple-zeta def2-TZVP (TZ) basis sets [44], the COSMO 
solvation model [22] with a dielectric constant of infinity, 
and the D3 dispersion correction [45] with Becke–Johnson 
(BJ) damping [46, 47]. For each of the optimized conform-
ers, a single-point energy in the gas phase at the TPSS-D3/
def2-TZVP level was computed and the solvation free energy 
was calculated with the COSMO-RS solvation model [25, 
26] as implemented in COSMOtherm 2018 [48] employing 
the 2018 BP86/def-TZVP parametrization (and the older 
2015 and 2012 BP86/def-TZVP parametrizations for a few 
test cases). The sum of electronic energy in the gas phase 
(ΔE on TPSS-D3/TZ level) and the solvation free energy 
(ΔδGT

solv, see below) was used to rank the conformers. This 
sum is related to a “Gibbs energy in solution”, i.e., the elec-
tronic energy in solution plus the excess chemical potential.

To obtain COSMO-RS solvation free energies at 25 °C 
the standard procedure with two single point calculations, 
one in the gas phase and one in an ideal conductor (with 
infinite dielectric constant), at the default BP86 [49, 50]/
def-TZVP [51] level of theory was performed and used as 
input for COSMOtherm.

The results presented for the two use cases—pKa pre-
diction and the Morita–Baylis–Hillman reaction—were 
obtained based on single (lowest-Gibbs-energy) conform-
ers. Given the errors encountered for more challenging cases 
for solvation models, the error by neglecting conformational 
entropy was assumed to be rather small.

The energetically lowest conformer for each intermedi-
ate and transition state was reoptimized on the TPSSh [43, 
52]-D3/def2-TZVP level. Activation (ΔG‡) and reaction 
(ΔG) Gibbs free energies were obtained via a thermody-
namic cycle (see supporting information Figure S.1.) as a 
sum of three contributions: (1) the gas phase activation/reac-
tion energy (ΔE‡/ΔE) on the B3LYP-D3/def2-QZVP (QZ) 
or M06-2X/QZ level, (2) the difference in zero-point vibra-
tional energies and thermostatistical contributions (ΔGT

trv) 
for products and reactants on the TPSSh-D3-COSMO/

TZ level at temperature T, and (3) the difference in solva-
tion free energies (ΔδGT

solv(X)) for products and reactants 
on the COSMO-RS level at temperature T in solvent X: 
ΔG = ΔE + ΔGT

trv
+ Δ�GT

solv
(X).

Final single-point energies in the gas phase were com-
puted with B3LYP [35, 53–55]-D3 and M06-2x [56] density 
functionals using the quadruple-zeta basis sets def2-QZVP 
(QZ) [51]. For such large basis sets the basis set superposi-
tion error almost vanishes and no special treatment, e.g., 
a computationally demanding counterpoise correction, is 
required. Computations of the harmonic vibrational fre-
quencies were performed numerically and used to calculate 
the zero-point vibrational energy as well as the statistical 
thermodynamics corrections to obtain a Gibbs free energy at 
finite temperature (25 °C). The vibrational frequencies were 
used unscaled. Some of the small molecules in the acid–base 
reactions are symmetric and the corresponding symmetry 
number was considered when calculating the external-rotor 
entropy. DABCO, the catalyst in case of the MBH reaction, 
has a symmetry number 6, which was considered when cal-
culating the free rotor entropy. Solvation free energies were 
computed with COSMO-RS as described above.

In all cases the resolution-of-identity (RI) approximation 
for Coulomb integrals was applied using matching default 
auxiliary basis sets [57, 58]. For the integration of the 
exchange–correlation contribution, the numerical quadrature 
grids m4 (for geometry optimizations and BP86 single-point 
energies) and m5 (for B3LYP and M06-2x  single-point ener-
gies) were employed [59].

For all Gibbs free energies reported in the present work, 
a mixed thermodynamic reference state is defined as fol-
lows: The reference state of all solutes is c = 1 mol/l. If a 
solvent molecule (water or methanol) is involved in a reac-
tion (including association reactions), its reference state 
is that of the pure phase, i.e., c = 55.4 mol/l for water (for 
acid–base reactions) and c = 24.7 mol/l for methanol (for 
MBH reaction) at a temperature of 25 °C. This mixed refer-
ence state is the same as in the experimental study of the 
Morita–Baylis–Hillman reaction [60], so that computed and 
experimental Gibbs free energies of activation and reaction 
can be directly compared to each other. For more details how 
the reference state is obtained in our computations see the 
supporting information section S.1.2 and the general dis-
cussion about molecular and solvation thermodynamics by 
Jensen [61].

Initial guess structures for the transition states (TS) were 
either build manually or obtained using the molecular grow-
ing string method (MGSM) [62–64]. These structures were 
then optimized using eigenvector following as implemented 
in TURBOMOLE. The resulting TS geometries were sub-
jected to a conformational search with frozen TS bonds (as 
described above). The energetically lowest conformer was 
again optimized using eigenvector following. All minimum 
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and TS geometries were confirmed as such by the vibrational 
frequencies.

Pictures of the computed molecular geometries were 
generated using CYLview [65]. Pictures of the COSMO 
surfaces with screening charge densities were created with 
COSMOthermX [48].

General strategy for the application 
of microsolvation

In order to apply microsolvation in predictive computational 
protocols, it is necessary to have clear computational criteria 
when (and how many) additional solvent molecules have to 
be added to a solute of interest. The criterion applied within 
this work is the Gibbs free energy ∆Ga for the association of 
a solvent molecule to a solute to form an explicit solute–sol-
vent couple when applying already implicit solvation to all 
species:

Let us assume that the implicit solvent model already 
provides a “good solvation” treatment, which is defined in 
the following as being able to correctly take into account 
weaker interactions, typically up to hydrogen bonding of 
neutral species. If such implicit solvation treatment is at 
work, for the first of these “quasi-reactions”, the following 
results can be expected:

(a) If solvent and solute have no clearly preferred points 
of interaction, the obtained ∆Ga should be moderately 
positive: Localizing solvent and solute in specific posi-
tions and directions with respect to each other always 
means a loss of entropy with respect to freely mobile 
species that are able to orient more or less randomly 
with respect to each other.

(b) If, in contrast, there is one clearly preferred intermo-
lecular interaction geometry, e.g., due to a hydrogen 
bond, ∆Ga should be close to zero, if both the explicit 
quantum chemical description and the implicit solva-
tion description correctly take into account intermo-
lecular interactions. However, in order to reach this, 
apart from having a “good solvation” model, also from 

Solute + Solvent → Solute ⋅ (Solvent)1 ΔG1

a

Solute ⋅ (Solvent)1 + Solvent → Solute ⋅ (Solvent)2 ΔG2

a

Solute ⋅ (Solvent)2 + Solvent → Solute ⋅ (Solvent)3 ΔG3

a

…

the quantum chemical side the computations have to 
be rather accurate. Both energy and entropy of this 
step must be computed rather carefully. In reactions 
which make one species out of two, vibrational and 
conformational entropic contributions clearly matter 
and omitting them leads for both to a stronger prefer-
ence of isolated species, i.e., a more positive ∆Ga. In 
addition, if there are several equally preferred interac-
tion sites (i.e., oligomeric structures of equal energy), 
also a permutational entropic term must be added.

(c) Even for “good solvation” models, there will be interac-
tions that are simply too strong to fall in the applica-
tion range, i.e., there is a point where the description 
as an aggregate resulting from a “chemical reaction” 
becomes mandatory. Very strong hydrogen bonds 
involving ionic species are examples for such interac-
tions. Here, ∆Ga of the quasi-reaction between solute 
and solvent will be negative, indicating that the solva-
tion model fails to reproduce the full extent of struc-
tural reorganization upon the interaction and the result-
ing relaxation of electronic wave functions.

