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Abstract
The prediction of acid dissociation constants (pKa) is a prerequisite for predicting many other properties of a small molecule, 
such as its protein–ligand binding affinity, distribution coefficient (log D), membrane permeability, and solubility. The pre-
diction of each of these properties requires knowledge of the relevant protonation states and solution free energy penalties 
of each state. The SAMPL6 pKa Challenge was the first time that a separate challenge was conducted for evaluating pKa 
predictions as part of the Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) exercises. This challenge was 
motivated by significant inaccuracies observed in prior physical property prediction challenges, such as the SAMPL5 log D 
Challenge, caused by protonation state and pKa prediction issues. The goal of the pKa challenge was to assess the performance 
of contemporary pKa prediction methods for drug-like molecules. The challenge set was composed of 24 small molecules 
that resembled fragments of kinase inhibitors, a number of which were multiprotic. Eleven research groups contributed 
blind predictions for a total of 37 pKa distinct prediction methods. In addition to blinded submissions, four widely used pKa 
prediction methods were included in the analysis as reference methods. Collecting both microscopic and macroscopic pKa 
predictions allowed in-depth evaluation of pKa prediction performance. This article highlights deficiencies of typical pKa 
prediction evaluation approaches when the distinction between microscopic and macroscopic pKas is ignored; in particular, 
we suggest more stringent evaluation criteria for microscopic and macroscopic pKa predictions guided by the available 
experimental data. Top-performing submissions for macroscopic pKa predictions achieved RMSE of 0.7–1.0 pKa units and 
included both quantum chemical and empirical approaches, where the total number of extra or missing macroscopic pKas 
predicted by these submissions were fewer than 8 for 24 molecules. A large number of submissions had RMSE spanning 
1–3 pKa units. Molecules with sulfur-containing heterocycles or iodo and bromo groups were less accurately predicted on 
average considering all methods evaluated. For a subset of molecules, we utilized experimentally-determined microstates 
based on NMR to evaluate the dominant tautomer predictions for each macroscopic state. Prediction of dominant tautomers 
was a major source of error for microscopic pKa predictions, especially errors in charged tautomers. The degree of inac-
curacy in pKa predictions observed in this challenge is detrimental to the protein-ligand binding affinity predictions due to 
errors in dominant protonation state predictions and the calculation of free energy corrections for multiple protonation states. 
Underestimation of ligand pKa by 1 unit can lead to errors in binding free energy errors up to 1.2 kcal/mol. The SAMPL6 pKa 
Challenge demonstrated the need for improving pKa prediction methods for drug-like molecules, especially for challenging 
moieties and multiprotic molecules.

Keywords SAMPL · Blind prediction challenge · Acid dissociation constant · pKa · Small molecule · Macroscopic pKa · 
Microscopic pKa · Macroscopic protonation state · Microscopic protonation state

Abbreviations
SAMPL  Statistical Assessment of the Modeling of Pro-

teins and Ligands
pKa  − log10 of the acid dissociation equilibrium 

constant
log P  log10 of the organic solvent-water partition coef-

ficient ( Kow ) of neutral species

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s1082 2-020-00362 -6) contains 
supplementary material, which is available to authorized users.

 * Mehtap Işık 
 mehtap.isik.000@gmail.com

Extended author information available on the last page of the article

http://orcid.org/0000-0002-6789-952X
http://orcid.org/0000-0002-3422-0613
http://orcid.org/0000-0001-7693-2013
http://orcid.org/0000-0003-1120-5776
http://orcid.org/0000-0002-1083-5533
http://orcid.org/0000-0003-0542-119X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10822-020-00362-6&domain=pdf
https://doi.org/10.1007/s10822-020-00362-6


132 Journal of Computer-Aided Molecular Design (2021) 35:131–166

1 3

log D  log10 of organic solvent-water distribution coef-
ficient ( Dow)

SEM  Standard error of the mean
RMSE  Root mean squared error
MAE  Mean absolute error
�  Kendall’s rank correlation coefficient (Tau)
R2  Coefficient of determination (R-Squared)
MPSC  Multiple protonation states correction for bind-

ing free energy
DL  Database lookup
LFER  Linear free energy relationship
QSPR  Quantitative structure–property relationship
ML  Machine learning
QM  Quantum mechanics
LEC  Linear empirical correction

Introduction

The acid dissociation constant (Ka) describes the protonation 
state equilibrium of a molecule given pH. More commonly, 
we refer to pKa = − log10 Ka , its negative logarithmic form. 
Predicting pKa is a prerequisite for predicting many other 
properties of small molecules such as their protein binding 
affinity, distribution coefficient (log D), membrane permea-
bility, and solubility. As a major aim of computer-aided drug 
design (CADD) is to aid in the assessment of pharmaceutical 
and physicochemical properties of virtual molecules prior to 
synthesis to guide decision-making, accurate computational 
pKa predictions are required in order to accurately model 
numerous properties of interest to drug discovery programs.

Ionizable sites are found often in drug molecules and 
influence their pharmaceutical properties including target 
affinity, ADME/Tox, and formulation properties [1]. It has 
been reported that most drugs are ionized in the range of 
60–90% at physiological pH [2]. Drug molecules with titrat-
able groups can exist in many different charge and protona-
tion states based on the pH of the environment. Given that 
experimental data of protonation states and pKa are often 
not available, we rely on predicted pKa values to determine 
which charge and protonation states the molecules populate 
and the relative populations of these states, so that we can 
assign the appropriate dominant protonation state(s) in fixed-
state calculations or the appropriate solvent state weights/
protonation penalty to calculations considering multiple 
states.

The pH of the human gut ranges between 1 and 8, and 
74% of approved drugs can change ionization state within 
this physiological pH range [3]. Because of this, pKa values 
of drug molecules provide essential information about their 
physicochemical and pharmaceutical properties. A wide dis-
tribution of acidic and basic pKa values, ranging from 0 to 
12, have been observed in approved drugs [1, 3].

Drug-like molecules present difficulties for pKa predic-
tion compared with simple monoprotic molecules. Drug-like 
molecules are frequently multiprotic, have large conjugated 
systems, often contain heterocycles, and can tautomerize. 
In addition, drug-like molecules with significant conforma-
tional flexibility can form intramolecular hydrogen bonding, 
so that conformational changes can significantly shift their 
pKa values. This presents further challenges for modeling 
methods, where deficiencies in solvation models may mis-
predict the propensity for intramolecular hydrogen bond 
formation.

Predicting pKa s of drug-like molecules accurately is a 
prerequisite for computational drug discovery and design. 
Small molecule pKa predictions can influence computational 
protein–ligand binding affinities in multiple ways. Errors in 
pKa predictions can cause modeling the wrong charge and 
tautomerization states which affect the ligand hydrogen 
bonding opportunities and charge distribution. The dominant 
protonation state and relative populations of minor states in 
aqueous medium is dictated by the molecule’s pKa values. 
The relative free energy of different protonation states in 
the aqueous state is a function of pH, and contributes to the 
overall protein–ligand affinity in the form of a free energy 
penalty for populating higher energy protonation states [4]. 
Any error in predicting the free energy of a minor aque-
ous protonation state of a ligand that dominates the com-
plex binding free energy will directly add to the error in the 
predicted binding free energy, and selecting the incorrect 
dominant protonation state altogether can lead to even larger 
modeling errors. Similarly for log D predictions, an inaccu-
rate prediction of protonation states and their relative free 
energies will be detrimental to the accuracy of transfer free 
energy predictions.

For a monoprotic weak acid (HA) or base (B)—whose 
dissociation equilibria are shown in Eq. 1—the acid disso-
ciation constant is expressed as in Eq. 2, or, commonly, in 
its negative base-10 logarithmic form as in Eq. 3. The ratio 
of ionization states can be calculated with Henderson–Has-
selbalch equations shown in Eq. 4.

For multiprotic molecules, the definition of pKa diverges into 
macroscopic pKa and microscopic pKa [5–7]. Macroscopic 
pKa describes the equilibrium dissociation constant between 

(1)HA ⇌ A− + H+; BH+
⇌ B + H+

(2)Ka =
[A−][H+]

[HA]
; Ka =

[B][H+]

[B+]

(3)pKa = − log10 Ka

(4)pH = pKa + log10
[A−]

[HA]
; pH = pKa + log10

[B]

[BH+]
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different charged states of the molecule. Each charge state 
can be composed of multiple tautomers. Macroscopic pKa 
thus determines the deprotonation of the molecule, rather 
than the location of the titratable group. A microscopic pKa 
describes the acid dissociation equilibrium between individ-
ual tautomeric states of different charges. (There is no pKa 
defined between tautomers of the same charge as they have 
the same number of protons and their relative populations 
are independent of pH.) The microscopic pKa determines 
the identity and population distribution of tautomers within 
each charge state. Thus, each macroscopic charge state of a 
molecule can be composed of multiple microscopic tauto-
meric states. The microscopic pKa value defined between 
two microstates captures the deprotonation of a single titrat-
able group with other titratable groups held in a fixed back-
ground protonation state. In molecules with multiple titrat-
able groups, the protonation state of one group can affect the 
proton dissociation propensity of another functional group, 
therefore the same titratable group may have different proton 
affinities (microscopic pKa values) based on the protonation 
state of the rest of the molecule.

Different experimental methods are sensitive to changes in 
the total charge or the location of individual protons, so they 
measure different definitions of pKa s, as explained in more 
detail in prior work [8]. Most common pKa measurement tech-
niques such as potentiometric and spectrophotometric methods 
measure macroscopic pKa s, while NMR measurements can 
determine microscopic pKa s by measuring microstate (tau-
tomer) populations with respect to pH. Therefore, it is impor-
tant to pay attention to the source and definition of pKa values 
in order to correctly interpret their meaning.

Many computational methods can predict both microscopic 
and macroscopic pKa s. While experimental measurements 
more often provide only macroscopic pKa s, microscopic pKa 
predictions are more informative for determining relevant 
microstates (microscopic protonation states and tautomers) of 
a molecule and their relative free energies. Predicted micro-
state populations can be converted to predicted macroscopic 
pKa s for direct comparison with experimentally obtained mac-
roscopic pKa s. In this paper, we explore approaches to assess 
the performance of both macroscopic and microscopic pKa 
predictions, taking advantage of available experimental data.

Microscopic pKa predictions can be converted to macro-
scopic pKa predictions either directly with Eq. 5 [9],

or through computing the macroscopic free energy of depro-
tonation between ionization states with charges N and N − 1 
via Boltzmann-weighted sum of the relative free energy of 
microstates ( Gi ) as in Eqs. 6 and 7 [10].

(5)Kmacro
a

=

Ndeprot
�

j=1

1
∑Nprot

i=1

1

Kmicro
ij

,

In Eq. 6 ΔGN−1,N is the effective macroscopic protonation 
free energy. �Ni,N−1

 is equal to unity when the microstate i has 
a total charge of N − 1 and zero otherwise. RT is the ideal 
gas constant times the absolute temperature.

Motivation for a blind pKa challenge

SAMPL (Statistical Assessment of the Modeling of Proteins 
and Ligands) is a series of annual computational predic-
tion challenges for the computational chemistry community. 
The goal of the SAMPL community is to evaluate the cur-
rent performance of computational models and to bring the 
attention of the quantitative biomolecular modeling field on 
problems that limit the accuracy of protein–ligand binding 
models. SAMPL Challenges aim to help computer-aided 
drug discovery make sustained progress toward higher accu-
racy by focusing the community on one isolated accuracy-
limiting problem at a time. By conducting a series of blind 
challenges—which often feature the computation of specific 
physical properties critical for protein–ligand modeling—
and encouraging rapid sharing of lessons learned, SAMPL 
aims to accelerate progress toward quantitative accuracy in 
modeling.

SAMPL Challenges that focus on physical properties 
have assessed intermolecular binding models of various pro-
tein–ligand and host–guest systems, as well as the prediction 
of hydration free energies and distribution coefficients to 
date. These blind challenges motivate improvements in com-
putational methods by revealing unexpected sources of error, 
identifying features of methods that perform well or poorly, 
and enabling the participants to share information after each 
successive challenge. Previous SAMPL Challenges have 
focused on the limitations of force field accuracy, finite sam-
pling, solvation modeling defects, and tautomer/protonation 
state predictions on protein–ligand binding predictions.

During the SAMPL5 log D Challenge, the performance 
of models in predicting cyclohexane-water log D was worse 
than expected—accuracy suffered when protonation states 
and tautomers were not taken into account [11, 12]. Many 
participants simply submitted log P predictions as if they 
were equivalent to log D, and many were not prepared to 
account for the contributions of different ionization states to 
the distribution coefficient in their models. Challenge results 
highlighted that log P predictions were not an accurate 
approximation of log D without capturing protonation state 
effects. The calculations were improved by including the free 

(6)ΔGN−1,N = RT ln

∑

i e
−Gi∕RT�Ni,N−1

∑

i e
−Gi∕RT�Ni,N

(7)pKa = pH −
ΔGN−1,N

RT ln 10
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energy penalty of the neutral state which relies on obtaining 
an accurate pKa prediction [11]. With the goal of deconvo-
luting the different sources of error contributing to the large 
errors observed in the SAMPL5 log D Challenge, we organ-
ized separate pKa and log P challenges in SAMPL6 [8, 13, 
14]. For this iteration of the SAMPL challenge, we isolated 
the problem of predicting aqueous protonation states and 
associated pKa values.

This is the first time a blind pKa prediction challenge has 
been fielded as part of SAMPL. In this challenge, we aimed 
to assess the performance of current pKa prediction methods 
for drug-like molecules, investigate potential causes of inac-
curate pKa estimates, and determine how the current level of 
accuracy of these models might impact the ability to make 
quantitative predictions of protein–ligand binding affinities.