Assuming that ∆Ga
1 is negative, i.e., that the added solvent 

is thermodynamically favored (case c)), at least one explicit 
solvent should be included in the molecular model for the 
solute. The question if more explicit solvents are needed, is 
answered by looking at ∆Ga

2, ∆Ga
3 and so on: As long as 

negative ∆Ga are obtained, further explicit solvents should 
be added. Luckily, with the solvation model COSMO-RS 
typically also for ionic species only up to one explicit solvent 
molecule is required, unless highly charged species (or highly 
localized charges) are considered. Furthermore, also case b) 
represents an interesting way to challenge the consistency of 
solvation models when studying the solvent itself as solute (at 
least, if it exhibits the abovementioned preferred point(s) of 
interaction). If values for bulk solvent interaction are at least 
close to zero, this indicates that case c) will also be identified 
rather reliably, so that the above-mentioned criteria when to 
use microsolvation represent a reasonable choice.

Table 1 summarizes the results for the ∆Ga
1 of solvent–sol-

vent interaction (dimerization) at the COSMO and COSMO-
RS levels for six species: hydrogen cyanide, water, ethyl 
amine, methanol, ethanol, and hydrogen fluoride. The values 
suggest that on average COSMO-RS yields a balanced descrip-
tion between explicit intramolecular and implicit intermolecu-
lar interactions. The scattering of values of course indicates 
certain deficiencies, but overall values are much closer to zero 
than for COSMO. However, it should be noted, that also for 
COSMO, all ∆Ga

1 are quite similar (close to + 10 kJ/mol), 
which hints that also here systematic criteria might be derived 
when to apply microsolvation.
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Computation of acid–base reactions and  pKa 
values

As a first application, the computation of Gibbs free energies 
for several acid–base reactions in aqueous solution and the 
resulting  pKa values of the acids are discussed. We deliber-
ately chose a variety of examples with  pKa values ranging 
from 0  (H3O+) to 16 (EtOH).

As outlined above, for each solute the required degree of 
microsolvation needs to be determined. In order to decide 
for which atom(s) of which species the necessity of micro-
solvation should be checked at all, criteria are needed. These 
are most probably related to electronic structure and can 
in principle be based on any electron density-dependent 
descriptor. Population analyses yielding partial charges 
could be one option. If COSMO-RS is used as solvation 
model, a COSMO calculation for the ideal conductor has 
to be performed anyway. Thus, the maximum screening 
charges (or rather the screening charge densities) of seg-
ments for the atoms of interest seem a convenient property. 
COSMO theory refers to the solvent and thus, provides the 
screening charge density, which is typically of opposite sign 
to the molecular screened surface charge, i.e., screening 
charge densities for negatively charged atoms are positive 
and vice versa. Figure 1 shows the cases of ethanol/ethoxide 
and acetic acid/acetate as example. The first column pro-
vides the screening charge density on the COSMO surface 
of the plain molecules: The darker the shade of red, the more 
positive the screening charge density is; the darker the shade 
of blue, the more negative it is. For the ethoxide anion the 
negative charge is localized on the oxygen atom and the 
maximal screening charge density is + 0.031 e/Å2. In case 
of acetate, the negative charge is delocalized, and the maxi-
mal screening charge density is + 0.022 e/Å2. For ethanol 
and acetic acid the maximal screening charge densities are 
below ± 0.020 e/Å2.

If the maximal screening charge density is positive, the 
explicit water molecule acts as hydrogen bond donor and 
stabilizes the negative charge on the atom or the func-
tional group. If it is negative, mostly the case for hydro-
gen atoms, the explicit solvent molecule acts as hydro-
gen bond acceptor. For molecules like alcohols or acids 
usually both options, hydrogen bond donor and acceptor 
positions have to be tested. For the ethanol/ethoxide and 
acetic acid/acetate these cases are shown in Fig. 1. Here, 
the explicit water molecules were placed manually in a 
typical hydrogen bonding arrangement. These initial sol-
ute-water complexes were subjected to a conformational 
sampling by rotating all single bonds as described in the 
section “Computational Details” to obtain a reasonable 
structure with minimal Gibbs free energy. In an automated 
workflow e.g., the “ssc_strength” option of COSMOtherm 
could be used to construct the most strongly interacting 
solute–solvent pairs.

Other automated approaches to place solvent molecules 
have of course been developed. Kildgaard et al. published a 
stochastic algorithm for the generation of hydration clusters 
by placing water molecules in selected orientations around 
the solute in an iterative fashion [66, 67]. This way, they 
obtained the conformation with the lowest free energy. Rei-
her and coworkers presented a stochastic generation of sol-
vation clusters which include conformational sampling [68]. 
Open sites on solvent accessible surface of solute and sol-
vent are randomly chosen and placed opposite each other at 
a certain distance and random angle that avoid atom clashes. 
The geometries of the resulting solute–solvent cluster are 
then optimized with standard quantum chemical methods. 
The addition of more solvent molecules starts from the pre-
vious solute–solvent complex. The random selection of sites 
is not optimal when solute or solvent feature charged or polar 
functional groups, as it is the case for many of the examples 
presented here. Our approach, in contrast, places the solvent 
molecules only at a few sites on the solvent accessible sur-
face, but where the interaction is expected to be strongest 
(within the framework of the COSMO-RS solvation model).

After identification of the possible positions of explicit 
solvent molecules, the necessity to include them in the com-
putation of the acid–base reactions is checked via the Gibbs 
free energy of association (ΔGa) of the water molecules. As 
discussed above, we assume that whenever the association 
Gibbs free energy ΔGa is negative, the explicit water mol-
ecule must be included. For ethanol and acetate, the Gibbs 
free energy of association for the first water molecule is ther-
moneutral or endergonic, which means that no explicit water 
is needed. For acetic acid ΔGa is slightly negative (− 3 kJ/
mol) and one explicit water is included. For the ethoxide 
anion the association of the first water molecule is strongly 
exergonic (− 24 kJ/mol) and even the association of a sec-
ond water is still exergonic (− 9 kJ/mol) on the M06-2x/

Table 1  Gibbs free energies 
∆Ga

1 for the quasi-reaction of 
solvent dimerization under bulk 
conditions at the M06-2x/QZ 
level with the solvent models 
COSMO and COSMO-RS

Values include (in contrast to 
other presented results) consid-
eration of entropy from confor-
mational and permutational (if 
various sites of interaction are 
possible) partition functions. 
All ∆Ga are given in kJ/mol

∆Ga
1

COSMO COSMO-RS

HCN  + 8.6  − 1.4
EtNH2  + 12.2  + 6.5
H2O  + 3.0  − 11.9
MeOH  + 12.1  + 7.9
EtOH  + 10.8  + 4.2
HF  + 14.9  − 8.8
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QZ + COSMO-RS level. Therefore, the recommendation is 
to use two explicit water molecules.

The maximal screening charge densities of all neutral 
species and the association free energies on the B3LYP-D3/
QZ + COSMO-RS and M06-2x/QZ + COSMO-RS levels are 
given in Table 2. The results for the charged species are pre-
sented in Table 3. The corresponding results for B3LYP-D3/
QZ and M06-2x/QZ with the COSMO solvation model are 
collected in the supporting information Tables S.3 and S.4.

As expected, neutral species have slightly lower abso-
lute values of (maximal) surface screening charge densi-
ties. In automated workflows, a check on the necessity of 
microsolvation could, e.g., be performed if absolute values 
exceed ± 0.020 e/Å2, although making the threshold atom 
type dependent could lead also to more precise predictions 
how to computationally treat solute species.