Approaches to predict small molecule pKas

There are a large variety of pKa prediction methods devel-
oped for the prediction of aqueous pKa s of small molecules. 
Broadly, we can divide pKa predictions as knowledge-
based empirical methods and physical methods. Empiri-
cal methods include the following categories: Database 
Lookup (DL)   [15], Linear Free Energy Relationship 
(LFER)  [16–18], Quantitative Structure-Property Rela-
tionship (QSPR)  [19–22], and Machine Learning (ML) 
approaches [23, 24]. DL methods rely on the principle that 
structurally similar compounds have similar pKa values and 
utilize an experimental database of complete structures or 
fragments. The pKa value of the most similar database entry 
is reported as the predicted pKa of the query molecule. In 
the QSPR approach, the pKa values are predicted as a func-
tion of various quantitative molecular descriptors, and the 
parameters of the function are trained on experimental data-
sets. A function in the form of multiple linear regression is 
common, although more complex forms can also be used 
such as the artificial neural networks in ML methods. The 
LFER approach is the oldest pKa prediction strategy. They 
use Hammett–Taft type equations to predict pKa based on 
classification of the molecule to a parent class (associated 
with a base pKa value) and two parameters that describe how 
the base pKa value must be modified given its substituents. 
Physical modeling of pKa predictions requires Quantum 
Mechanics (QM) models. QM methods are often utilized 
together with linear empirical corrections (LEC) that are 
designed to rescale and unbias QM predictions for better 
accuracy. Classical molecular mechanics-based pKa predic-
tion methods are not feasible as deprotonation is a cova-
lent bond breaking event that can only be captured by QM. 
Constant-pH molecular dynamics methods can calculate 
pKa shifts of multiple titratable groups in large biomolecu-
lar systems where there is low degree of coupling between 
protonation sites and linear summation of protonation 

energies (initially determined in a reference solvent) can be 
assumed [25]. However, this approach can not generally be 
applied to small organic molecule due to the high degree of 
coupling between protonation sites [26–28].

Methods

Design and logistics of the SAMPL6 pKa Challenge

The SAMPL6 pKa Challenge was conducted as a blind pre-
diction challenge and focused on predicting aqueous pKa 
values of 24 small molecules not previously reported in the 
literature. The challenge set was composed of molecules 
that resemble fragments of kinase inhibitors. Heterocycles 
that are frequently found in FDA-approved kinase inhibitors 
were represented in this set. The compound selection process 
was described in depth in the prior publication reporting 
SAMPL6 pKa Challenge experimental data collection [8]. 
The distribution of molecular weights, experimental pKa 
values, number of rotatable bonds, and heteroatom to car-
bon ratio are depicted in Fig. 1. The challenge molecule set 
was composed of 17 small molecules with limited flexibility 
(less than 5 non-terminal rotatable bonds) and 7 molecules 
with 5–10 non-terminal rotatable bonds. The distribution 
of experimental pKa values was roughly uniform between 2 
and 12. 2D representations of all compounds are provided 
in Fig. 5. Drug-like molecules are often larger and more 
complex than the ones used in this study. We limited the size 
and the number of rotatable bonds of compounds to create 
molecule set of intermediate difficulty.

The dataset composition and experimental details—with-
out the identity of the small molecules—were announced 
approximately one month before the challenge start date. 
Experimental macroscopic pKa measurements were col-
lected using a spectrophotometric method with the Sirius T3 
(Sirius Analytical), at room temperature, in ionic strength-
adjusted water with 0.15 M KCl [8]. The instructions for 
participation and the identity of the challenge molecules 
were released on the challenge start date (October 25, 2017). 
A table of molecule IDs (in the form of SM##) and their 
canonical isomeric SMILES, defining individual protonation 
and tautomer states, was provided as input. Blind prediction 
submissions were accepted until January 22, 2018.

Following the conclusion of the blind challenge, the 
experimental data was made public on January 23, 2018. 
The SAMPL organizers and participants gathered at the 
Second Joint D3R/SAMPL Workshop at UC San Diego, La 
Jolla, CA on February 22–23, 2018 to share results. The 
workshop aimed to create an opportunity for participants 
to discuss the results, evaluate methodological choices by 
comparing the performance of different methods, and share 
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lessons learned from the challenge. Participants reported 
their results and their own evaluations in a special issue of 
the Journal of Computer-Aided Molecular Design [29].

While designing this first pKa prediction challenge, we 
did not know the optimal format to capture pKa predic-
tions of participants. We wanted to capture all necessary 
information needed to evaluate the submitted pKa predic-
tions. Our strategy was to directly evaluate macroscopic pKa 
predictions comparing them to experimental macroscopic 
pKa values and to use collected microscopic pKa prediction 
data for more in-depth diagnostics of method performance. 
Therefore, we asked participants to submit their predictions 
in three different submission types:

• Type I: microscopic pKa values and related microstate 
pairs

• Type II: fractional microstate populations as a function 
of pH in 0.1 pH increments

• Type III: macroscopic pKa values

For each submission type, a machine-readable submission 
file template was specified. For type I submissions, partici-
pants were asked to report the microstate ID of the pro-
tonated state, the microstate ID of deprotonated state, the 
microscopic pKa , and the predicted microscopic pKa stand-
ard error of the mean (SEM). The method of microstate 
enumeration and why it was needed are discussed further in 
Sect. 2.2 “Enumeration of Microstates”. The SEM aims to 
capture the statistical uncertainty of the prediction method. 
Microstate IDs were preassigned identifiers for each micro-
state in the form of SM##_micro###. For type II submis-
sions, the submission format included a table that started 
with a microstate ID column and a set of columns reporting 
the natural logarithm of fractional microstate population 
values of each predicted microstate for 0.1 pH increments 
between pH 2 and 12. For type III submissions participants 
were asked to report molecule ID, macroscopic pKa , and 
macroscopic pKa SEM.

We required participants to submit predictions for all 
fields for each prediction, but it was not mandatory to sub-
mit predictions for all the molecules or all three submission 

Fig. 1  Distribution of molecular properties of the 24 compounds 
from the SAMPL6 pK

a
 Challenge. b Histogram of spectrophotomet-

ric pK
a
 measurements collected with Sirius T3  [8]. The overlaid rug 

plot indicates the actual values. Five compounds have multiple meas-
ured pK

a
 s in the range of 2–12. b Histogram of molecular weights 

calculated for the neutral state of the compounds in the SAMPL6 set. 

Molecular weights were calculated by neglecting counterions. c His-
togram of the number of non-terminal rotatable bonds in each mol-
ecule. d The histogram of the ratio of heteroatom (non-carbon heavy 
atoms including, O, N, F, S, Cl, Br, I) count to the number of carbon 
atoms
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types. Although we accepted submissions with partial sets 
of molecules, it would have been a better choice to require 
predictions for all the molecules for a better comparison 
of overall method performance. The submission files also 
included fields for naming the method, listing the software 
utilized, and a free text section to describe the methodology 
used in detail.

Participants were allowed to submit predictions for 
multiple methods as long as they created separate submis-
sion files. While anonymous participation was allowed, all 
participants opted to make their submissions public. Blind 
submissions were assigned a unique 5-digit alphanumeric 
submission ID, which will be used throughout this paper. 
Unique IDs were also assigned when multiple submissions 
exist for different submissions types of the same method 
such as microscopic pKa (type I) and macroscopic pKa 
(type III). These submission IDs were also reported in the 
evaluation papers of participants to allow cross-referencing. 
Submission IDs, participant-provided method names, and 
method categories are presented in Table 1. In many cases, 
multiple types of submissions (type I, II, and III) of the same 
method were provided by participants as challenge instruc-
tions requested. Although each prediction set was assigned 
a separate submission ID, we matched the submissions that 
originated from the same method according to the reports of 
the participants for cases where multiple sets of predictions 
came from a given method. Submission IDs for both mac-
roscopic (type III) and microscopic (type I) pKa predictions 
for each method are shown in Table 1.

Enumeration of microstates

To capture both the pKa value and titrating proton position 
for microscopic pKa predictions, we needed microscopic pKa 
values to be reported together with a pair of microstates 
which describe the protonated and deprotonated states cor-
responding to each microscopic transition. String representa-
tions of molecules such as canonical SMILES with explicit 
hydrogens can be written, however, there can be inconsisten-
cies between the interpretation of canonical SMILES written 
by different software and algorithms. To avoid complica-
tions while reading microstate structure files from different 
sources, we decided that the safest route was pre-enumerat-
ing all possible microstates of challenge compounds, assign-
ing microstate IDs to each in the form of SM##_micro###, 
and requiring participants to report microscopic pKa values 
along with microstate pairs specified by the provided micro-
states IDs.

We created initial sets of microstates with Schrödinger 
Epik [30] and OpenEye QUACPAC [31] and took the union 
of results. Microstates with Epik were generated using 
Schrödinger Suite v2016-4, running Epik to enumerate all 
tautomers within 20 pKa units of pH 7. For enumerating 

microstates with OpenEye QUACPAC, we had to first enu-
merate formal charges and for each charge enumerate all 
possible tautomers using the settings of maximum tautomer 
count 200, level 5, with carbonyl hybridization set to False. 
Then we created a union of all enumerated states written 
as canonical isomeric SMILES generated by OpenEye 
OEChem [32]. Even though resonance structures corre-
spond to different canonical isomeric SMILES, they are not 
different microstates, therefore it was necessary to remove 
resonance structures that were replicates of the same tau-
tomer. To detect equivalent resonance structures, we con-
verted canonical isomeric SMILES to InChI hashes with 
explicit and fixed hydrogen layer. Structures that describe 
the same tautomer but different resonance states lead to 
explicit hydrogen InChI hashes that are identical, allowing 
replicates to be removed. The Jupyter Notebook used for the 
enumeration of microstates is provided in Supplementary 
Information.

We provided microstate ID tables with canonical SMILES 
and 2D depictions to aid participants in matching predicted 
structures to microstate IDs. A canonical SMILES repre-
sentation was selected over canonical isomeric SMILES, 
because resonance and geometric isomerism do not lead to 
different microstates according to our working microstate 
definition. The only exception was for molecule SM20, 
which should be consistently modeled as the E-isomer.

Despite combining enumerated charge states and tautom-
ers generated by both Epik and OpenEye QUACPAC, to our 
surprise, the microstate lists were still incomplete. During 
the course of the SAMPL6 Challenge, participants identified 
new microstates that were not present in the initial list that 
we provided. Based on participant requests for new micro-
states, we iteratively had to update the list of microstates 
and assign new microstate IDs. Every time we received a 
request, we shared the updated microstate ID lists with all 
challenge participants. Some participants updated their pKa 
prediction by including the newly added microstates in their 
calculations. In the future, developing a better algorithm that 
can enumerate all possible microstates (not just the ones 
with significant populations) would be very beneficial for 
anticipating microstates that may be predicted by pKa pre-
diction methods.

A microscopic pKa definition was provided in challenge 
instructions for clarity as follows: Physically meaningful 
microscopic pKa s are defined between microstate pairs that 
can interconvert by single protonation/deprotonation event 
of only one titrable group. So, microstate pairs should have 
total charge (absolute) difference of 1 and only one heavy 
atom that differs in the number of associated hydrogens, 
regardless of resonance state or geometric isomerism. All 
geometric isomer and resonance structure pairs that have 
the same number of hydrogens bound to equivalent heavy 
atoms are grouped into the same microstate where they can 
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Table 1  Submission IDs, names, category, and type for all the pK
a
 prediction sets

Method category Method Microscopic pK
a
 

(Type I) Submission 
ID

Macroscopic pK
a
 (Type 

III) Submission ID
Submission Type Ref.

DL Substructure matches to experimental data in pKa Open-
Eye pKa Prospector Database v1.0

5nm4j Null [36]

DL OpenEye pKa-Prospector 1.0.0.3 with Analog Search ion 
identification algorithm

pwn3m Null [36]

LFER ACD/pKa GALAS (ACD/Percepta Kernel v1.6) v8qph 37xm8 Blind [37]
LFER ACD/pKa Classic (ACD/Percepta Kernel, v1.6) xmyhm Blind [38]
LFER Epik Scan (Schrödinger v2017-4) nb007 Reference [30]
LFER Epik Microscopic (Schrödinger v2017-4) nb008 nb010 Reference [30]
QSPR/ML OpenEye Gaussian Process 6tvf8 hytjn Blind [12]
QSPR/ML OpenEye Gaussian Process Resampled q3pfp Blind [12]
QSPR/ML S+pKa (ADMET Predictor v8.5, Simulations Plus) hdiyq gyuhx Blind [24]
QSPR/ML Chemicalize v18.23 (ChemAxon MarvinSketch v18.23) nb015 Reference [39]
QSPR/ML MoKa v3.1.3 nb016 nb017 Reference [22, 40]
QM Adiabatic scheme with single point correction: SMD/

M06-2X//6-311++G(d,p)//M06-2X/6-31+G(d) for 
bases and SMD/M06-2X//6-311++G(d,p)//M06-2X/6-
31G(d) for acids + thermal corrections

ko8yx ryzue Blind [41]

QM Direct scheme with single point correction: SMD/M06-
2X//6-311++G(d,p)//M06-2X/6-31+G(d) for bases and 
SMD/M06-2X//6-311++G(d,p)//M06-2X/6-31G(d) for 
acids + thermal corrections

w4z0e xikp8 Blind [41]

QM Adiabatic scheme: thermodynamic cycle that uses gas 
phase optimized structures for gas phase free energy 
and solution phase geometries for solvent phase free 
energy. SMD/M06-2X/6-31+G(d) for bases and SMD/
M06-2X/6-31G(d) for acids + thermal corrections

wcvnu 5byn6 Blind [41]

QM Vertical scheme: thermodynamic cycle that uses only gas 
phase optimized structures to compute gas hase and 
solvation free energy. SMD/M06-2X/6-31+G(d) for 
bases and SMD/M06-2X/6-31G(d) for acids + Thermal 
corrections

arcko w4iyd Blind [41]

QM Direct scheme: solution phase free energy is determined 
by solution phase geometries without thermodynamic 
cycle SMD/M06-2X/6-31+G(d) for bases and SMD/
M06-2X/6-31G(d) for acids + thermal corrections

wexjs y75vj Blind [41]

QM + LEC Jaguar (Schrödinger v2017-4) nb011 nb013 Reference [42]
QM + LEC CPCM/B3LYP/6-311+G(d,p) and global fitting y4wws 35bdm Blind [10]
QM + LEC CPCM/B3LYP/6-311+G(d,p) and separate fitting for 

neutral to negative and for positive to neutral transfor-
mations

qsicn p0jba Blind [10]