For the neutral molecules (Table 2) ΔGa is usually slightly 
positive or slightly negative, i.e., close to thermoneutral, and 
thus, explicit water molecules are needed in some cases only. 
The exceptions with a more negative ΔGa are water, sulfu-
ric acid, and phosphoric acid which have ΔGa of − 12, − 23, 
and − 10 kJ/mol, respectively, for the association of the first 
water molecule on the M06-2x/QZ + COSMO-RS level. The 
association of a second water molecule is slightly endergonic 
for water and phosphoric acid, but still exergonic for sulfuric 
acid (− 8 kJ/mol). Thus, sulfuric acid is the only neutral mol-
ecule which requires two explicit water molecules. Overall, 
with the COSMO-RS solvation model ten neutral molecules 
need one explicit water and  H2SO4 requires two. With the 
COSMO model only two neutral solutes need explicit sol-
vation:  H3PO4 needs one and  H2SO4 requires two explicit 
water molecules.

Fig. 1  Screening charge densities on COSMO surfaces of ethanol/
ethoxide and acetic acid/acetate and the best conformers (see sec-
tion on computational details) of their complexes with explicit water 

molecules. The association free energies (∆Ga) were computed at the 
M06-2x/QZ + COSMO-RS levels and are given in kJ/mol. The unit of 
the maximal screening charge density is e/Å2
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For ionic molecules (Table 3) there are even more cases 
where COSMO-RS clearly underestimates the intermolecu-
lar hydrogen bonding interactions. This is particularly severe 
where there is no or only little charge stabilization, like in 
the ethoxide anion. If the charge is stabilized by resonance 
effects, like in a phenoxy anion or acetate, the association 
Gibbs free energy is close to zero. For the ions without 
charge stabilization, microsolvation is clearly needed, requir-
ing in five cases  (H3O+,  NMe3H+,  PhNH3

+, pyridine-H+, 
imidazole-H+) only one explicit water molecules, but in four 
cases  (EtO−,  CF3CH2O−,  CH3CHNO2

−,  PhO−) two explicit 
water molecules are needed. When COSMO is employed, a 
beneficial stabilization is obtained with one explicit water 
molecule for  PhO− and with two explicit water molecules 
for  H3O+,  OH−,  EtO−, and  CF3CH2O−.

In a next step, Gibbs free energies of reaction for the 
aqueous acid–base reactions were performed, both with and 
without microsolvation. As a reference base imidazole was 
used. It exhibits a  pKa close to 7 (6.95 was used here as 
suggested by Bruice et al. [68]), i.e., it represents a refer-
ence in the center of the aqueous pH scale. Furthermore, 
the positive charge in the cation is quite delocalized so that 
deficiencies in predicted ∆G can be rather safely traced back 
to the acid–base pair of interest. Reaction free energies for 
the reactions

were computed and the resulting Gibbs free energy was 
transferred to  pKa units to obtain the desired  pKa value of 
the acid.

acid + imidazole → base + imidazolium

Table 2  Overview of atoms/
functional groups with the 
maximum screening charge 
density, Gibbs free energy of 
association (ΔGa) of water 
molecules (usually one) on the 
M06-2x/QZ + COSMO-RS and 
B3LYP-D3/QZ + COSMO-RS 
levels for the neutral molecules

All ∆Ga are given in kJ/mol, the unit of the screening charge density is e/Å2.

Species Atom (func-
tional group)

Max. screening 
charge density

ΔGa(M06-2x) ΔGa(B3LYP) Recom-
mended 
explicit  H2O

H2O H  − 0.014  − 13 (1st)
2 (2nd)

 − 14 (1st)
1 (2nd)

1

EtOH H (OH)  − 0.014 0 0 0
O  + 0.013 2  − 1

CF3CH2OH H (OH)  − 0.017  − 2  − 3 1
O  + 0.010 2 0

EtSH H (SH)  − 0.009 5  − 1 0
S  + 0.005 2 3

PhOH H (OH)  − 0.018  − 2  − 1 1
O  + 0.008 1  − 3

p-NO2PhOH H (OH)  − 0.020  − 3  − 5 1
O (NO)  + 0.008 3  − 1

CH3COOH H (OH)  − 0.018  − 2  − 3 1
O (C=O)  + 0.012 2 1

EtNO2 N  + 0.010 6 4 0
O  + 0.008

H2SO4 H (OH)  − 0.022  − 23 (1st)
 − 8 (2nd)

 − 22 (1st)
 − 8 (2nd)

2

O (S=O)  + 0.009  − 20  − 19
H3PO4 H (OH)  − 0.020  − 10 (1st)

2 (2nd)
 − 11 (1st)
3 (2nd)

1

O (P=O) 0.014  − 8  − 9
n-Bu-H2PO4 H (OH)  − 0.019 3 4 0

O (P=O) 0.014 1  − 1
NMe3 N  + 0.020  − 1  − 5 1
n-PrNH2 N  + 0.012 0  − 3 0

H (NH)  − 0.009 7 7
PhNH2 H (NH)  − 0.013 1 0 1

N 0.004  − 3  − 6
pyridine N  + 0.014  − 5  − 9 1
imidazole H (NH)  − 0.017  − 3  − 4 1

N  + 0.016  − 2  − 6



481Journal of Computer-Aided Molecular Design (2021) 35:473–492 

1 3

Calculated (M06-2x) and experimental ΔG of acid–base 
reactions involving cationic, neutral and anionic acids and 
the corresponding pKa values of the acids are given Table 4. 
The analogous results for B3LYP are provided the in the 
supporting information in Table S.5. The reaction free 
energies are a bit lower on the B3LYP-D3/QZ level, but the 
overall performance of the two functionals is similar and 
we focus here on the M06-2x  results. As described in the 
computational details, the thermodynamic reference state 
is the following: water molecules are treated as pure water 
with c = 55.4 mol/l (at 25 °C) and all solutes with c = 1 mol/l.

The reaction free energies of the acid–base reaction are 
reasonable with an implicit solvation model only in those 
cases in which the reaction involves neutral species and ions 
stabilized by resonance effects. The mean absolute error 
(MAE) is 33 kJ/mol for M06-2x/QZ + COSMO and 15 kJ/
mol in case of M06-2x/QZ + COSMO-RS. This corresponds 
to a mean absolute error of 5.8 and 2.7 on the  pKa scale. 

However, for reactions which involve ionic molecules that 
exhibit a non-stabilized charge on specific isolated atoms, 
the results are sometimes far from the experimental values. 
The maximal error (MAX) is observed for  H3O+ (69 kJ/mol, 
12.0 on  pKa scale) in case of COSMO and for EtOH (51 kJ/
mol, 9.0 on  pKa scale) in case of COMO-RS. For these sys-
tems, microsolvation significantly improves the agreement 
between theoretical and experimental data, e.g., the error for 
EtOH decreases to 19 kJ/mol which corresponds to an error 
of 3.3 on  pKa scale.

When microsolvation is included, the MAE decreases to 
12 kJ/mol (2.2 on  pKa scale) and the maximal error drops 
to 35 kJ/mol (7.2 on  pKa scale) for M06-2x/QZ + COSMO-
RS. The largest errors for COSMO-RS + microsolvation are 
observed for  H2O (error of 6.2 on  pKa scale),  H2SO4

− (error 
of 5.8), PhOH (error of 4.0),  CF3CH2OH (error of 3.6) and 
 H3O+ (error of 3.6). Only in the cases of  H2O and  H3O+ 
the pure COSMO-RS actually performs better, which most 

Table 3  Overview of atoms/
functional groups with the 
maximum screening charge 
density, Gibbs free energy of 
association (ΔGa) of water 
molecules (usually one) on the 
M06-2x/QZ + COSMO-RS and 
B3LYP-D3/QZ + COSMO-RS 
levels for the charged species

All ∆Ga are given in kJ/mol, the unit of the screening charge density is e/Å2

Species Atom (func-
tional group)

Max. screening 
charge density

ΔGa(M06-2x) ΔGa(B3LYP) Recom-
mended 
explicit  H2O

H3O+ H  − 0.027  − 34 (1st)
1 (2nd)

 − 34 (1st)
 − 1 (2nd)

1

OH− O  + 0.033 26 29 0
EtO− O  + 0.031  − 24 (1st)

 − 9 (2nd)
 − 19 (1st)
 − 10 (2nd)