QM + LEC EC-RISM/MP2/6-311+G(d,p)-P3NI-q-noThiols-2par kxztt ds62k Blind [43]
QM + LEC EC-RISM/MP2/cc-pVTZ-P2-q-noThiols-2par ftc8w 2ii2g Blind [43]
QM + LEC EC-RISM/MP2/6-311+G(d,p)-P2-phi-all-2par ktpj5 nb001 Blind* [43]
QM + LEC EC-RISM/MP2/6-311+G(d,p)-P2-phi-noThiols-2par wuuvc nb002 Blind* [43]
QM + LEC EC-RISM/MP2/6-311+G(d,p)-P3NI-phi-all-2par 2umai nb003 Blind* [43]
QM + LEC EC-RISM/MP2/6-311+G(d,p)-P3NI-phi-noThiols-2par cm2yq nb004 Blind* [43]
QM + LEC EC-RISM/MP2/6-311+G(d,p)-P2-phi-all-1par z7fhp nb005 Blind* [43]
QM + LEC EC-RISM/MP2/6-311+G(d,p)-P3NI-phi-all-1par 8toyp nb006 Blind* [43]
QM + LEC EC-RISM/MP2/cc-pVTZ-P2-phi-noThiols-2par epvmk ttjd0 Blind [43]
QM + LEC EC-RISM/MP2/cc-pVTZ-P2-phi-all-2par xnoe0 mkhqa Blind [43]
QM + LEC EC-RISM/MP2/cc-pVTZ-P3NI-phi-noThiols-2par 4o0ia mpwiy Blind [43]
QM + LEC EC-RISM/B3LYP/6-311+G(d,p)-P3NI-q-noThiols-2par nxaaw ad5pu Blind [43]
QM + LEC EC-RISM/B3LYP/6-311+G(d,p)-P3NI-phi-noThiols-2par 0xi4b f0gew Blind [43]
QM + LEC EC-RISM/B3LYP/6-311+G(d,p)-P2-phi-noThiols-2par cywyk np6b4 Blind [43]
QM + LEC PCM/B3LYP/6-311+G(d,p) gdqeg yc70m Blind [43]
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influence the microscopic  pKa. Pairs of resonance structures 
and geometric isomers (cis/trans, stereo) are not considered 
as different microstates, as long as there is no change in the 
number of hydrogens bound to each heavy atom. Transitions 
where there are shifts in the position of protons coupled to 
changes in the number of protons were also not considered 
as microscopic pKa  values [26]. Since we wanted partici-
pants to report only microscopic pKa s that describe single 
deprotonation events (in contrast to transitions between 
microstates that are different in terms of two or more titrat-
able protons), we have also provided a pre-enumerated list 
of allowed microstate pairs.

Provided microstate ID and microstate pair lists were 
intended to be used for reporting microstates to aid parsing 
of submissions. The enumerated lists of microstates were 
not created with the intent to guide computational predic-
tions. This was clearly stated in the challenge instructions. 
However, we noticed that some participants still used the 
microstate lists as an input for their pKa predictions as 
we received complaints from participants that due to our 
updates to microstate lists they needed to repeat their cal-
culations. This would not have been an issue if participants 
used pKa prediction protocols that did not rely on an exter-
nal pre-enumerated list of microstates as an input. None of 

Table 1  (continued)

Method category Method Microscopic pK
a
 

(Type I) Submission 
ID

Macroscopic pK
a
 (Type 

III) Submission ID
Submission Type Ref.

QM + LEC COSMOtherm_FINE17 (COSMOtherm C30_1701, BP/
TZVPD/FINE//BP/TZVP/COSMO)

t8ewk 0hxtm Blind [44, 45]

QM + LEC DSD-BLYP-D3(BJ)/def2-TZVPD//PBEh-3c[DCOSMO-
RS] + RRHO(GFN-xTB[GBSA]) + Gsolv(COSMO-
RS[TZVPD]) and linear fit

xvxzd Blind [46]

QM + LEC ReSCoSS conformations // DSD-BLYP-D3 rerank-
ing // COSMOtherm pKa: DSD-BLYP-D3(BJ)/ 
def2-TZVPD// PBE-D3(BJ)/def2-TZVP/COSMO + 
RRHO[GFN-xTB + GBSA-water] + Gsolv[COSMO-
RS(FINE17/TZVPD)] level and COSMOtherm pKa 
applied at the single conformer pair level (COSMOth-
ermX17.0.5 release and BP-TZVPD-FINE-C30-1701 
parameterization)

eyetm 8xt50 Blind [46]

QM + LEC ReSCoSS conformations // COSMOtherm pKa: DSD-
BLYP-D3(BJ)/def2-TZVPD// PBE-D3(BJ)/ def2-
TZVP/COSMO + RRHO[GFN-xTB + GBSA-water] 
+ Gsolv[COSMO-RS(FINE17/TZVPD)] level and 
COSMOtherm pKa was applied directly on the result-
ing conformer sets with at least 5% Boltzmann weights 
for each microspecies (COSMOthermX17.0.5 release 
and BP-TZVPD-FINE-C30-1701 parameterization)

ccpmw yqkga Blind [46]

QM + MM M06-2X/6-31G*(for bases) or 6–31+G*(for acids) for 
gas phase, solvation free energy using TI with explicit 
solvent and GAFF, solvation free energy of proton − 
265.6 kcal/mol

0wfzo Blind [47]

QM + MM M06-2X/6–31G*(for bases) or 6–31+G*(for acids) for 
gas phase, solvation free energy using TI with explicit 
solvent and GAFF, solvation free energy of proton − 
271.88 kcal/mol

z3btx Blind

QM + MM M06-2X/6-31G*(for bases) or 6–31+G*(for acids) + 
thermal state correction for gas phase, solvation free 
energy using TI with explicit solvent and GAFF, solva-
tion free energy of proton − 265.6 kcal/mol

758j8 Blind

QM + MM M06-2X/6-31G*(for bases) or 6–31+G*(for acids) + 
thermal state correction for gas phase, solvation free 
energy using TI with explicit solvent and GAFF, solva-
tion free energy of proton − 271.88 kcal/mol

hgn83 Blind

Reference calculations are labeled as nb###. The method name column lists the names provided by each participant in the submission file. The 
“type” column indicates if a submission was a pre- or post-deadline calculation, denoted by “Blind” or “Reference” respectively. The methods 
in the table are grouped by method category and not ordered by performance. * Microscopic pK

a
 submissions were blind, however, participant 

requested a correction after blind submission deadline for macroscopic pK
a
 submissions. Therefore, these were assigned submission IDs in the 

form of nb###
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the participants reported this dependency in their method 
descriptions explicitly, so it was also not obvious how par-
ticipants were using the provided states in their predictions. 
We could not identify which submissions used these enu-
merated microstate lists as input for predictions and which 
have followed the challenge instructions and relied only on 
their prediction method to generate microstates.

Evaluation approaches

Since the experimental data for the challenge was mainly 
composed of macroscopic pKa values of both monoprotic 
and multiprotic compounds, evaluation of macroscopic and 
microscopic pKa predictions was not straightforward. For 
a subset of 8 molecules, the dominant microstate sequence 
could be inferred from NMR experiments. For the rest of 
the molecules, the only experimental information available 
was the macroscopic pKa value. The experimental data—in 
the form of macroscopic pKa  values—did not provide any 
information on which group(s) are being titrated, the micro-
scopic pKa values, the identity of the associated macrostates 
(which total charge), or microstates (which tautomers). Also, 
experimental data did not provide any information about the 
charge state of protonated and deprotonated species associ-
ated with each macroscopic pKa . Typically charges of states 
associated with experimental pKa values are assigned based 
on pKa predictions, not experimental evidence, but we did 
not utilize such computational charge assignment. For a fair 
performance comparison between methods, we avoided 
relying on any particular pKa prediction to assist the inter-
pretation of the experimental reference data. This choice 
complicated the pKa prediction analysis, especially regarding 
how to pair experimental and predicted pKa  values for error 
analysis. We adopted various evaluation strategies guided by 
the experimental data. To compare macroscopic pKa predic-
tions to experimental values, we had to utilize numerical 
matching algorithms before we could calculate performance 
statistics. For the subset of molecules with experimental 
data about microstates, we used microstate-based match-
ing. These matching methods are described in more detail 
in the next section.

Three types of submissions were collected during the 
SAMPL6 pKa Challenge. We have only utilized the type I 
(microscopic pKa value and microstate IDs) and the type III 
(macroscopic pKa value) predictions in this article. Type I 
submissions contained the same prediction information as 
the type II submissions which reported the fractional popu-
lation of microstates with respect to pH. We collected type 
II submissions in order to capture relative populations of 
microstates, not realizing they were redundant. The micro-
scopic pKa predictions collected in type I submissions cap-
ture all the information necessary to calculate type II sub-
missions. Therefore, we did not use type II submissions for 

challenge evaluation. In theory, type III (macroscopic pKa ) 
predictions can also be calculated from type I submissions, 
but collecting type III submissions allowed the participation 
of pKa prediction methods that directly predict macroscopic 
pKa  values without considering microspeciation and meth-
ods that apply special empirical corrections for macroscopic 
pKa predictions.

Matching algorithms for pairing predicted 
and experimental pKa  values

Macroscopic pKa predictions can be calculated from micro-
scopic pKa   values for direct comparison to experimen-
tal macroscopic pKa values. One major question must be 
answered to allow this comparison: How should we match 
predicted macroscopic pKa  values to experimental macro-
scopic pKa  values when there could multiple pKa values 
reported for a given molecule? For example, experiments 
on SM18 showed three macroscopic pKa s, but prediction 
of xvxzd method reported two macroscopic pKa values. 
There were also examples of the opposite situation with 
more predicted pKa values than experimentally determined 
macroscopic pKa s: One experimental pKa was measured for 
SM02, but two macroscopic pKa  values were predicted by 
xvxzd method. The experimental and predicted values must 
be paired before any prediction error can be calculated, even 
though there was not any experimental information regard-
ing underlying tautomer and charge states.

Knowing the charges of macrostates would have guided 
the pairing between experimental and predicted macroscopic 
pKa  values, however, not all experimental pKa measure-
ments can determine the charge of the protonation states 
being titrated. The potentiometric pKa measurements just 
captures the relative charge change between macrostates, but 
not the absolute value of the charge. Thus, our experimental 
data did not provide any information that would indicate the 
titration site, the overall charge, or the tautomer composition 
of macrostate pairs that are associated with each measured 
macroscopic pKa that could guide the matching between pre-
dicted and experimental pKa values.

For evaluating macroscopic pKa predictions taking the 
experimental data as reference, Fraczkiewicz [23] deline-
ated recommendations for fair comparative analysis of 
computational pKa predictions. They recommended that, in 
the absence of any experimental information that would aid 
in matching, experimental and computational pKa  values 
should be matched preserving the order of pKa values and 
minimizing the sum of absolute errors.

We picked the Hungarian matching algorithm [33, 34] 
to match experimental and predicted macroscopic pKa   
values with a squared error cost function as suggested by 
Kiril Lanevskij via personal communication. The algo-
rithm is available in the SciPy package (scipy.optimize.
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linear_sum_assignment) [35]. This matching algorithm pro-
vides optimum global assignment that minimizes the linear 
sum of squared errors of all pairwise matches. We selected 
the squared error cost function instead of the absolute error 
cost function to avoid misordered matches, For instance, for 
a molecule with experimental pKa values of 4 and 6, and 
predicted pKa  values of 7 and 8, Hungarian matching with 
absolute error cost function would match 6 to 7 and 4 to 9. 
Hungarian matching with squared error cost would match 
4 to 7 and 6 to 9, preserving the increasing pKa value order 
between experimental and predicted values. A weakness of 
this approach would be failing to match the experimental 
value of 6 to predicted value of 7 if that was the correct 
match based on underlying macrostates. But the underlying 
pair of states were unknown to us both because the experi-
mental data did not determine which charge states the tran-
sitions were happening between and also because we did 
not collect the pair of macrostates associated with each pKa 
predictions in submissions. Requiring this information for 
macroscopic pKa predictions in future SAMPL challenges 
would allow for better comparison between predictions, 
even if experimental assignment of charges is not possible. 
There is no perfect solution to the numerical pKa assignment 
problem, but we tried to determine the fairest way to penal-
ize predictions based on their numerical deviation from the 
experimental values.

For the analysis of microscopic pKa predictions we 
adopted a different matching approach. For the eight mol-
ecules for which we had the requisite data for this analysis, 
we utilized the dominant microstate sequence inferred from 
NMR experiments to match computational predictions and 
experimental pKa  values. We will refer to this assignment 
method as microstate matching, where the experimental 
pKa value is matched to the computational microscopic pKa 
value which was reported for the dominant microstate pair 
observed for each transition. We have compared the results 
of Hungarian matching and microstate matching.

Inevitably, the choice of matching algorithms to assign 
experimental and predicted values has an impact on the 
computed performance statistics. We believe the Hungarian 
algorithm for numerical matching of unassigned pKa values 
and microstate-based matching when experimental micro-
states are known were the best choices, providing the most 
unbiased matching without introducing assumptions outside 
of the experimental data.

Statistical metrics for submission performance

A variety of accuracy and correlation statistics were con-
sidered for analyzing and comparing the performance of 
prediction methods submitted to the SAMPL6 pKa Chal-
lenge. Calculated performance statistics of predictions were 
provided to participants before the workshop. Details of the 

analysis and scripts are maintained on the SAMPL6 GitHub 
Repository (described in Sect. 5).

Error metrics
There are six error metrics reported for the numeri-

cal error of the pKa values: the root-mean-squared error 
(RMSE), mean absolute error (MAE), mean error (ME), 
coefficient of determination  (R2), linear regression slope (m), 
and Kendall’s Rank Correlation Coefficient ( � ). Uncertainty 
in each performance statistic was calculated as 95% confi-
dence intervals estimated by non-parametric bootstrapping 
(sampling with replacement) over predictions with 10,000 
bootstrap samples. Calculated errors statistics of all methods 
can be found in Table S2 for macroscopic pKa predictions 
and S4 and S4 for microscopic pKa predictions.