2

CF3CH2O− O  + 0.028  − 18 (1st)
 − 2 (2nd)

 − 16 (1st)
 − 4 (2nd)

2

EtS− S  + 0.021 15 12 0
PhO− O  + 0.024  − 3 (1st)

 − 3 (2nd)
 − 4 (1st)
 − 5 (2nd)

2

p-NO2PhO− O  + 0.019 1  − 1 0
CH3COO− O  + 0.022 13 13 0
CH3CHNO2

− O  + 0.020 4 6 2
HSO4

− O (SO)  + 0.016 10 8 0
H (OH)  − 0.018

SO4
2− O  + 0.022 19 19 0

H2PO4
− O (PO)  + 0.020 7 8 0

H (OH)  − 0.016
HPO4

2− O (PO)  + 0.026 28 30 0
H  − 0.012

PO4
3− O  + 0.031 43 43 0

n-Bu-HPO4
− O  + 0.021 12 15 0

H (OH)  − 0.015
n-Bu-PO4

2− O  + 0.026 21 25 0
NMe3H+ H (NH)  − 0.023  − 8  − 12 1
n-PrNH3

+ H (NH)  − 0.020 1  − 1 0
PhNH3

+ H (NH3)  − 0.022  − 5  − 8 1
pyridine-H+ H (NH)  − 0.022  − 5  − 7 1
imidazole-H+ H (NH)  − 0.021  − 2  − 4 1
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likely is due to the special treatment of water within the 
COSMO-RS model (version 2018 was used here). Surpris-
ingly, when using COSMO-RS the hydroxide anion does not 
require an explicit water molecule, although the maximal 
screening charge density is even higher (+ 0.033 e/Å2) than 
for ethoxide anion (+ 0.031 e/Å2). This again, is probably 
related to the special treatment of water within the COSMO-
RS model. We repeated the computation of association free 
energies using M06-2x  and COSMO-RS with the BP86/def-
TZVP parametrizations from 2015 and 2012. The Gibbs free 
energy of association of a water molecule to the hydroxide 
anion is 26 kJ/mol, 31 kJ/mol, and 16 kJ/mol when using 
the COSMO-RS parameters from 2018, 2015, and 2012. 
In case of the ethoxide anion ΔGa is -24 to -25 kJ/mol for 
all three parameter versions tested. This indicates that the 
special treatment of water within the COSMO-RS model 
changes from version to version. When the COSMO solva-
tion model is employed, the hydroxide anion does require 
explicit solvation, as one would expect. Nevertheless, the 

errors for M06-2x/QZ + COSMO are larger than for M06-2x/
QZ + COSMO-RS when including microsolvation. The 
MAE for M06-2x/QZ + COSMO + MS amounts to 26 kJ/
mol (4.6 on  pKa scale) and the maximal error is 61 kJ/mol 
(10.7 on  pKa scale).

Overall, the results obtained for acid–base reactions sug-
gest that the presented protocol generally works and that it 
provides a possibility for designing an automated workflow 
to decide whether microsolvation is needed in combination 
with the COSMO or COSMO-RS solvation model. Figure 2 
summarizes our microsolvation protocol and provides a rough 
idea how such an automated workflow might look like. In the 
first step, the maximal screening charge densities are used to 
identify possible positions of the solvent molecules and in the 
second step, the association Gibbs free energy is used to decide 
if formation of the respective solute–solvent cluster is energeti-
cally favored. Next, we applied this microsolvation protocol to 
the challenging use case of an organic reaction mechanism.

Table 4  Experimental and 
computed reaction free 
energies of the acid–base 
reaction (acid + imidazole → 
base + imidazolium) and the 
resulting  pKa values of the acid

Computations were performed on the M06-2x/QZ level with the COSMO solvation model, the COSMO-
RS solvation model, and with COSMO-RS and using microsolvation (MS). The experimental values are 
taken from various references that can be found in the supporting information Table S.2. All ∆G are given 
in kJ/mol

Acid Experimental COSMO COSMO-RS COSMO + MS COSMO-
RS + MS

ΔG pKa ΔG pKa ΔG pKa ΔG pKa ΔG pKa

H2O 50.2 14.0 108 25.9 61 17.7 80 21.0 75 20.2
H3O+  − 49.6 0  − 108  − 12.0  − 41  − 0.2  − 69  − 5.2  − 1 3.6
EtOH 51.7 16.0 119 27.9 103 25.0 93 23.2 71 19.3
CF3CH2OH 31.1 12.4 88 22.3 70 19.1 71 19.4 53 16.2
EtSH 20.3 10.5 38 13.5 4 7.7 38 13.5 5 7.9
PhOH 17.1 9.9 54 16.4 43 14.4 51 15.9 40 13.9
p-NO2PhOH 1.1 7.1 18 10.1 12 9.0 18 10.1 16 9.7
CH3COOH  − 12.5 4.8 13 9.3  − 17 3.9 13 9.3  − 14 4.5
EtNO2 9.4 8.6 47 15.2 16 9.8 47 15.2 17 10.0
H2SO4  − 56.8  − 3.0  − 88  − 8.4  − 96  − 9.8  − 69  − 5.1  − 64  − 4.2
HSO4

−  − 28.8 1.9 2 7.3  − 63  − 4.1 2 7.3  − 62  − 3.9
H3PO4  − 28.4 2.0  − 26 2.5  − 39 0.1  − 21 3.2  − 29 1.9
H2PO4

−  − 0.7 6.8 41 14.2  − 17 4.0 41 14.2  − 16 4.2
HPO4

2− 31.7 12.5 92 23.2 35 13.0 92 23.2 36 13.2
n-Bu-H2PO4  − 29.4 1.8  − 15 4.4  − 32 1.4  − 15 4.4  − 31 1.6
n-Bu-HPO4

−  − 0.2 6.8 45 14.8 0 6.9 44.9 14.8 1 7.1
NMe3H+ 16.0 9.8 20 10.5 19 10.3 20 10.5 27 11.7
n-PrNH3

+ 20.4 10.5 18 10.1 16 9.8 18 10.1 17 10.0
PhNH3

+  − 13.5 4.6  − 33 1.2  − 26 2.4  − 33 1.2  − 20 3.5
pyridine-H+  − 14.7 4.4  − 10 5.1  − 10 5.1  − 10 5.1  − 9 5.3
MAE 33 5.7 15 2.7 26 4.6 12 2.2
MAX 69 12.0 51 9.0 61 10.7 35 6.2
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Investigation of the alcohol‑mediated 
Morita–Baylis–Hillman reaction

To highlight the importance of microsolvation for chemical 
reactivity studies and investigations of reaction mechanisms 
and to test our protocol for microsolvation, we chose the 
alcohol-mediated Morita-Baylis–Hillman (MBH) reaction as 
an exemplary case study. Its mechanism has been extensively 
studied by many groups using computational and experimen-
tal methods [69–80], but has remained elusive until the very 
detailed experimental work of Plata, Singleton and cowork-
ers in 2015. Plata and Singleton also demonstrated that com-
putational studies using a simple continuum solvation model 
fail spectacularly in describing the mechanism of the MBH 
reaction [60]. This is no surprise, because all intermediates 
are either zwitterionic or charged and thus, any computa-
tional method that utilizes a simple continuum solvation 
model like COSMO is expected to yield large errors. Two 
years later in 2017, Harvey, Sunoj and coworkers showed 
that by employing high-level energy computations on the 
coupled-cluster level (DLPNO-CCSD(T)) in combination 
with an explicit solvation treatment based on molecular 
dynamics they can achieve a good agreement with experi-
ment with an error of 3–20 kJ/mol [81]. Basdogan and Keith 
showed in 2018, that the required degree of microsolvation 
can be studied systematically with a static approach [38]. 
For all intermediates, they identified the low-energy geom-
etries of the solute–solvent clusters with different numbers 
of methanol molecules (1–5 and 10) with a stochastic com-
putational filtering procedure using a global optimization 
protocol. Subsequently, they explored the reaction pathways 
by systematic single-ended growing string method (GSM) 

[62–64] computations. They found that gradually adding 
more solvent models does not improve the agreement with 
experiment (five is best) and that once a complete reaction 
pathway is found, high-level energy computations on the 
coupled-cluster level only yield a marginal gain.

Compared to these two studies our approach is quite sim-
ple and requires neither dynamics simulations nor a global 
optimization procedure to determine the degree of micro-
solvation. We start from the reaction mechanism without 
explicit solvent molecules and have clear criteria if adding 
more solvent molecules is necessary. Our intention here is 
not to present a benchmark of DFT functionals and/or solva-
tion models. We simply chose a reasonable combination of 
computational methods that are widely used, i.e., TPSSh-
D3-COSMO/TZ for geometry optimizations, and M06-2x/
QZ and B3LYP-D3/QZ single-point energies together with 
the COSMO or COSMO-RS solvation models to obtain 
Gibbs free energies of reaction and activation. We use 
Plata’s and Singleton’s carefully determined experimental 
thermodynamics and kinetic data for main and side reactions 
as reference throughout. As discussed in the “computational 
details” section, the chosen reference state for the presented 
Gibbs free energies is identical to the reference state used 
by Plata and Singleton: methanol molecules are treated as 
pure methanol with c = 24.7 mol/l (at 25 °C), all solutes have 
c = 1 mol/l. Therefore, the experimental results and our com-
puted values are directly comparable.

Figure 3 shows an overview of the investigated reaction 
steps of the prototypical MBH reaction of methyl acrylate 
(MA, 1) and p-nitrobenzaldehyde (4) catalyzed by DABCO 
(2). First, DABCO adds to MA to yield the zwitterionic 
intermediate 3, which then undergoes the aldol step with 

Fig. 2  Overview of the microsolvation protocol (in combination with COSMO or COSMO-RS implicit solvation model) and possible workflow 
to automate the addition of explicit solvent molecules
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aldehyde 4 to form the zwitterionic intermediate 5. Further-
more, the C-protonation of 3 to yield cationic adduct 8 was 
also investigated. The conversion from intermediates 5 to 
6 was subject of debate for a long time. Many computa-
tions favor a proton-shuttle mechanism involving one MeOH 
[69–72, 75] but Plata and Singleton showed experimentally 
that the mechanism follows the acid/base route [58]. The 
last step is the elimination of DABCO to yield the product 
7. Except for the barriers of the initial addition and final 
elimination step, Plata and Singleton were able to determine 
accurate reaction (ΔG) and activation (ΔG‡) free energies 
from their experiments.

First, we compare the computed overall thermodynamics 
of the MBH reaction with experimental results. The overall 
reaction Gibbs free energy was determined experimentally 
as − 16 kJ/mol [58]. B3LYP-D3/QZ in combination with 
both solvent models does not yield an exergonic reaction. 
The overall reaction Gibbs free energy is 19 kJ/mol with 
the COSMO and 6 kJ/mol with the COSMO-RS solvation 

model. B3LYP is known to be a functional that usually does 
neither provide the best nor the worst results for main group 
thermochemistry and kinetics [82] but was also found to 
underestimate the energies of C–C single bonds compared 
to C–C double bonds [83]. M06-2x/QZ together with the 
COSMO solvation model yields a slightly exergonic reac-
tion with ΔG of -2 kJ/mol. The reaction Gibbs free energy at 
the M06-2x/QZ + COSMO-RS level of − 15 kJ/mol, which 
agrees with experiments quantitatively. The average errors 
of the M06-2x/QZ computations for all the steps of the 
MBH reaction are similar compared to B3LYP-D3/QZ (see 
Table 5) and all observed trends that will be discussed are 
the same. The M06-x2  functional is in general a good choice 
for charged systems [29] and we will mainly focus on the 
M06-2x/QZ results in the following.

Next, we will discuss the computations and solvation 
effects with respect to the following points: (1) The overall 
error of Gibbs free energies of activation and reaction com-
pared to experiment, (2) the difference in barrier heights 
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Fig. 3  Overview of the investigated reaction steps of the alcohol mediated Morita–Baylis–Hillman reaction, analogous to the steps given in Ref. 
[58]

Table 5  Activation (ΔG‡) and reaction (ΔG) free energies for each step of the MBH reaction on the four investigated computational levels 
M06-2x/QZ + COSMO, M06-2x/QZ + COSMO-RS, B3LYP-D3/QZ + COSMO, B3LYP-D3/QZ + COSMO-RS

Experimental values are taken from Ref. [58]. All values are given in kJ/mol

Experiment M062x/QZ + COSMO M06-2x/QZ + COSMO-
RS

B3LYP-D3/
QZ + COSMO

B3LYP-D3/
QZ + COSMO-RS

ΔG‡ ΔG ΔG‡ ΔG ΔG‡ ΔG ΔG‡ ΔG ΔG‡ ΔG

Overall –  − 16 –  − 2  − 15  + 17 –  + 6
1 + 2 → 3 (36 -55) 36 64 48 65 56 64 62 65 68
3 + MeOH → 8 + MeO− 55  − 5 67 17 60 21 60 7 53 11
3 + 4 → 5 49  − 10 77 8 60  − 3 72 22 58 11
5 + MeOH → 9 + MeO− – 3 – 24 – 18 – 21 – 15
9 + MeO− → 6 + MeOH 60 5 40  − 38 56  − 41 39  − 30 50  − 31
5 → 6 (shuttle) – – 56  − 14 44  − 22 54  − 9 46  − 15
6 → 7 + 2 Unknown  − 50 38  − 45 16  − 46 5  − 56 3  − 58
MAE – 20 – 18 – 19 – 20
MAX 28 43 12 46 24 35 11 36
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for the aldol-step and the C-protonation of 8, (3) the differ-
ence in barrier heights for the proton shuttle and acid/base 
mechanisms for conversion from 5 to 6, and (4) the overall 
rate-limiting step.

First, we discuss the results obtained with a simple 
(semi-)continuum solvation model. Figure 4 shows the 
reaction profile for the M06-2x/QZ computations with 
COSMO and COSMO-RS solvation. The analogous 
depiction for B3LYP-D3/QZ can be found in the support-
ing information Figure S.2. Table 5 provides the Gibbs 
free energies of activation and reaction for all individual 
steps (relative to the corresponding reactants) on both 
the M06-2x and B3LYP levels. The errors compared to 
experimental values are significant for both solvation mod-
els. The mean absolute error (MAE) for ΔG compared to 
experiment is 20 and 18 kJ/mol for M06-2x/QZ + COSMO 
and M06-2x/QZ + COSMO-RS, respectively. The maxi-
mal absolute error (MAX) of ΔG results in 43 kJ/mol 
for M06-2x/QZ + COSMO and 46 kJ/mol for M06-2x/
QZ + COSMO-RS for the deprotonation step of 9 to 6. 
For the reaction barriers only three values are known from 
experiment (see Table 5) and the MAE was omitted. The 
barrier of the aldol step (MAX) is off by 28 and 12 kJ/mol 
for M06-2x/QZ + COSMO and M06-2x/QZ + COSMO-
RS, respectively.

From experiment it was determined that the aldol step 
3 + 4 and the C-protonation of 3 have similar barriers of 
85 and 91 kJ/mol, respectively. Thus, the difference is only 
6 kJ/mol. A very small difference is also obtained from the 
computations, but the order of the two reaction pathways is 
wrong. M06-2x/QZ combined with both solvation models 

yields a lower barrier for the C-protonation of intermedi-
ate 3 (115 kJ/mol for both, COSMO and COSMO-RS) than 
for the aldol step (125 and 116 kJ/mol for COSMO and 
COSMO-RS).