Assessing macrostate predictions
In addition to assessing the numerical error in predicted 

pKa values, we also evaluated predictions in terms of their 
ability to capture the correct macrostates (ionization states) 
and microstates (tautomers of each ionization state) to the 
extent possible from the available experimental data. For 
macroscopic pKa s, the spectrophotometric experiments do 
not directly report on the identity of the ionization states. 
However, the number of ionization states indicates the num-
ber of macroscopic pKa s that exists between the experimen-
tal range of 2.0–12.0. For instance, SM14 has two experi-
mental pKa s and therefore three different charge states 
observed between pH 2.0 and 12.0. If a prediction reported 
4 macroscopic pKa s, it is clear that this method predicted 
an extra ionization state. With this perspective, we reported 
the number of unmatched experimental pKa s (the number 
of missing pKa predictions, i.e., missing ionization states) 
and the number of unmatched predicted pKa s (the number 
of extra pKa predictions, i.e., extra ionization states) after 
Hungarian matching. The latter count was restricted to only 
predictions with pKa values between 2 and 12 because that 
was the range of the experimental method. Errors in extra 
or missing pKa prediction errors highlight failure to predict 
the correct number of ionization states within a pH range.

Assessing microstate predictions
For the evaluation of microscopic pKa predictions, taking 

advantage of the available dominant microstate sequence 
data for a subset of 8 compounds, we calculated the domi-
nant microstate prediction accuracy which is the ratio of 
correct dominant tautomer predictions for each charge state 
divided by the total number of dominant tautomer predic-
tions. Dominant microstate prediction accuracy was calcu-
lated over all experimentally detected ionization states of 
each molecule which were part of this analysis. In order 
to extract the sequence of dominant microstates from the 
microscopic pKa predictions sets, we calculated the relative 
free energy of microstates selecting a neutral tautomer and 
pH 0 as reference following Eq. 8. Calculation of relative 
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microstate free energies was explained in more detail in a 
previous publication [26].

The relative free energy of a state with respect to refer-
ence state B at pH 0.0 (arbitrary pH value selected as refer-
ence) can be calculated as follows:

ΔmAB is equal to the number protons in state A minus that 
in state B. R and T indicate the molar gas constant and tem-
perature, respectively. By calculating relative free energies 
of all predicted microstates with respect to the same refer-
ence state and pH, we were able to determine the sequence 
of predicted dominant microstates. The dominant tautomer 
of each charge state was determined as the microstate with 
the lowest free energy in the subset of predicted microstates 
of each ionization state. This approach is feasible because 
the relative free energy of tautomers of the same ionization 
state is independent of pH and therefore the choice of refer-
ence pH is arbitrary.

Identifying consistently top-performing methods
We created a shortlist of top-performing methods for 

macroscopic and microscopic pKa predictions. The top 
macroscopic pKa predictions were selected if they ranked 
in the top 10 consistently according to two error metrics 
(RMSE, MAE) and two correlation metrics (R-Squared, and 
Kendall’s Tau), while also having fewer than eight miss-
ing or extra macroscopic pKa s for the entire molecule set 
(eight macrostate errors correspond to macrostate prediction 
mistake in roughly one third of the 24 compounds). These 
methods are presented in Table 2. A separate list of top-per-
forming methods was constructed for microscopic pKa with 
the following criteria: ranking in the top 10 methods when 
ranked by accuracy statistics (RMSE and MAE) and perfect 
dominant microstate prediction accuracy. These methods are 
presented in Table 3.

Determining challenging molecules
In addition to comparing the performance of methods, we 

also wanted to compare pKa prediction performance for each 
molecule to determine which molecules were the most chal-
lenging for pKa predictions considering all the methods in 
the challenge. For this purpose, we plotted prediction error 
distributions of each molecule calculated over all prediction 
methods. We also calculated MAE for each molecule over all 
prediction sets as well as for predictions from each method 
category separately.

Reference calculations

Including a null model is helpful in comparative perfor-
mance analysis of predictive methods to establish what the 
performance statistics look like for a baseline method for 
the specific dataset. Null models or null predictions employ 

(8)ΔGAB = ΔmAB RT ln 10 (pH − pKa)

a simple prediction model which is not expected to be par-
ticularly successful, but it provides a simple point of com-
parison for more sophisticated methods. The expectation or 
goal is for more sophisticated or costly prediction methods 
to outperform the predictions from a null model, otherwise 
the simpler null model would be preferable. In SAMPL6 pKa 
Challenge there were two blind submissions using database 
lookup methods that were submitted to serve as null pre-
dictions. These methods, with submission IDs 5nm4j and 
5nm4j both used OpenEye pKa-Prospector database to find 
the most similar molecule to query molecule and simply 
reported its pKa as the predicted value. Database lookup 
methods with a rich experimental database do present a chal-
lenging null model to beat, however, due to the accuracy 
level needed from pKa predictions for computer-aided drug 
design we believe such methods provide an appropriate per-
formance baseline that physical and empirical pKa prediction 
methods should strive to outperform.

We also included additional reference calculations in the 
comparative analysis to provide more perspective. Some 
widely used methods by academia and industry were missing 
from the blind challenge submission. Therefore, we included 
those methods as reference calculations: Schrödinger/Epik 
(nb007, nb008, nb010), Schrödinger/Jaguar (nb011, nb013), 
Chemaxon/Chemicalize (nb015), and Molecular Discovery/
MoKa (nb016, nb017). Epik and Jaguar pKa predictions 
were collected by Bas Rustenburg, Chemicalize predictions 
by Mehtap Isik, and MoKa predictions by Thomas Fox. 
All were done after the challenge deadline avoiding any 
alterations to their respective standard procedures and any 
guidance from experimental data. Experimental data was 
publicly available before these calculations were complete, 
therefore reference calculations were not formally consid-
ered as blind submissions.

All figures and statistics tables in this manuscript include 
reference calculations. As the reference calculations were 
not formal submissions, these were omitted from formal 
ranking in the challenge, but we present plots in this article 
which show them for easy comparison. These are labeled 
with submission IDs of the form nb### to clearly indicate 
non-blind reference calculations.

Results and discussion

Participation in the SAMPL6 pKa Challenge was high with 
11 research groups contributing pKa prediction sets for 37 
methods. A large variety of pKa prediction methods were 
represented in the SAMPL6 Challenge. We categorized 
these submissions into four method classes: database lookup 
(DL), linear free energy relationship (LFER), quantitative 
structure-property relationship or machine learning (QSPR/
ML), and quantum mechanics (QM). Quantum mechanics 
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models were subcategorized into QM methods with and 
without linear empirical correction (LEC), and combined 
quantum mechanics and molecular mechanics (QM + MM). 
Table 1 presents method names, submission IDs, method 
categories, and also references for each approach. Integral 
equation-based approaches (e.g.EC-RISM) were also evalu-
ated under the Physical (QM) category. There were 2 DL, 
4 LFER, and 5 QSPR/ML methods represented in the chal-
lenge, including the reference calculations. The majority of 
QM calculations include linear empirical corrections (22 
methods in QM + LEC category), and only 5 QM meth-
ods were submitted without any empirical corrections. 
There were 4 methods that used a mixed physical modeling 
approach of QM + MM.

The following sections present a detailed performance 
evaluation of blind submissions and reference prediction 
methods for macroscopic and microscopic pKa predictions. 
Performance statistics of all the methods can be found in 
Tables S2 and S4. Methods are referred to by their submis-
sion ID’s which are provided in Table 1.

Analysis of macroscopic pKa predictions

The performance of macroscopic pKa predictions was ana-
lyzed by comparison to experimental pKa values collected 
by the spectrophotometric method via numerical matching 
following the Hungarian method. Overall pKa prediction per-
formance was worse than we hoped. Figure 2 shows RMSE 
calculated for each prediction method represented by their 
submission IDs. Other performance statistics are depicted in 
Fig. 3. In both figures, method categories are indicated by 
the color of the error bars. The statistics depicted in these 
figures can be found in Table S2. Prediction error ranged 
between 0.7 to 3.2 pKa units in terms of RMSE, while an 
RMSE between 2 and 3 log units was observed for the 
majority of methods (20 out of 38 methods). Only five meth-
ods achieved RMSE less than 1 pKa unit. One is QM method 
with COSMO-RS approach for solvation and linear empiri-
cal correction (xvxzd (DSD-BLYP-D3(BJ)/def2-TZVPD//
PBEh-3c[DCOSMO-RS] + RRHO(GFN-xTB[GBSA]) 
+ Gsolv(COSMO-RS[TZVPD]) and linear fit)), and the 
remaining four are empirical prediction methods of LFER 
(xmyhm (ACD/pKa Classic), nb007 (Schrödinger/Epik 
Scan)) and QSPR/ML categories (gyuhx (Simulations Plus), 
nb017 (MoKa)). These five methods with RMSE less than 
1 pKa unit are also the methods that have the lowest MAE. 
xmyhm and xvxzd were the only two methods for which the 
upper 95% confidence interval of RMSE was lower than 1 
pKa unit.

In terms of correlation statistics, many methods have 
good performance, although the ranking of methods changes 
according to  R2 and Kendall’s Tau. Therefore, many meth-
ods are indistinguishable from one another, considering the 

uncertainty of the correlation statistics. 32 out of 38 methods 
have  R2 and Kendall’s Tau higher than 0.7 and 0.6, respec-
tively. 8 methods have  R2 higher than 0.9 and 6 methods have 
Kendall’s Tau higher than 0.8. The overlap of these two sets 
are the following: gyuhx (Simulations Plus), xvxzd (DSD-
BLYP-D3(BJ)/def2-TZVPD//PBEh-3c[DCOSMO-RS] + 
RRHO(GFN-xTB[GBSA]) + Gsolv(COSMO-RS[TZVPD]) 
and linear fit), xmyhm (ACD/pKa Classic), ryzue (Adiaba-
tic scheme with single point correction: MD/M06-2X//6-
311++G(d,p)//M06-2X/6-31+G(d) for bases and SMD/
M06-2X//6-311++G(d,p)//M06-2X/6-31G(d) for acids + 
thermal corrections), and 5byn6 (Adiabatic scheme: ther-
modynamic cycle that uses gas phase optimized structures 
for gas phase free energy and solution phase geometries for 
solvent phase free energy. SMD/M06-2X/6-31+G(d) for 
bases and SMD/M06-2X/6-31G(d) for acids + thermal cor-
rections). It is worth noting that ryzue and 5byn6 are QM 
predictions without any empirical correction. Their high 
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Fig. 2  RMSE and unmatched pK
a
 counts vs. submission ID plots for 

macroscopic pK
a
 predictions based on Hungarian matching. Meth-

ods are indicated by submission IDs. RMSE is shown with error bars 
denoting 95% confidence intervals obtained by bootstrapping over 
challenge molecules. Submissions are colored by their method cate-
gories. Light blue colored database lookup methods are utilized as the 
null prediction method. QM methods category (navy) includes pure 
QM, QM+LEC, and QM+MM approaches. Lower bar plots show the 
number of unmatched experimental pK

a
   values (light grey, missing 

predictions) and the number of unmatched pK
a
 predictions (dark grey, 

extra predictions) for each method between pH 2 and 12. Submission 
IDs are summarized in Table 1. Submission IDs of the form nb### 
refer to non-blinded reference methods computed after the blind chal-
lenge submission deadline. All others refer to blind, prospective pre-
dictions
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Fig. 3  Additional performance 
statistics for macroscopic pK

a
 

predictions based on Hungar-
ian matching. Methods are 
indicated by submission IDs. 
Mean absolute error (MAE), 
mean error (ME), Pearson’s 
 R2, and Kendall’s Rank Cor-
relation Coefficient Tau ( � ) are 
shown, with error bars denoting 
95% confidence intervals were 
obtained by bootstrapping over 
challenge molecules. Refer 
to Table 1 for the submis-
sion IDs and method names. 
Submissions are colored by 
their method categories. Light 
blue colored database lookup 
methods are utilized as the null 
prediction method
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correlation and rank correlation coefficient scores signal that 
with an empirical correction their accuracy based perfor-
mance could improve. Indeed, the participants have shown 
that this is the case in their own challenge analysis paper and 
achieved RMSE of 0.73 pKa units after the challenge [41].

Null prediction methods based on database lookup (5nm4j 
and pwn3m) had similar performance, with an RMSE of 
roughly 2.5 pKa units, an MAE of 1.5 pKa units,  R2 of 0.2, 
and Kendall’s Tau of 0.3. Many methods were observed to 
have a prediction performance advantage over the null pre-
dictions shown in light blue in Figs. 2 and 3 considering all 
the performance metrics as a whole. In terms of correlation 
statistics, the null methods are the worst performers, except 
for 0hxtm. From the perspective of accuracy-based statistics 
(RMSE and MAE), only the top 10 methods were observed 
to have significantly lower errors than the null methods con-
sidering the uncertainty of error metrics expressed as 95% 
confidence intervals.

The distribution of macroscopic pKa prediction signed 
errors observed in each submission was plotted in Fig. 7A 
as ridge plots using the Hungarian matching scheme. 2ii2g, 
f0gew, np64b, p0jba, and yc70m tended to overestimate, 
while  5byn6, ryzue, and w4iyd tended to underestimate 
macroscopic pKa values.