The conversion from 5 to 6 was experimentally identi-
fied as acid/base mechanism via intermediate 9. We com-
puted the acid/base and proton shuttle mechanisms, and both 
M06-2x/QZ + COSMO and M06-2x/QZ + COSMO-RS fail 
to yield the acid/base reaction as favored pathway. The bar-
rier for the shuttle mechanism is lower by 16 and 23 kJ/mol, 
respectively. The experimentally determined rate limiting 
step of the MBH reaction is the deprotonation of cationic 
intermediate 9 by  MeO− to yield 6, which has a barrier of 
89 kJ/mol relative to the starting materials. The aldol step 
has a slightly lower relative barrier of 85 kJ/mol. Again, 
M06-2x/QZ in combination with both solvation models 
fails and indicates the aldol step as the rate-limiting step 
with an activation barrier of 125 kJ/mol and 116 kJ/mol, 
respectively.

Thus, with respect to the four discussion points M06-2x/
QZ and B3LYP-D3/QZ in combination with the simple 
COSMO and the more advanced COMO-RS solvation model 
fail spectacularly to describe the MBH reaction, rendering 
the computations basically useless.

Next, we address the question if microsolvation combined 
with either COSMO or COSMO-RS (semi-) continuum sol-
vation can provide a better description of the MBH reac-
tion. The first key questions when using microsolvation is 
how many explicit solvent molecules are needed and where 
they should be placed. This can be identified via an analy-
sis of the screening charge density on the COSMO surface 

Fig. 4  Experimental and computed free energies for the MBH reaction on the M06-2x/QZ level with COSMO and COSMO-RS solvation. 
Experimental values are taken from Ref. [58]
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of all species including transition states and the Gibbs free 
energy of association (ΔGa) of methanol as described in 
the previous section. If the surface charge density is nega-
tive, the explicit MeOH acts as hydrogen bond donor and 
stabilizes the negative charge on the atom/functional group. 
If it is positive, mostly the case for hydrogen atoms, the 
explicit methanol molecule acts as hydrogen bond acceptor. 
The results for all reactants, products, intermediates, and 
transition states are compiled in Table 6. According to our 
analysis, the methoxide anion, intermediate species 5 and 
6 (6 only for B3LYP), and most transition states except the 
first and last for M06-2x (only except the first for B3LYP) 
benefit from an explicit methanol molecule due to additional 
stabilization (negative ΔGa) when COSMO-RS is used as 
solvent model. If the simpler COSMO model is employed, 
the stabilization effect due to an explicit MeOH is even more 
pronounced, and beneficial for methoxide and all transition 
states (see supporting information, Table S.16). The highest 
stabilization is observed for the transition state of the aldol 

step for both, M06-2x/QZ + COSMO-RS (ΔGa = − 30 kJ/
mol) and M06-2x/QZ + COSMO (ΔGa =  − 58 kJ/mol).

The association of a second methanol molecule is not 
favored, except for zwitterionic intermediate 5 in case of 
COSMO-RS (with both functionals, see supporting informa-
tion, Tables S.17 and S.18) and the TS of the aldol step for 
B3LYP/QZ + COSMO. According to our experience, and 
also shown in the section before, in many cases one explicit 
solvent molecule is enough. The advantage, i.e. slightly bet-
ter stabilization, gained with more explicit solvent molecules 
is easily lost due to other problems, e.g. small (imaginary) 
vibrational frequencies that occur with increasing system 
size and flexibility. Thus, we included only one explicit sol-
vent molecule when necessary.

The second question that arises when employing micro-
solvation is how to actually incorporate the explicitly 
solvated species into the reaction mechanism, i.e. how to 
compute the activation and reaction free energies. There 
is no convergent workflow for this, and we will discuss 

Table 6  Overview of total charge, atoms/functional groups with the 
maximum screening charge density, Gibbs free energy of association 
(ΔGa) of a methanol molecule on the M06-2x/QZ + COSMO-RS and 

B3LYP-D3/QZ + COSMO-RS levels for all reactants, products, inter-
mediate species and transition states of the MBH reaction

All ΔGa values are given in kJ/mol, the unit of the screening charge density is e/Å2.

Species Total charge Atom (functional group) Max. screening 
charge density

ΔGa(M062x) ΔGa(B3LYP) Explicit 
MeOH 
needed

MeOH 0 H (OH)  − 0.015 10 8 No
MeO−  − 1 O-  + 0.031  − 22  − 17 Yes
1 0 O (C=O)  + 0.013 13 10 No
2 0 N (DABCO)  + 0.019 8 3 No
3 0 O-  + 0.020 3 2 No
4 0 O (C=O)  + 0.011 14 11 No
5 0 O-  + 0.025  − 11  − 9 Yes

N (DABCO)  + 0.015 26 20
6 0 O-  + 0.018 2  − 3 No/yes
7 0 H (OH)  − 0.013 16 13 No

O (OH)  + 0.011 16 13
8 1 N (DABCO)  + 0.015 19 19 No

O (C = O)  + 0.011 16 9
9 1 H (OH)  − 0.017 13 6 No

N (DABCO)  + 0.015 47 41
TS 1 + 2 0 O- (C = O)  + 0.018 6 2 No
TS 3 + 4 0 O- (aldehyde)  + 0.019  − 30  − 39 Yes
TS 3 + MeOH 0 O (MeOH)  + 0.023  − 10  − 9 Yes
TS 5 + MeOH 0 O (MeOH shuttle)  + 0.018  − 6  − 5 Yes
TS 9 + MeO− 0 O-  (MeO−)  + 0.019  − 24  − 20 Yes
TS 6 0 N (DABCO)  + 0.017 14 10 No

O- (C=O)  + 0.015 11 − 1 No/yes
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two different approaches. The first one, called approach 1 
in the following, is the simpler and more straightforward 
one. Here, one corrects the free energies of the reactants, 
products, or transition states with the respective Gibbs free 
energy of association for one methanol molecule (ΔGa in 
Table 6) if stabilization is beneficial, i.e. ΔGa is negative. 
The corrected free energies are then used to obtain the 
reaction and activation free energies for a given step. As 
described above, methoxide anion, species 5, species 6, 
and all transition states need this correction. As an exam-
ple, we look at the first two steps of the MBH reaction 
(on the M06-2x/QZ + COSMO-RS level). For the addition 
step, both reactants (1 and 2), the product (3) and the tran-
sition state do not benefit from explicit solvation. Thus, the 
reaction and activation free energies are the same as before 
(ΔG = 56 kJ/mol and ΔG‡ = 65 kJ/mol). For the aldol step 

both reactants (3 and 4) do not need explicit MeOH, but 
the product (5) as well as the transition state do. Thus, 
the Gibbs free energy of 6 is corrected with the associa-
tion Gibbs free energy ΔGa of − 11 kJ/mol and the free 
energy of the transition state corrected by − 30 kJ/mol. 
This way the reaction Gibbs free energy is lowered from 
− 3 to − 14 kJ/mol and the activation Gibbs free energy 
decreases from 60 to 30 kJ/mol. The resulting thermody-
namic cycle for this example is shown in Fig. 5a. Table 7 
summarizes all ΔG and ΔG‡ using approach 1 to include 
microsolvation. 