Four submissions in the QM+LEC category used the 
COSMO-RS implicit solvation model. While three of these 
achieved the lowest RMSE among QM-based methods 
(xvxzd, yqkga, and 8xt50) [46], one of them showed the 
highest RMSE (0hxtm (COSMOtherm_FINE17)) among 
all SAMPL6 Challenge macroscopic pKa predictions. All 
four methods used COSMO-RS/FINE17 to compute solva-
tion free energies. The major difference between the three 
low-RMSE methods and 0hxtm seems to be the protocol 
for determining relevant conformations for each microstate. 
xvxzd, yqkga, and 8xt50 used a semi-empirical tight bind-
ing (GFN-xTB) method and GBSA continuum solvation 
model for geometry optimization, followed by high level 
single-point energy calculations with a solvation free energy 
correction (COSMO-RS(FINE17/TZVPD)) and rigid rotor 
harmonic oscillator (RRHO[GFN-xTB(GBSA]) correction. 
yqkga, and 8xt50 selected conformations for each micro-
state with the Relevant Solution Conformer Sampling and 
Selection (ReSCoSS) workflow [46]. The conformations 
were clustered according to shape, and the lowest energy 
conformations from each cluster (according to BP86/TZVP/
COSMO single point energies in any of the 10 different 
COSMO-RS solvents) were considered as relevant conform-
ers. The yqkga method further filtered out conformers that 
have less than 5% Boltzmann weights at the DSD-BLYP-
D3/def2-TZVPD + RRHO(GFNxTB) + COSMO-RS(fine) 
level. The xvxzd method used an MF-MD-GC//GFN-xTB 
workflow and energy thresholds of 6 kcal/mol and 10 kcal/
mol, for conformer and microstate selection. On the other 

hand, the conformational ensemble captured for each 
microstate seems to be more limited for the 0hxtm method, 
judging by the method description provided in the submis-
sion file (this participant did not publish an analysis of the 
results that they obtained for SAMPL6). The 0hxtm method 
reported that relevant conformations were computed with 
the COSMOconf 4.2 workflow which produced multiple 
relevant conformers for only the neutral states of SM18 and 
SM22. In contrast to xvxzd, yqkga, and 8xt50, the 0hxtm 
method also did not include a RRHO correction. Partici-
pants who submitted the three low-RMSE methods report 
that capturing the chemical ensemble for each molecule 
including conformers and tautomers and high-level QM cal-
culations led to more successful macroscopic pKa prediction 
results and RRHO correction provided a minor improve-
ment [46]. Comparing these results to other QM approaches 
in the SAMPL Challenge also points to the advantage of the 
COSMO-RS solvation approach compared to other implicit 
solvent models.

In addition to the statistics related to the pKa value, we 
also analyzed missing or extra pKa predictions. Analysis 
of the pKa values with accuracy- and correlation-based 
error metrics was only possible after the matching of pre-
dicted macroscopic pKa  values to experimental pKa  val-
ues through Hungarian matching, although this approach 
masks pKa prediction issues in the form of extra or miss-
ing macroscopic pKa predictions. To capture this class of 
prediction errors, we reported the number of unmatched 
experimental pKa s (missing pKa predictions) and the num-
ber of unmatched predicted pKa s (extra pKa predictions) 
after Hungarian matching for each method. Both missing 
and extra pKa prediction counts were only considered for 
the pH range of 2–12, which corresponds to the limits of 
the experimental assay. The lower subplot of Fig. 2 shows 
the total count of unmatched experimental or predicted pKa  
values for all the molecules in each prediction set. The 
order of submission IDs in the x-axis follows the RMSD 
based ranking so that the performance of each method 
from both pKa value accuracy and the number of pKa s can 
be viewed together. The omission or inclusion of extra 
macroscopic pKa predictions is a critical error because 
inaccuracy in predicting the correct number of macro-
scopic transitions shows that methods are failing to predict 
the correct set of charge states, i.e., failing to predict the 
correct number of ionization states that can be observed 
between the specified pH range.

In the analysis of these challenge results, extra mac-
roscopic pKa predictions were found to be more common 
than missing pKa predictions. In pKa prediction evalua-
tions, the accuracy of predicted ionization states within a 
pH range is usually neglected. When predictions are only 
evaluated for the accuracy of the pKa value with numerical 
matching algorithms, a larger number of predicted pKa s 
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lead to greater underestimation of prediction errors. There-
fore, it is not surprising that methods are biased to predict 
extra pKa values. The SAMPL6 pKa Challenge experimen-
tal data consists of 31 macroscopic pKa s in total, measured 
for 24 molecules (6 molecules in the set have multiple pKa

s). Within the 10 methods with the lowest RMSE, only the 
xvxzd method predicts too few pKa values (2 unmatched 
out of 31 experimental pKas). All other methods that rank 
in the top 10 by RMSE have extra predicted pKa s ranging 
from 1 to 13. Two prediction sets without any extra pKa 
predictions and low RMSE are 8xt50 (ReSCoSS conforma-
tions // DSD-BLYP-D3 reranking // COSMOtherm pKa) 
and nb015 (ChemAxon/Chemicalize).

Consistently well‑performing methods for macroscopic pKa 
prediction

Methods ranked differently when ordered by different error 
metrics, although there were a couple of methods that con-
sistently ranked in the top fraction. By using combinatorial 
criteria that take multiple statistical metrics and unmatched 
pKa counts into account, we identified a shortlist of consist-
ently well-performing methods for macroscopic pKa predic-
tions, shown in Table 2. The criteria for selection were the 
overall ranking in Top 10 according to RMSE, MAE,  R2, 
and Kendall’s Tau and also having a combined unmatched 
pKa (extra and missing pKa s) count less than 8 (a third of the 
number of compounds). We ranked methods in ascending 
order for RMSE and MAE and in descending order for  R2, 
and Kendall’s Tau to determine methods. Then, we took the 
intersection set of Top 10 methods according to each statistic 

to determine the consistently-well performing methods. This 
resulted in a list of four methods that are consistently well-
performing across all criteria.

Consistently well-performing methods for macro-
scopic pKa prediction included methods from all catego-
ries. Two methods in the QM+LEC category were xvxzd 
(DSD-BLYP-D3(BJ)/def2-TZVPD//PBEh-3c[DCOSMO-
RS] + RRHO(GFN-xTB[GBSA]) + Gsolv(COSMO-
RS[TZVPD]) and linear fit) and (8xt50) (ReSCoSS 
conformations // DSD-BLYP-D3 reranking // COSMO-
therm pKa) and both used COSMO-RS. Empirical pKa 
predictions with top performance were both proprietary 
software. From QSPR and LFER categories, gyuhx (Sim-
ulations Plus) and xmymhm (ACD/pKa Classic) were con-
sistently well-performing methods. The Simulation Plus 
pKa prediction method consisted of 10 artificial neural 
network ensembles trained on 16,000 compounds for 10 
classes of ionizable atoms, with the ionization class of 
each atom determined using an assigned atom type and 
local molecular environment [48]. The ACD/pKa Classic 
method was trained on 17,000 compounds, uses Ham-
mett-type equations, and captures effects related to tau-
tomeric equilibria, covalent hydration, resonance effects, 
and �, �-unsaturated systems  [38].

Figure 4 plots predicted vs. experimental macroscopic 
pKa predictions of four consistently well-performing 
methods, a representative average method, and the null 
method(5nm4j). We selected the method with the highest 
RMSE below the median of all methods as the representa-
tive method with average performance: 2ii2g (EC-RISM/
MP2/cc-pVTZ-P2-q-noThiols-2par).

Table 2  Four consistently well-performing prediction methods for macroscopic pK
a
 prediction based on consistent ranking within the Top 10 

according to various statistical metrics

Submissions were ranked according to RMSE, MAE,  R2, and � . Consistently well-performing methods were selected as the ones that rank in the 
Top 10 in each of these statistical metrics. These methods also have less than 2 unmatched experimental pK

a
 s and less than 7 unmatched pre-

dicted pK
a
 s according to Hungarian matching. Performance statistics are provided as mean and 95% confidence intervals

Submission ID Method Name RMSE MAE R2 Kendall’s Tau ( �) Unmatched 
Exp. pK

a
 

Count

Unmatched Pred. 
pK

a
 Count [2,12]

xvxzd Full quantum 
chemical cal-
culation of free 
energies and fit 
to experimental 
pKa

0.68 [0.54, 0.81] 0.58 [0.45, 0.71] 0.94 [0.88, 0.97] 0.82 [0.68, 0.92] 2 4

gyuhx S+pKa 0.73 [0.55, 0.91] 0.59 [0.44, 0.74] 0.93 [0.88, 0.96] 0.88 [0.8, 0.94] 0 7
xmyhm ACD/pKa Classic 0.79 [0.52, 1.03] 0.56 [0.38, 0.77] 0.92 [0.85, 0.97] 0.81 [0.68, 0.9] 0 3
8xt50 ReSCoSS con-

formations // 
DSD-BLYP-D3 
reranking // 
COSMOtherm 
pKa

1.07 [0.78, 1.36] 0.81 [0.58, 1.07] 0.91 [0.84, 0.95] 0.80 [0.68, 0.89] 0 0
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Which chemical properties are driving macroscopic pKa 
prediction failures?

In addition to comparing the performance of methods that 
participated in the SAMPL6 Challenge, we also wanted to 
analyze macroscopic pKa predictions from the perspective of 
challenge molecules and determine whether particular com-
pounds suffer from larger inaccuracy in pKa predictions. The 
goal of this analysis is to provide insight on which molecular 
properties or moieties might be causing larger pKa prediction 
errors. In Fig. 5, 2D depictions of the challenge molecules 
are presented with MAE calculated for their macroscopic 
pKa predictions over all methods, based on Hungarian match. 
For multiprotic molecules, the MAE was averaged over all 
the pKa  values. For the analysis of pKa prediction accuracy 
observed for each molecule, MAE is a more appropriate sta-
tistical value than RMSE for following global trends, as it is 
less sensitive to outliers than the RMSE.

A comparison of the prediction accuracy of individual 
molecules is shown in Fig. 6. In Fig. 6A, the MAE for 

each molecule is shown considering all blind predictions 
and reference calculations. A cluster of molecules marked 
orange and red have higher than average MAE. Molecules 
marked red (SM06, SM21, and SM22) are the only com-
pounds in the SAMPL6 dataset with bromo or iodo groups 
and they suffered a macroscopic pKa prediction error in 
the range of 1.7–2.0 pKa units in terms of MAE. Mol-
ecules marked orange (SM03, SM10, SM18, SM19, and 
SM20) have sulfur-containing heterocycles, and all these 
molecules except SM18 have MAE larger than 1.6 pKa 
units. Despite containing a thiazole group, SM18 has a low 
prediction MAE. SM18 is the only compound with three 
experimental pKa   values, and we suspect the presence 
of multiple experimental pKa  values could have a mask-
ing effect on the errors captured by the MAE when the 
Hungarian matching scheme is used due to more potential 
pairing choices that may artificially lower the error.

We separately analyzed the MAE of each molecule for 
empirical (LFER and QSPR/ML) and QM-based physi-
cal methods (QM, QM + LEC, and QM + MM) to gain 
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Fig. 4  Predicted vs. experimental macroscopic pK
a
 prediction for four 

consistently well-performing methods, a representative method with 
average performance (2ii2g), and the null method (5nm4j). When 
submissions were ranked according to RMSE, MAE,  R2, and � , four 
methods ranked in the Top 10 consistently in each of these metrics. 
Dark and light green shaded areas indicate 0.5 and 1.0 units of error. 

Error bars indicate standard error of the mean of predicted and exper-
imental values. Experimental pK

a
 SEM values are too small to be 

seen under the data points. EC-RISM/MP2/cc-pVTZ-P2-q-noThiols-
2par method (2ii2g) was selected as the representative method with 
average performance because it is the method with the highest RMSE 
below the median
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Fig. 5  Molecules from the SAMPL6 Challenge with MAE calcu-
lated for all macroscopic pK

a
 predictions. The MAE calculated over 

all prediction methods indicates which molecules had the lowest pre-
diction accuracy in the SAMPL6 Challenge. MAE values calculated 

for each molecule include all the matched pK
a
 values. SM06, SM14, 

SM15, SM16, SM18, and SM22 were multiprotic. Hungarian match-
ing algorithm was employed for pairing experimental and predicted 
pK

a
 values. MAE values are reported with 95% confidence intervals
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additional insight into prediction errors. Figure 6b shows 
that the difficulty of predicting pKa  values of the same sub-
set of molecules was a trend conserved in the performance of 
physical methods. For QM-based methods, sulfur-containing 
heterocycles, amides proximal to aromatic heterocycles, and 
compounds with iodo and bromo substitutions have lower 
pKa prediction accuracy.

The SAMPL6 pKa set consists of only 24 small molecules 
and lacks multiple examples of many moieties, limiting our 
ability to determine with statistical significance which chemi-
cal substructures cause greater errors in pKa predictions. Still, 
the trends observed in this challenge point to molecules with 
iodo-, bromo-, and sulfur-containing heterocycles as having 
systematically larger prediction errors in macroscopic pKa 
value. We hope that reporting this observation will lead to the 

improvement of methods for similar compounds with such 
moieties.

We have also looked for correlation with molecular descrip-
tors for finding other potential explanations as to why macro-
scopic pKa prediction errors were larger for certain molecules. 
While testing the correlation between errors and many molecu-
lar descriptors, it is important to account for the possibility of 
spurious correlations. We haven’t observed any statistically 
significant correlation between numerical pKa predictions and 
the descriptors we have tested. First, having more experimen-
tal pKa  values (Fig. 6a) did not seem to be associated with 
poorer pKa prediction performance. Still, we need to keep in 
mind that multiprotic compounds were sparsely represented in 
the SAMPL6 set (5 molecules with 2 macroscopic pKa  val-
ues and one with 3 macroscopic pKa ). Second, we checked 

C SAMPL6 molecules with sulfur-containing heterocycles

D SAMPL6 molecules with bromo and iodo groups

2 experimental pKa values

3 experimental pKa values

BA

Molecule ID Molecule ID

Fig. 6  Average prediction accuracy calculated over all prediction 
methods was poorer for molecules with sulfur-containing heterocy-
cles, bromo, and iodo groups. a MAE calculated for each molecule 
as an average of all methods. b MAE of each molecule broken out 
by method category. QM-based methods (blue) include QM predic-

tions with or without linear empirical correction. Empirical methods 
(green) include QSAR, ML, DL, and LFER approaches. c Depiction 
of SAMPL6 molecules with sulfur-containing heterocycles. d Depic-
tion of SAMPL6 molecules with iodo and bromo groups
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the following other descriptors: presence of an amide group, 
molecular weight, heavy atom count, rotatable bond count, 
heteroatom count, heteroatom-to-carbon ratio, ring system 
count, maximum ring size, and the number of microstates (as 
enumerated for the challenge) [49]. Correlation plots and  R2 
values can be seen in Fig. S2.

We had suspected that pKa prediction methods may perform 
better for moderate values (4–10) than extreme values as mol-
ecules with extreme pKa  values are less likely to change ioni-
zation states close to physiological pH. To test this we look at 
the distribution of absolute errors calculated for all molecules 
and challenge predictions binned by experimental pKa value 
2 pKa unit increments. As can be seen in Fig. S3B, the value 
of true macroscopic pKa  values was not a factor affecting the 
prediction error seen in SAMPL6 Challenge.

Figure 7b is helpful to answer the question “Are there 
molecules with consistently overestimated or underestimated 
pKa  values?”. This ridge plots show the error distribution of 
each experimental pKa . SM02_pKa1, SM04_pKa1, SM14_
pKa1, and SM21_pKa1 were underestimated, predicting 
lower proton affinity by more than 1 pKa unit by major-
ity of the prediction methods. SM03_pKa1, SM06_pKa2, 
SM19_pKa1, and SM20_pKa1 were overestimated by the 
majority of the prediction methods by more than 1 pKa unit. 
SM03_pKa1, SM06_pKa2, SM10_pKa1, SM19_pKa1, and 
SM22_pKa1 have the highest spread of errors and were less 
accurately predicted overall.

Analysis of microscopic pKa predictions using 
microstates determined by NMR for 8 molecules

The most common approach for analyzing microscopic pKa 
prediction accuracy has been to compare it to experimental 
macroscopic pKa data, assuming experimental pKa  values 
describe titrations of distinguishable sites and, therefore, 
correspond to microscopic pKa s. But this typical approach 
fails to evaluate methods at the microscopic level.

Analysis of microscopic pKa predictions for the SAMPL6 
Challenge was not straightforward due to the lack of experi-
mental data with microscopic resolution of the titratable sites 
and their associated microscopic pKa s. For 24 molecules, 
macroscopic pKa  values were determined with the spectro-
photometric method. For 18 molecules, a single macroscopic 
titration was observed, and for 6 molecules multiple experi-
mental pKa  values were observed and characterized. For 18 
molecules with a single experimental pKa , it is probable that 
the molecules are monoprotic and, therefore, macroscopic 
pKa value is equal to the microscopic pKa . There is, however, 
no direct experimental evidence supporting this hypothesis 
aside from the support from computational predictions, such 
as the predictions by ACD/pKa Classic. There is always the 
possibility that the macroscopic pKa observed is the result 
of a transition between mixtures of tautomers with similar 

energy so no one is dominant. We did not want to bias the 
blind challenge analysis with any prediction method. There-
fore, we believe analyzing the microscopic pKa predictions 
via Hungarian matching to experimental values with the 
assumption that the 18 molecules have a single titratable 
site is not the best approach. Instead, an analysis at the level 
of macroscopic pKa  values is much more appropriate when 
a numerical matching scheme is the only option to evaluate 
predictions using macroscopic experimental data. However, 
it should be noted that as we often do not know the proton 
number on the two forms of the molecule connected by the 
titration in experiment or in the calculated pKas so that a 
match in values may be accidental.

For a subset of eight molecules, dominant microstates 
were inferred from NMR experiments. Six of these mol-
ecules were monoprotic and two were multiprotic. This data-
set was extremely useful for guiding the assignment between 
experimental and predicted pKa values based on microstates. 
In this section, we present the performance evaluations of 
microscopic pKa predictions for only the 8 compounds with 
experimentally-determined dominant microstates.

Microstate‑based matching revealed errors masked 
by pKa value‑based matching between experimental 
and predicted pKas

Comparing microscopic pKa predictions directly to macro-
scopic experimental pKa values with numerical matching 
can lead to underestimation of errors. To demonstrate how 
numerical matching often masks pKa prediction errors, we 
compared the performance analysis done by Hungarian 
matching to that from microstate-based matching for 8 mole-
cules presented in Fig. 8a. RMSE calculated for microscopic 
pKa predictions matched to experimental values via Hun-
garian matching is shown in Fig. 8b, while c shows RMSE 
calculated via microstate-based matching. The Hungarian 
matching incorrectly leads to significantly (and artificially) 
lower RMSE compared to microstate-based matching. The 
reason is that the Hungarian matching assigns experimental 
pKa values to predicted pKa values only based on the close-
ness of the numerical values, without consideration of the 
relative population of microstates and microstate identities. 
Because of this, a microscopic pKa value that describes a 
transition between very low population microstates (high 
energy tautomers) can be assigned to the experimental pKa 
if it has the closest pKa value. This is not helpful because, 
in reality, the microscopic pKa  values that influence the 
observable macroscopic pKa the most are the ones with 
higher microstate populations (transitions between low 
energy tautomers).

The number of unmatched predicted microscopic pKa s is 
shown in the lower bar plots of Fig. 8b and c, to emphasize 
the large number of microscopic pKa predictions submitted 
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by many methods. In the case of microscopic pKa , the num-
ber of unmatched predictions does not indicate an error 
in the form of an extra predicted pKa , because the spec-
trophotometric experiments do not capture all microscopic 
pKa s theoretically possible (transitions between all pairs of 
microstates that differ by one proton). pKa s of transitions 
to and from very high energy tautomers are very hard to 
measure by experimental methods, including the most sensi-
tive methods like NMR. Prediction of extra microscopic pKa  
values can cause underestimation of prediction errors when 
numerical matching algorithms such as Hungarian matching 
are used. We also checked how often Hungarian matching 
led to the correct matches between predicted and experi-
mental pKa in terms of the microstate pairs, i.e., how often 
the microstate pair of the Hungarian match recapitulates 
the dominant microstate pair of the experiment. The overall 
accuracy of microstate pair matching was found to be low for 

the SAMPL6 Challenge submission. Fig. S4 shows that for 
most methods the predicted microstate pair selected by the 
Hungarian match did not correspond to the experimentally-
determined microstate pair. This means lower RMSE (better 
accuracy) performance statistics obtained from Hungarian 
matching are artificially low. This problem could be avoided 
by matching experimental and predicted values on the basis 
of microstate IDs, if experimental microscopic assignments 
are available.

Unfortunately, we were only able to perform this more 
reliable microstate-based analysis for a subset of compounds. 
The conclusions in this section reflect only eight compounds 
with limited structural diversity: Six molecules with 4-ami-
noquinazoline and two with benzimidazole scaffolds, 
with a total of 10 pKa values. The sequences of dominant 
microstates for SM07 and SM14 were determined by NMR 
experiments directly [8], while dominant microstates of 

Fig. 7  Macroscopic pK
a
 predic-

tion error distribution plots 
show how prediction accuracy 
varies across methods and 
individual molecules. a pK

a
 

prediction error distribution for 
each submission for all mol-
ecules according to Hungarian 
matching. b Error distribution 
for each SAMPL6 molecule for 
all prediction methods accord-
ing to Hungarian matching. 
For multiprotic molecules, pK

a
 

ID numbers (pKa1, pKa2, and 
pKa3) were assigned in the 
direction of increasing experi-
mental pK
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their derivatives were inferred by taking them as a reference 
(Fig. 8). Although we believe that microstate-based evalu-
ation is more informative, the lack of a large experimental 

dataset limits the conclusions to a very narrow chemical 
diversity. Still, microstate-based matching revealed errors 
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Fig. 8  NMR determination of dominant microstates allowed in-
depth evaluation of microscopic pK

a
 predictions for 8 compounds. a 

Dominant microstate sequence of two compounds (SM07 and SM14) 
were determined by NMR [8]. Based on these reference compounds, 
the dominant microstates of 6 related compounds were inferred and 
experimental pK

a
 values were assigned to titratable groups with the 

assumption that only the dominant microstates have significant con-
tributions to the experimentally observed pK

a
 . b RMSE vs. submis-

sion ID and unmatched pK
a
 vs. submission ID plots for the evaluation 

of microscopic pK
a
 predictions of 8 molecules by Hungarian match-

ing to experimental macroscopic pK
a
   values. c RMSE vs. submis-

sion ID and unmatched pK
a
 vs. submission ID plots showing the 

evaluation of microscopic pK
a
 predictions of 8 molecules by micro-

state-based matching between predicted microscopic pK
a
 s and experi-

mental macroscopic pK
a
 values. Submissions 0wfzo, z3btx, 758j8, and 

hgn83 have RMSE values bigger than 10 pK
a
 units which are beyond 

the y-axis limits of subplot c and b. RMSE is shown with error bars 
denoting 95% confidence intervals obtained by bootstrapping over the 
challenge molecules. Lower bar plots show the number of unmatched 
experimental pK

a
 s (light grey, missing predictions) and the number 

of unmatched pK
a
 predictions (dark grey, extra predictions) for each 

method between pH 2 and 12. Submission IDs are summarized in 
Table 1
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masked by pKa value-based matching between experimental 
and predicted pKas.

Accuracy of pKa predictions evaluated by microstate‑based 
matching

Both accuracy- and correlation-based statistics were calcu-
lated for the predicted microscopic pKa values after micro-
state-based matching. RMSE, MAE, ME,  R2, and Kendall’s 
Tau results of each method are shown in Figs. 8c and 9. A 
table of the calculated statistics can be found in Table S4. 
Due to the small number of data points in this set, correla-
tion-based statistics have large uncertainties and thus have 
less utility for distinguishing better-performing methods. 
Therefore, we focused more on accuracy-based metrics for 
the analysis of microscopic pKa s than correlation-based 
metrics. In terms of accuracy of predicted microscopic pKa 
values, all three QSPR/ML based methods (nb016 (MoKa), 
hdiyq (Simulations Plus), 6tvf8 (OE Gaussian Process)), 
three QM-based methods (nb011 (Jaguar), ftc8w (EC-
RISM/MP2/cc-pVTZ-P2-q-noThiols-2par), t8ewk (COS-
MOlogic_FINE17)), and one LFER method (v8qph (ACD/
pKa GALAS)) achieved RMSE lower than 1 pKa unit. The 
same six methods also have the lowest MAE.

Evaluation of dominant microstate prediction accuracy

For many computational chemistry approaches, including 
structure-based modeling of protein–ligand interactions, 
predicting the ionization state and the exact position of pro-
tons is necessary to establish what to include in the mod-
eled system. In addition to being able to predict pKa values 
accurately, we require pKa prediction methods to be able 
to capture microscopic protonation states accurately. Even 
when the predicted pKa value is accurate, the predicted pro-
tonation sites can be incorrect, leading to potentially large 
modeling errors in quantities such as the computed free 
energy of binding. Therefore, we assessed whether meth-
ods participating in the SAMPL6 pKa Challenge were cor-
rectly predicting the sequence of dominant microstates, i.e., 
dominant tautomers of each charge state observed between 
pH 2 and 12.

Figure 10 shows how well methods perform for predicting 
the dominant microstate, as analyzed for eight compounds 
with available experimental microstate assignments. The 
dominant microstate sequence is essentially the sequence 
of states that are most visible experimentally due to their 
higher fractional population and relative free energy within 
the tautomers at each charge. To extract the dominant tau-
tomers predicted for the sequence of ionization states of each 
method, the relative free energy of microstates were first 
calculated at reference pH 0 [26]. To subsequently determine 

the dominant microstate at each formal charge, we selected 
the lowest energy tautomer for each ionization state based on 
the relative microstate free energies calculated at pH 0. The 
choice of reference pH is arbitrary, as relative free energy 
difference between tautomers of the same charge is always 
constant with respect to pH. This analysis was performed 
only for the charges − 1, 0, 1, and 2—the charge range cap-
tured by NMR experiments. Predicted and experimental 
dominant microstates were then compared for each charge 
state to calculate the fraction of correctly predicted dominant 
tautomers. This value is reported as the dominant microstate 
accuracy for all charge states (Fig. 10a).

Many of the methods which participated in the challenge 
made errors in predicting the dominant microstate. 10 QM 
and 3 QSPR/ML methods did not make any mistakes in 
dominant microstate predictions, although, they are expected 
to make mistakes in the relative population of tautomers 
(free energy difference between microstates) as reflected 
by the pKa value errors. While all participating QSPR/ML 
methods showed good performance in dominant microstate 
prediction, LFER and some QM methods made mistakes. 
The accuracy of the predicted dominant neutral tautomers 
was perfect for all methods, except qsicn (Fig. 10b), but 
errors in predicting the major tautomer of charge + 1 were 
much more frequent. 22 out of 35 prediction sets made at 
least one error in predicting the lowest energy tautomer with 
+ 1 charge. We didn’t include ionization states with charges 
− 1 and + 2 in this assessment because we had only one 
compound with these charges in the dataset. Nevertheless, 
errors in predicting the dominant tautomers seem to be a big-
ger problem for charged tautomers than the neutral tautomer.

Only eight compounds had data on the sequence of domi-
nant microstates. Therefore conclusions on the performance 
of methods in terms of dominant tautomer prediction are 
limited to this limited chemical diversity (benzimidazole and 
4-aminoquinazoline derivatives). We present this analysis as 
a prototype of how microscopic pKa predictions should be 
evaluated. Hopefully, future evaluations can be performed 
with larger experimental datasets following the strategy we 
demonstrated here in order to reach broad conclusions about 
which methods are better for capturing dominant microstates 
and ratios of tautomers. Even if experimental microscopic 
pKa measurement data is not available, experimental domi-
nant tautomer determinations are still informative for assess-
ing computational predictions.

The most frequent misprediction was the major tautomer 
of the SM14 cationic form, as shown in Fig. 10. This figure 
shows the accuracy of the predicted dominant microstate 
calculated for individual molecules and for charge states 0 
and + 1, averaged over all prediction methods. SM14, the 
molecule that exhibits the most frequent error in the pre-
dicted dominant microstate, has two experimental pKa values 
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Fig. 9  Additional performance 
statistics for microscopic pK

a
 

predictions for 8 molecules 
with experimentally deter-
mined dominant microstates. 
Microstate-based matching was 
performed between experimen-
tal pK

a
 values and predicted 

microscopic pK
a
  values. Mean 

absolute error (MAE), mean 
error (ME), Pearson’s  R2, and 
Kendall’s Rank Correlation 
Coefficient Tau ( � ) are shown, 
with error bars denoting 95% 
confidence intervals obtained 
by bootstrapping over chal-
lenge molecules. Methods are 
indicated by their submission 
IDs. Submissions are colored by 
their method categories. Refer 
to Table 1 for submission IDs 
and method names. Submis-
sions 0wfzo, z3btx, 758j8, and 
hgn83 have MAE and ME 
values bigger than 10 pK

a
 units 

which are beyond the y-axis 
limits of subplots a and b. A 
large number and wide variety 
of methods have statistically 
indistinguishable performance 
based on correlation statistics 
(c and d), in part because of the 
relatively small dynamic range 
and small size of the set of 8 
molecules
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that were 2.4 pKa units apart, and we suspect that could be a 
contributor to the difficulty of predicting microstates accu-
rately. Other molecules are monoprotic (4-aminoquinazo-
lines) or their experimental pKa values are very well sepa-
rated (SM14, 4.2 pKa units). It would be very interesting to 
expand this assessment to a larger variety of drug-like mol-
ecules to discover for which structures tautomer predictions 
are more accurate and for which structures computational 
predictions are not as reliable.