Approach 2 is slightly less straightforward and aims at 
keeping the number of explicit methanol molecules constant 
for the computation of ΔG/ΔG‡ of a given reaction step. The 
reasoning behind this is the following: As discussed before, 
a perfect solvation model would include all interactions with 

Fig. 5  Exemplary thermodynamic cycles if microsolvation is 
included (for the second step of the MBH reaction with methanol as 
solvent) according to approach 1 (a) or approach 2 (b). ΔGsolv is com-

puted with the COSMO-RS solvation model and ΔG‡
(g)/ΔG(g) with 

quantum chemical methods (includes statistical thermodynamics for 
ideal gas)

Table 7  Activation (ΔG‡) and reaction (ΔG) free energies for each step of the MBH reaction on the computational levels M06-2x/
QZ + MS + COSMO and M06-2x/QZ + MS + COSMO-RS using approach 1 for including microsolvation (MS, one MeOH molecule)

For each species it is indicated if microsolvation was used to correct ΔG‡/ΔG via ΔGa for the association of one MeOH molecule. Experimental 
values were taken from Ref. [58]. All values are given in kJ/mol

Experiment M06-2x/QZ + MS + COSMO M06-2x/QZ + MS + COSMO-RS

ΔG‡ ΔG ΔG‡ ΔG ΔG‡ ΔG

Overall –  − 16 –  − 2 –  − 15
Addition (36–55) 36 1 + 2 → TS(MS) → 3 58 48 1 + 2 → TS → 3 65 56
C-protonation 55  − 5 3 + MeOH → TS(MS) → 8 + MeO−(MS) 36  − 4 3 + MeOH → TS(MS) → 8 + MeO−(MS) 50  − 1
Aldol step 49  − 10 3 + 4 → TS(MS) → 5 18 8 3 + 4 → TS(MS) → 5(MS) 30  − 14
Acid/base 1 – 3 5 + MeOH → TS(MS) → 9 + MeO−(MS) – 3 5(MS) + MeOH → TS(MS) → 9 + MeO−(MS) 7
Acid/base 2 60 5 9 + MeO−(MS) → TS(MS) → 6 + MeOH 51  − 16 9 + MeO−(MS) → TS(MS) → 6(MS) + MeOH 55  − 18
Proton shuttle – – 5→ TS(MS) → 6 54  − 14 5(MS) → TS(MS) → 6 50  − 11
Elimination Unknown  − 50 6 → TS(MS) → 7 + 2 17  − 45 6 → TS → 7 + 2 16  − 46
MAE – 10 – 10
MAX 30 22 18 24
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the solvent molecules and correctly describe the hydrogen 
bond network in solvent like methanol, i.e., the Gibbs free 
energy of association of a methanol molecule in methanol 
as solvent would always be zero. Unfortunately, we do not 
have such a model, and therefore we assume that an explic-
itly solvated reactant, intermediate, or product molecule is 
a valid species even if ΔGa is slightly positive.

As an example, we again look at the aldol addition step 
of the MBH reaction (M06-2x/QZ + COSMO-RS). Both 
reactants do not need explicit solvation but the product and 
the transition state benefit from it. Therefore, reactant 3 is 
also explicitly solvated with one methanol molecule to keep 
the number of hydrogen bonds in the calculation of ΔG‡ 
constant. With this, the reaction Gibbs free energy results in 
− 16 kJ/mol and the activation Gibbs free energy in 28 kJ/
mol. The resulting thermodynamic cycle is shown in Fig. 5b. 
Table 8 summarizes all ΔG and ΔG‡ using approach 2 to 
include microsolvation. A disadvantage of approach 2 is, 
that summing over all reaction free energies of all steps of 
the MBH reaction does not result in the exact same over-
all thermodynamics that was discussed before (computed 
without any explicit MeOH) and the values differ by 1 kJ/
mol for both, M06-2x/QZ + MS + COSMO-RS and M06-2x/
QZ + MS + COSMO, respectively. The advantage is, that a 
general solvent model and solvent dependent offset (see e.g. 
COSMO values for solvent–solvent interaction in Table 1) 
for the addition of the explicit solvent is probably better 
compensated.

The comparison of approaches 1 and 2 shows that for 
all activation and reaction free energies the values differ by 
maximally 8 kJ/mol for both, M06-2x/QZ + MS + COSMO-
RS and M06-2x/QZ + MS + COSMO. The analogous results 
for B3LYP-D3/QZ with both approaches to include micro-
solvation can be found in the supporting information, Tables 
S.10 and S.11.

We will now discuss the results that can be obtained using 
microsolvation (approach 1) with respect to the four points 
as before, i.e., (1) The overall error of activation and reaction 
free energies compared to experiment, (2) the difference in 
barrier heights for the aldol-step and the C-protonation of 
8, (3) the difference in barrier heights for the proton shuttle 
and acid/base mechanisms for conversion from 5 to 6, and 
(4) the overall rate-limiting step. Figure 6 shows the reaction 
profile for the M06-2x/QZ computations with microsolva-
tion (approach 1) combined with COSMO or COSMO-RS 
continuum solvation.

In general, the errors are much lower when microsolva-
tion is included and the agreement with experiment improves 
significantly. As before, M06-2x/QZ is more accurate than 
B3LYP-D3/QZ and we will focus on the M06-2x/QZ results. 
The mean absolute error for ΔG drops from 20 to 10 kJ/mol 
when microsolvation is used together with COSMO, and 
from 18 to 10 kJ/mol when it is used in combination with 
COSMO-RS. The maximal absolute error of ΔG (conversion 
of 9 to 6) decreases from 43 to 22 kJ/mol for MS + COSMO 
and from 46 to 24  kJ/mol for MS + COSMO-RS. The 
improvement for the reaction barriers is less evident. The 

Table 8  Activation (ΔG‡) and reaction (ΔG) free energies for each step of the MBH reaction on the computational levels M06-2x/
QZ + MS + COSMO and M06-2x/QZ + MS + COSMO-RS using approach 2 for including microsolvation (MS, one MeOH molecule)

For each species it is indicated if a microsolvated species was used to compute ΔG‡/ΔG. Experimental values were taken from Ref. [58]. All 
values are given in kJ/mol.

Approach 2 experiment M06-2x/QZ + MS + COSMO M06-2x/QZ + MS + COSMO-RS

ΔG‡ ΔG ΔG‡ ΔG ΔG‡ ΔG

Overall –  − 16 –  − 1 –  − 16
Addition (36–55) 36 1 + 2(MS) → TS(MS);

1 + 2 → 3
49 48 1 + 2 → TS → 3 65 56

C-protonation 55  − 5 3(MS) + MeOH → TS(MS) → 
8 + MeO−(MS)

28  − 13 3(MS) + MeOH → TS(MS) → 
8 + MeO−(MS)

47  − 4

Aldol step 49  − 10 3(MS) + 4 → TS(MS) → 5(MS) 10 8 3(MS) + 4 → TS(MS) → 5(MS) 28  − 16
Acid/base 1 – 3 5(MS) + MeOH → TS(MS) → 

9 + MeO−(MS)
0 5(MS) + MeOH → TS(MS) → 

9 + MeO−(MS)
7

Acid/base 2 60 5 9 + MeO−(MS) → TS(MS) → 
6(MS) + MeOH

51  − 13 9 + MeO−(MS) → TS(MS) → 
6(MS) + MeOH

55  − 16

Proton shuttle – – 5(MS) → TS(MS);
5 → 6

52  − 14 5(MS) → TS(MS) → 6(MS) 50  − 10

Elimination unknown  − 50 6(MS) → TS(MS);
6 → 7 + 2

14  − 45 6 → 7 + 2 16  − 46

MAE – 11 – 10
MAX 38 19 21 22
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maximal error is still found for the barrier of the aldol step, 
which was overestimated without microsolvation and is 
underestimated when including microsolvation. The result-
ing error is 30 kJ/mol and 18 kJ/mol when using micro-
solvation in combination with COSMO and COSMO-RS, 
respectively. The errors for the individual steps are simi-
lar for COSMO and COSMO-RS but when looking at the 
full reaction profile (see Fig. 5), the overall agreement with 
experiment is slightly better when COSMO-RS is used as 
continuum solvation model.

Next, we look at the barriers of the aldol step 3 + 4 
and the C-protonation of 3. When microsolvation is 
employed, the correct order of the two pathways is obtained 
and the aldol step has the lower barrier. For M06-2x/
QZ + MS + COSMO the aldol step has a barrier of 67 kJ/
mol and the C-protonation a barrier of 84 kJ/mol. In case 
of M06-2x/QZ + MS + COSMO-RS the barriers are 86 and 
106 kJ/mol for the aldol step and C-protonation, respectively. 
The differences of 17–20 kJ/mol in both cases are larger than 
in experiment (6 kJ/mol).