Consistently well‑performing methods for microscopic pKa 
predictions

We have identified different criteria for determining consist-
ently top-performing predictions of microscopic pKa than 
macroscopic pKa : having perfect dominant microstate pre-
diction accuracy, unmatched pKa count of 0, and ranking 
in the top 10 according to RMSE and MAE. Correlation 
statistics were not found to have utility for discriminating 
performance due to large uncertainties in these statistics for 
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Fig. 10  Some methods predicted the sequence of dominant tautomers 
inaccurately. Prediction accuracy of the dominant microstate of each 
charged state was calculated using the dominant microstate sequence 
determined by NMR for 8 molecules as reference. a Dominant micro-
state accuracy vs. submission ID plot was calculated considering all 
the dominant microstates seen in the experimental microstate data-
set of 8 molecules. b Dominant microstate accuracy vs. submission 
ID plot was generating considering only the dominant microstates of 
charge 0 and + 1 seen in the 8 molecule dataset. The accuracy of each 
molecule is broken out by the total charge of the microstate. c Domi-

nant microstate prediction accuracy calculated for each molecule 
averaged over all methods. In b and c, the accuracy of predicting the 
dominant neutral tautomer is shown in blue and the accuracy of pre-
dicting the dominant + 1 charged tautomer is shown in green. Error 
bars denoting 95% confidence intervals obtained by bootstrapping. d 
Depiction of SM14 microstates for protonation states with +2, +1, 
and 0 charges. The dominant tautomer of each macroscopic protona-
tion state is highlighted with a rectangle. Dominant microstates of 
each charge were determined based on NMR experiments
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a small dataset of 10 pKa values. Unmatched predicted pKa 
count was also not considered since experimental data was 
only informative for the pKa between dominant microstates 
and did not capture all the possible theoretical transitions 
between microstate pairs. Table 3 reports six methods that 
have consistent good performance according to many met-
rics, although evaluated only for the 8 molecule set due to 
limitations of the experimental dataset. Six methods were 
divided evenly between methods of QSPR/ML category and 
QM category. nb016 (MoKa), hdiyq (Simulations Plus), and 
6tvf8 (OE Gaussian Process) were QSPR and ML methods 
that performed well. nb011 (Jaguar), 0xi4b(EC-RISM/
B3LYP/6-311+G(d,p)-P2-phi-noThiols-2par), and cywyk 
(EC-RISM/B3LYP/6-311+G(d,p)-P2-phi-noThiols-2par) 
were QM predictions with linear empirical corrections with 
good performance with microscopic pKa predictions.

The Simulations Plus pKa prediction method is the only 
method that appeared to be consistently well-performing 
in both the assessment for macroscopic and microscopic 
pKa prediction (gyuhx and hdiyq). However, it is worth not-
ing that two methods that were in the list of consistently 
top-performing methods for macroscopic pKa predictions 
lacked equivalent submissions of their underlying micro-
scopic pKa predictions, and therefore could not be evaluated 

at the microstate level. These methods were xmyhm (ACD/
pKa Classic) and xvxzd(DSD-BLYP-D3(BJ)/def2-TZVPD//
PBEh-3c[DCOSMO-RS] + RRHO(GFN-xTB[GBSA]) + 
Gsolv(COSMO-RS[TZVPD]) and linear fit).

How do pKa prediction errors impact protein–ligand 
binding affinity predictions?

pKa predictions provide a key input for computational mod-
eling of protein–ligand binding with physical methods. The 
SAMPL6 pKa Challenge focused only on small molecule 
pKa prediction and showed how pKa prediction accuracy 
observed can impact the modeling of ligands. Many affin-
ity prediction methods such as docking, MM/PBSA, MM/
GBSA, absolute or alchemical relative free energy calcula-
tion methods predict the affinity of the ligand to a receptor 
using a fixed protonation state for both ligand and receptor. 
These models can sensitively depend upon pKa and domi-
nant tautomer predictions for determining possible protona-
tion states of the ligand in the aqueous environment and in a 
protein complex, as well as the free energy penalty to access 
those states [4]. The accuracy of pKa predictions can become 
a limitation for the performance of physical models that try 
to quantitatively describe molecular association.

Table 3  Top-performing methods for microscopic pK
a
 predictions based on consistent ranking within the Top 10 according to various statistical 

metrics calculated for 8 molecule dataset

Performance statistics are provided as mean and 95% confidence intervals. Submissions that rank in the Top 10 according to RMSE and MAE 
and have perfect dominant microstate prediction accuracy were selected as consistently well-performing methods. Correlation-based statistics 
 (R2, and Kendall’s Tau), although reported in the table, were excluded from the statistics used for determining top-performing methods. This was 
because correlation-based statistics were not very discriminating due to the narrow dynamic range and the small number of data points in the 8 
molecule dataset with NMR-determined dominant microstates

Submission 
ID

Method Name Dominant 
Microstate 
Accuracy

RMSE MAE R2 Kendall’s Tau Unmatched 
Exp. pK

a
 

Count

Unmatched 
Pred. pK

a
 

Count [2,12]

nb016 MoKa 1.0 [1.0, 1.0] 0.52 [0.25, 
0.71]

0.43 [0.23, 
0.65]

0.92 [0.05, 
0.99]

0.62 [-0.14, 
1.00]

0 3

hdiyq S+pKa 1.0 [1.0, 1.0] 0.68 [0.49, 
0.83]

0.60 [0.39, 
0.80]

0.86 [0.47, 
0.98]

0.78 [0.40, 
1.00]

0 16

nb011 Jaguar 1.0 [1.0, 1.0] 0.72 [0.35, 
1.07]

0.54 [0.28, 
0.86]

0.86 [0.18, 
0.98]

0.64 [0.26, 
0.95]

0 36

6tvf8 OE Gaussian 
Process

1.0 [1.0, 1.0] 0.76 [0.55, 
0.95]

0.68 [0.46, 
0.90]

0.92 [0.78, 
0.99]

0.87 [0.6, 
1.00]

0 55

0xi4b EC-RISM/
B3LYP/6-
311+G(d,p) 
-P3NI-phi-
noThiols-
2par

1.0 [1.0, 1.0] 1.15 [0.75, 
1.50]

0.98 [0.63, 
1.36]

0.77 [0.02, 
0.98]

0.51 [-0.14, 
1.00]

0 33

cywyk EC-RISM/
B3LYP/6-
311+G(d,p) 
-P2-phi-
noThiols-
2par

1.0 [1.0, 1.0] 1.17 [0.88, 
1.41]

1.06 [0.74, 
1.35]

0.73 [0.02, 
0.98]

0.56 [-0.08, 
1.00]

0 36
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In terms of ligand protonation states, there are two ways 
in which pKa prediction errors can influence the prediction 
accuracy for protein–ligand binding free energies as depicted 
in Fig. 11. The first scenario is when a ligand is present in 
aqueous solution in multiple protonation states (Fig. 11a). 
When only the minor aqueous protonation state contributes 
to protein–ligand complex formation, the overall binding 
free energy ( ΔGbind ) needs to be calculated as the sum of 
binding free energy of the minor state and the protonation 
penalty of that state ( ΔGprot ). ΔGprot is a function of both 
pH and pKa . A 1 unit of error in predicted pKa would lead 
to 1.36 kcal/mol error in overall binding free energy if the 
protonation state with the minor population binds the pro-
tein and this minor protonation state is correctly selected to 
model the free energy of binding; if the incorrect dominant 
protonation state for the complex is selected, the dominant 
contribution to the free energy of binding may be missed 
entirely, leading to much larger modeling errors in the bind-
ing free energy. Other scenarios—in which multiple protona-
tion states can be significantly populated in complex—can 
lead to more complex scenarios in which the errors in pre-
dicted pKa propagate in more complex ways. The equations 
in Fig. 11a show the overall free energy for a simple thermo-
dynamic cycle involving multiple protonation states.

In addition to the presence of multiple protonation states 
in the aqueous environment, multiple charge states can con-
tribute to complex formation (Fig. 11b). Then, the overall 
free energy of binding needs to include a Multiple Protona-
tion States Correction (MPSC) term ( ΔGcorr) [4]. MPSC is a 
function of pH, aqueous pKa of the ligand, and the difference 

between the binding free energy of charged and neutral spe-
cies ( ΔGC

bind
− ΔGN

bind
 ) as shown in Fig. 11b.

Using the equations in Fig. 11b, we can model the true 
MPSC ( ΔGcorr ) with respect to the difference between pH 
and the pKa of the ligand to see when this value has a signifi-
cant impact on the overall binding free energy. In Fig. 12, the 
true MPSC that must be added to ΔGN

bind
 is shown for ligands 

with varying binding affinity difference between protonation 
states ( ΔΔG = ΔGC

bind
− ΔGN

bind
 ). Fig. 12a shows the case 

of a monoprotic base in which the charged state has a lower 
affinity than the neutral state. Solid lines depict the accurate 
correction value. In cases where the pKa is lower than the 
pH, the correction factor disappears as the ligand fully popu-
lates the neutral state ( ΔGbind = ΔGN

bind
 ). As the pH dips 

below the pKa , the charged state is increasingly populated 
and ΔGcorr increases to approach ΔΔG.

It is interesting to note the pH-pKa range over which 
ΔGcorr changes significantly. It is often assumed that, for 
a basic ligand, if the pKa of a ligand is more than 2 units 
higher than the pH, only 1% of the population is in the neu-
tral state according to Henderson-Hasselbalch equation, 
and it is safe to approximate the overall binding affinity 
with ΔGC

bind
 . Based on the magnitude of the relative free 

energy difference between ligand protonation states, this 
assumption is not always correct. As seen in Fig. 12a, the 
responsive region of ΔGcorr can span 3 pH units for a system 
with ΔΔG = 1 kcal/mol , or 5 pH units for a system with 
ΔΔG = 4 kcal/mol . This highlights that the range of pKa 
values that impact binding affinity predictions is wider than 
2 pH units. Molecules with pKa  values several units away 

Fig. 11  Aqueous ligand pK
a
 can influence overall protein–ligand 

binding affinity. a When only the minor aqueous protonation state 
contributes to protein–ligand complex formation, the overall bind-
ing free energy ( ΔG

bind
 ) needs to be calculated as the sum of binding 

affinity of the minor state and the protonation penalty of that state. 

b When multiple charge states contribute to complex formation, the 
overall free energy of binding includes a multiple protonation states 
correction (MPSC) term ( ΔG

corr
 ). MPSC is a function of pH, aque-

ous pK
a
 of the ligand, and the difference between the binding free 

energy of charged and neutral species ( ΔGC

bind
− ΔGN

bind
)
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from the physiological pH can still impact the overall bind-
ing affinity significantly due to the MPSC.

Despite the need to capture the contributions of multi-
ple protonation states by including the MPSC in binding 
affinity calculations, inaccurate pKa predictions can lead to 
errors in ΔGcorr and overall free energy of binding predic-
tion. In Fig. 12a dashed lines show predicted ΔGcorr based 
on pKa error of − 1 units. We have chosen a pKa error of 
1 unit as this is the average inaccuracy expected from the 
pKa prediction methods based on the SAMPL6 Challenge. 
Underestimation of the pKa causes the ΔGcorr to be under-
estimated as well and will result in overestimated affinities 
(i.e., too negative binding free energy) for a varying range of 
pH − pKa values depending on the binding affinity difference 
between protonation states(ΔΔG ). In Fig. 12b dashed lines 
show how the magnitude of the absolute error caused by 
calculating ΔGcorr with an inaccurate pKa varies with respect 
to pH. Different colored lines show simulated results with 
varying binding free energy differences between protonation 
states. For a system whose charged state has higher binding 
free energy than the neutral state ( ΔΔG = 2 kcal/mol), the 
absolute error caused by underestimated pKa by 1 unit can 
be up to 0.9 kcal/mol. For a system whose charged state has 
an even lower affinity (more positive binding free energy) 
than the neutral state ( ΔΔG = 4 kcal/mol), the absolute error 
caused by underestimated pKa by 1 unit can be up to 1.2 
kcal/mol. The magnitude of errors contributing to overall 
binding affinity is too large to be neglected. Improving the 
accuracy of small molecule pKa prediction methods can help 
to minimize the error in predicted MPSC.

With the current level of pKa prediction accuracy as 
observed in SAMPL6 Challenge, is it advantageous to 
include the MPSC in affinity predictions that may include 
errors caused by pKa predictions? We provide a comparison 
of the two choices to answer this question: (1) Neglecting 
the MPSC completely and assuming overall binding affinity 
is captured by ΔGN

bind
 , (2) including MPSC with a potential 

error in overall affinity calculation. The magnitude of error 
caused by Choice 1 (ignoring MPSC) is depicted as a solid 
line in Fig. 12b and the magnitude of error caused by MPSC 
computed with inaccurate pKa is depicted as dashed lines. 
What is the best strategy? Error due to choice 1 is always 
larger than error due to choice 2 for all pH–pKa values. In 
this scenario, including the MPSC improves overall binding 
affinity prediction accuracy. The error caused by the inac-
curate pKa is smaller than the error caused by neglecting 
the MPSC.