Next, we discuss the most critical step in the whole 
MBH reaction when considering the controversy between 
computed and experimental results, the acid–base step for 
the conversion of 5 to 6. Even when using microsolvation 
combined with the COSMO-RS solvation model for both 
density functionals and combined with COSMO for B3LYP, 
the shuttle mechanism is still favored. For M06-2x/QZ the 
proton shuttle and the acid–base step have the same barrier 
(110 kJ/mol) when COSMO is used together with micro-
solvation. Nevertheless, for COSMO-RS the difference is 

significantly decreased, and the shuttle is favored by only 
12 kJ/mol compared to 23 kJ/mol without MS. This clearly 
shows that even a large effort to include solvation effects 
might not be enough and better solvation models are still 
needed. The dissipation of a proton into the methanol solvent 
that somewhere also contains solvated methoxide anions 
is the worst-case scenario for all available static quantum 
chemistry protocols. The methoxide does not necessarily 
have to be very close to the species that is deprotonated as 
the hydrogen bond network can transfer the proton trough 
the methanol. Evidently, these dynamics of the environment 
cannot be captured with static approaches as used in this 
work. One can also argue that due to the hydrogen bond 
network of the solvent the acid/base mechanism is basically 
like a proton shuttle, concerted but not synchronous. The 
more explicit methanol molecules are added to our static 
calculation, the more freedom the system has, or the other 
way around, if fewer explicit MeOH are used, the system 
is forced to a more specific transition state. This effect can 
already be seen when one compares the transition state 
geometries for the deprotonation of 9 and the shuttle from 5 
to 6 with different amounts of explicit methanol molecules 
(see Fig. 7). Already with one explicit MeOH the bond 
length equalizes dramatically and with two explicit MeOH 
the transition states for proton shuttle and deprotonation are 
indistinguishable after the conformational sampling and 
picking the energetically lowest conformer.

Finally, the rate limiting step of the MBH reaction is 
correctly identified when microsolvation is included. The 
experimental barrier for the deprotonation of cationic 

Fig. 6  Experimental and computed free energies for the MBH reaction on the M06-2x/QZ level with microsolvation approach 1 (MS, one 
MeOH molecule) combined with the COSMO and COSMO-RS continuum solvation models. Experimental values are taken from Ref. [58]
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intermediate 9 by  MeO− to yield 6 is 89 kJ/mol. M06-2x/
QZ + MS + COSMO yields a barrier of 110 kJ/mol for the 
proton shuttle and the acid base mechanism and M06-2x/
QZ + MS + COSMO-RS provides a barrier of 92 kJ/mol 
for the shuttle and 104 kJ/mol for the acid–base mecha-
nism. Without microsolvation the aldol step was iden-
tified as rate limiting step. Here, the barriers of the con-
version of 5 to 6 are 43 and 6–18 kJ/mol higher than the 
aldol step, for M06-2x/QZ + MS + COSMO and M06-2x/
QZ + MS + COSMO-RS, respectively. Again, the differences 
are larger than in experiment (4 kJ/mol) for COSMO but 
similar for COMO-RS.

Compared to previous computational studies, our 
approach has a similar accuracy with respect to the experi-
mental results. With their approach based on DLPNO-
CCSD(T) energies and molecular dynamics to include 
microsolvation Harvey, Sunoj and coworkers obtained abso-
lute errors in the relative Gibbs free energy (relative to the 
initial reactants) in the range of 3–20 kJ/mol and an MAD 
of 6 kJ/mol [81]. The paramedic approach of Basdogan and 
Keith to include microsolvation in a static way in combi-
nation with DLPNO-CCSD(T)/TZ energies yields absolute 
relative errors in the range of 4–16 kJ/mol and an MAD 
of 10 kJ/mol [38]. With our approach based on M06-2x/
QZ energies and a much simpler static approach to include 

microsolvation in combination with the COSMO-RS solva-
tion model absolute relative errors in the range of 1–20 kJ/
mol and an MAD of 13 kJ/mol were obtained. Overall, our 
approach tends to overestimate the relative free energies and 
the approach of Basdogan and Keith tends to underestimate 
them. A comparison of the reaction profiles is provided in 
the supporting information in Figure S.4.

In the end, we want to briefly discuss a problem that can 
occur when using microsolvation and which concerns the 
entropy. Small vibrational frequencies appear more often 
when the system size increases and when flexible non-
covalent interactions are formed due to explicit solvent 
molecules. Low-lying vibrational frequencies are inaccurate 
in the harmonic approximation and numerical noise eas-
ily enters in the computations, especially when structural 
optimizations are performed with the COSMO solvation 
model, causing further errors. Thus, the error of the result-
ing entropy can be severe. To remedy this problem, Grimme 
introduced an approach that replaces the vibrational entropy 
of the low-lying modes below a certain threshold by the 
entropy of a rigid-rotor [84]. However, it was checked that 
when using this approach with a threshold of 100 cm−1, the 
resulting reaction and activation free energies within the 
above mechanism change by only 1–3 kJ/mol. Even when 
one MeOH is explicitly included the systems are obviously 

Fig. 7  Geometries of the transi-
tion states for the proton shuttle 
and the acid/base reactions 
without, with one, and with two 
explicit MeOH molecules
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still quite small and thus, the effect on the entropy is negli-
gible. For larger systems this might not be the case and the 
effect of small vibrational modes on the entropy has to be 
investigated carefully.

Conclusion

Whenever a chemist writes down a reaction scheme, it 
seems that there is a clear distinction between reactants 
and reaction conditions. However, when the reaction has to 
be translated into molecular models for quantum chemical 
studies, often the problem emerges how to most adequately 
mimic molecular reality. The fact that, e.g., reagents or an 
acid catalyst “on top of the arrow” require explicit con-
sideration in the molecular model is rather clear, but the 
solvent and/or environment as a sometimes equally crucial 
factor remains often neglected. Microsolvation represents 
one approach to tackle this problem. Our results clearly 
show that a systematic protocol when and how to apply 
it leads to improved results for cases where the limits of 
state-of-the-art solvation models are reached. Specifi-
cally, for the COSMO and COSMO-RS solvation mod-
els considered in this study, microsolvation is practically 
unnecessary for many neutral molecules but can become 
crucial when the solute is an ion or zwitterion with either 
little charge delocalization or a high overall charge (larger 
than ± 1). The proposed criterion to apply microsolvation 
whenever a (good) solvation model thermodynamically 
prefers the association of a solvent (∆Ga < 0 for the quasi-
reaction between solute and solvent) at interactions sites 
with high screening charge densities appears reasonable 
for the two presented use-cases, aqueous acid–base chem-
istry and the mechanism of the DABCO and methanol 
catalyzed Morita–Baylis–Hillman reaction. In these exam-
ples, microsolvation was able to reduce errors for the worst 
described species by a factor of more than two.

It should, however, be noted that microsolvation does 
not represent a simple and generally applicable solution 
to cases wherever solvation models reach their limits. One 
problem is that when a solvent molecule is added to a sys-
tem, association entropies of around 100 J/mol/K for the 
interaction between solute and solvent (resulting in Gibbs 
free energy contributions of around 30 kJ/mol) are encoun-
tered suddenly. This is in contrast to real systems where the 
interaction between a solute and its environment increases 
gradually. Furthermore, as mentioned above, the general cal-
culation of molecular entropies accumulates more and more 
noise when computational models become larger and larger.

Thus, further advances in solvation models would be 
highly desirable, so that microsolvation really represents an 
ultimate resort but which can be avoided as much as possi-
ble. The presented criterion that solvent–solvent interactions 

should exhibit a ∆Ga as close to zero as possible could be 
one ingredient on the way towards more consistent solvation 
models that yield reliable results for systems where micro-
solvation is sometimes required and sometimes not.
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