We can also ask whether or not an MPSC calculated based 
on an inaccurate pKa should be included in binding affinity 
predictions in different circumstances, such as underesti-
mated or overestimated pKa values and charged states with 
higher or lower affinities than the neutral states. We tried to 
capture these circumstances in four quadrants of Fig. 12. In 

the case of overestimated pKa values (Fig. 12e–h), it can be 
seen that for most of the pH–pKa range, it is more advanta-
geous to include the predicted MPSC in affinity calculations, 
except a smaller window where the opposite choice would 
be more advantageous. For instance, for the system with 
ΔΔG = 2 kcal/mol and overestimated pKa (Fig. 12E) for the 
pH–pKa region between − 0.5 and 2, including the predicted 
ΔGcorr introduces more error than ignoring the MPSC.

In practice, we normally do not know the exact magnitude 
or the direction of the error of our predicted pKa . There-
fore, using simulated MPSC error plots to decide when to 
include MPSC in binding affinity predictions is not possible. 
However, based on the analysis of a case with 1 unit of pKa 
error, including the MPSC correction would be more often 
than not helpful in improving binding affinity predictions. 
The detrimental effect of pKa inaccuracy is still significant. 
Hopefully, future improvements in pKa prediction methods 
will improve the accuracy of the MPSC and binding affin-
ity predictions of ligands which have multiple protonation 
states that contribute to aqueous or complex populations. 
Being able to predict pKa  values with 0.5 units accuracy, 
for example, would significantly aid binding affinity models 
in computing more accurate MPSC terms.

The whole analysis presented in this section assumes 
that at least the dominant protonation state of the ligand 
is correctly included in the modeling of the protein–ligand 
complex. We have not discussed the case of omitting this 
dominant state from the free energy calculations entirely 
when it is erroneously predicted to be a minor state in solu-
tion. Such a mistake could be the most problematic, and the 
errors in estimated binding free energy could be very large.

Take‑away lessons from SAMPL6 pKa Challenge

The SAMPL6 pKa Challenge showed that, in general, pKa 
prediction accuracy of computational methods is lower than 
expected for drug-like molecules. Our expectation prior to 
the blind challenge was that well-developed methods would 
achieve prediction errors as low was 0.5 pKa units, and 
make reliable predictions of dominant charge and tautomer 
states in solution. There are many factors that complicate 
predicting pKa values of drug-like molecules: multiple titrat-
able sites, including tautomerization, frequent presence of 
heterocycles, and extended conjugation patterns, as well 
as high numbers of rotatable bonds and the possibility of 
intramolecular hydrogen bonds. Macroscopic pKa predic-
tions have not yet reached experimental accuracy (where the 
inter-method variability of macroscopic pKa measurements 
is around 0.5 pKa units [23]). There was not a single method 
in the SAMPL6 Challenge that achieved RMSE around 0.5 
or lower for macroscopic pKa predictions for the 24 mole-
cule set of kinase inhibitor fragment-like molecules. Smaller 
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RMSEs were observed in the microscopic pKa evaluation 
section of this study for some methods; however, the 8 mol-
ecule set used for that analysis poses a very limited dataset 
to reach conclusions about general expectations for drug-like 
molecules.

As the majority of experimental data was in the form 
of macroscopic pKa values, we had to adopt a numerical 
matching algorithm (Hungarian matching) to pair predicted 
and experimental values to calculate performance statistics 
of macroscopic pKa predictions. Accuracy, correlation, and 
extra/missing pKa prediction counts were the main metrics 
for macroscopic pKa evaluations. An RMSE range of 0.7 
to 3.2 pKa units was observed for all methods. Only five 
methods achieved RMSE between 0.7 and 1 pKa units, while 
an RMSE between 1.5 and 3 log units was observed for the 
majority of methods. All four methods of the LFER category 
and three out of 5 QSPR/ML methods achieved RMSE less 
than 1.5 pKa units. All the QM methods that achieved this 
level of performance included linear empirical corrections 
to rescale and unbias their pKa predictions.

Based on the consideration of multiple error metrics, we 
compiled a shortlist of consistently-well performing meth-
ods for macroscopic pKa evaluations. Two methods from 
QM+LEC methods, one QSPR/ML, two empirical methods 
achieved consistent performance according to many metrics. 
The common features of the two empirical methods were 
their large training sets (16,000–17,000 compounds) and 
commercial nature.

There were four submissions of QM-based methods that 
utilized the COSMO-RS implicit solvation model. While 
three of these achieved the lowest RMSE among QM-based 
methods (xvxzd, yqkga, and 8xt50) [46], one of them showed 
the highest RMSE (0hxtm (COSMOtherm_FINE17)). The 
comparison of these methods indicates that capturing the 
conformational ensemble of microstates, using high-level 
QM calculations, and including RRHO corrections contrib-
ute to better macroscopic pKa predictions. Linear empirical 
corrections applied QM calculations improved results, espe-
cially when the linear correction is calibrated for an experi-
mental dataset using the same level of theory as the deproto-
nation free energy predictions (as in xvxzd). This challenge 

also points to the advantage of the COSMO-RS solvation 
approach compared to other implicit solvent models.

Molecules that posed greater difficulty for pKa predictions 
were determined by comparing the macroscopic pKa predic-
tion accuracy of each molecule averaged over all methods 
submitted to the challenge. pKa prediction errors were higher 
for compounds with sulfur-containing heterocycles, iodo, 
and bromo groups. This trend was also conserved when only 
QM-based methods were analyzed. The SAMPL6 pKa data-
set consisted of only 24 small molecules which limited our 
ability to statistically confirm this conclusion, however, we 
believe it is worth reporting molecular features that coin-
cided with larger errors even if we can not evaluate the rea-
son for these failures.

Utilizing a numerical matching algorithm to pair experi-
mental and predicted macroscopic pKa values was a neces-
sity, however, this approach did not capture all aspects of 
prediction errors. Computing the number of missing or 
extra pKa predictions remaining after Hungarian matching 
provided a window for observing macroscopic pKa predic-
tion errors such as the number of macroscopic transitions or 
ionization states expected in a pH interval. In pKa evaluation 
studies, it is typical to just focus on pKa value errors evalu-
ated after matching and to ignore pKa prediction errors that 
the matching protocol can not capture [50–54]. Frequently 
ignored prediction errors include predicting missing or extra 
pKa s and failing to predict the correct charge states. The 
SAMPL6 pKa Challenge results showed sporadic presence of 
missing pKa predictions and very frequent tendency to make 
extra pKa predictions. Both indicate failures to capture the 
correct ionization states. The traditional way of evaluating 
pKa s that only focuses on the pKa value error after some sort 
of numerical match between predictions and experimental 
values may have motivated these types of errors as there 
would be no penalty for missing a macroscopic deprotona-
tion and predicting an extra one. This problem does not seem 
to be specific to any method category.

We used the eight molecule subset of SAMPL6 com-
pounds with NMR-based dominant microstate sequence 
information to demonstrate the advantage of evaluating pKa 
prediction on the level of microstates. Comparison of sta-
tistics computed for the 8 molecule dataset by Hungarian 
matching and microstate-based matching showed how Hun-
garian matching, despite being the best choice when only 
numerical matching is possible, can still mask errors in pKa 
predictions. Errors computed by microstate-based match-
ing were larger compared to numerical matching algorithms 
in terms of RMSE. Microscopic pKa analysis with numeri-
cal matching algorithms may mask errors due to the higher 
number of guesses made. Numerical matching based on 
pKa values also ignores information regarding the relative 
population of states. Therefore, it can lead to pKa s defined 
between very low energy microstate pairs to be matched 

Fig. 12  Inaccuracy of pK
a
 prediction (± 1 unit) affects the the accu-

racy of MPSC and overall protein–ligand binding free energy calcula-
tions to varying degrees based on aqueous pK

a
 and relative binding 

affinity of individual protonation states ( ΔΔG = ΔGC

bind
− ΔGN

bind
 ). 

All calculations are made for 25◦ C, and a ligand with a single basic 
titratable group. a, c, e, and g MPSC ( ΔG

corr
 ) calculated with true 

vs. inaccurate pK
a
 . b, d, f, and h Comparison of the absolute error to 

ΔG
bind

 caused by ignoring the MPSC completely (solid lines) vs. cal-
culating MPSC based in inaccurate pK

a
 value (dashed lines). These 

plots provide guidance on when it is beneficial to include MPSC cor-
rection based on pK

a
 error, pH–pK

a
 , and ΔΔG

◂



160 Journal of Computer-Aided Molecular Design (2021) 35:131–166

1 3

to the experimentally observable pKa between microstates 
of higher populations. Of course, the predicted pKa value 
could be correct however the predicted microstates would be 
wrong. Such mistakes caused by Hungarian matching were 
observed frequently in SAMPL6 results, and therefore we 
decided microstate-based matching of pKavalues provides a 
more realistic picture of method performance.

Some QM and LFER methods made mistakes in predict-
ing the dominant tautomers of the ionization states. Domi-
nant tautomer prediction seemed to be particularly difficult 
for charged tautomers compared with neutral tautomers. 
The easiest way to extract the dominant microstate sequence 
from predictions was to calculate the relative free energy 
of microstates at any reference pH, determining the lowest 
free energy state in each ionization state. Errors in dominant 
microstate predictions were very rare for neutral tautomers, 
but more frequent in cationic tautomers with + 1 charge of 
the 8 molecule set. SM14 was the molecule with the lowest 
dominant microstate prediction accuracy, while dominant 
microstates predictions for SM15 were perfect for all mol-
ecules. SM14 and SM15 both possess two experimental pKa s 
and a benzimidazole scaffold. The difference between them 
is the distance between the experimental pKa values, which 
is smaller for SM14. These results make sense from the per-
spective of relative free energies of microstates. Closer pKa 
values mean that the free energy difference between differ-
ent microstates is smaller for SM14, and therefore any error 
in predicting the relative free energy of tautomers is more 
likely to cause reordering of relative populations of micro-
states and impact the accuracy of dominant microstate pre-
dictions. It would have been extremely informative to evalu-
ate the tautomeric ratios and relative free energy predictions 
of microstates, however, the experimental data needed for 
this approach was not available. Tautomeric ratios could not 
be measured by the experimental methods available to us. 
Resolving tautomeric ratios would require extensive NMR 
measurements, but these measurements can suffer from 
lower accuracy especially when the free energy difference 
between tautomers is large.

The overall assessment of the SAMPL6 pKa Challenge 
captured non-stellar performance for microscopic and mac-
roscopic pKa predictions which can be detrimental to the 
accuracy of protein–ligand affinity predictions and other 
pH-dependent physicochemical property predictions such 
as distribution coefficients, membrane permeability, and 
solubility. Protein–ligand binding affinity predictions utilize 
pKa predictions in two ways: determination of the relevant 
aqueous microstates and quantification of the free energy 
penalty to reach these states. More accurate microscopic pKa 
predictions are needed to be able to accurately incorporate 
multiple protonation state corrections (MPSC) into overall 
binding affinity calculations.

We simulated the effect of overestimating or underesti-
mating pKa of a ligand by one unit on overall binding affinity 
prediction for a ligand where both cation and neutral states 
contribute to binding affinity. A pKa prediction error of this 
magnitude (assuming dominant tautomers were predicted 
correctly) could cause up to 0.9 and 1.2 kcal/mol error in 
overall binding affinity when the binding affinity of proto-
nation states are 2 or 4 kcal/mol different, respectively. For 
the case of 4 kcal/mol binding affinity difference between 
protonation states, the pH–pKa range that the error would 
be larger than 0.5 kcal/mol surprisingly spans around 3.5 
pH units. The worse case, of course, is where there is a sig-
nificant difference in binding free energy between the two 
protonation states, but we include the wrong one in our 
free energy calcuation. We demonstrated that the range of 
pH–pKa value that the MPSC needs to be incorporated in 
binding affinity predictions can be wider than the widely 
assumed range of 2 pH units, based on the affinity difference 
between protonation states. At the level of 1 unit pKa error, 
incorporating the MPSC would improve binding affinity pre-
dictions more often than not. If the microscopic pKa could be 
predicted with 0.5 pKa units of accuracy, MPSC calculations 
would be much more reliable.

There are multiple factors to consider when decid-
ing which pKa prediction method to utilize. These factors 
include the accuracy of microscopic and macroscopic pKa 
values, the accuracy of the number and the identity of ioni-
zation states predicted within the experimental pH interval, 
the accuracy of microstates predicted within the experimen-
tal pH interval, the accuracy of tautomeric ratio (i.e., relative 
free energy between microstates), how costly is the calcula-
tion in terms of time and resources, and whether one has 
access to software licenses that might be required.

All of the top-performing empirical methods were devel-
oped as commercial software that requires a license to run, 
and there were not any open-source alternatives for empiri-
cal pKa predictions. Since the completion of the blind chal-
lenge, two publications reported open-source machine learn-
ing-based pKa prediction methods, however, one can only 
predict the most acidic or most basic macroscopic pKa values 
of a molecule [55] and the second one is only trained for pre-
dicting pKa values of monoprotic molecules [56]. Recently, 
a pKa prediction methodology was published that describes 
a mixed approach of semi-empirical QM calculations and 
machine learning that can predict macroscopic pKa s of both 
mono- and polyprotic species [57]. The authors reported 
RMSE of 0.85 for the retrospective analysis performed on 
the SAMPL6 dataset.
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Suggestions for future blind challenge design 
and evaluation of pKa predictions

This analysis helped us understand the current state of the 
field and led to many lessons informing future SAMPL 
challenges. We believe the greatest benefit can be achieved 
if further iterations of small molecule pKa prediction chal-
lenges can be organized, creating motivation for improv-
ing protonation state prediction methods for drug-like 
molecules. In future challenges, it is desirable to increase 
chemical diversity to cover more common scaffolds [58] and 
functional groups [59] seen in drug-like molecules, gradu-
ally increasing the complexity of molecules.

Microscopic pKa measurements are needed for careful 
benchmarking of pKa predictions for multiprotic molecules.

Future challenges should promote stringent evaluation for 
pKa prediction methods from the perspective of microscopic 
pKa and microstate predictions. It is necessary to assess the 
capability of pKa prediction methods to capture the free 
energy profile of microstates of multiprotic molecules. 
This is critical because pKa predictions are often utilized to 
determine relevant protonation states and tautomers of small 
molecules that must be captured in other physical modeling 
approaches, such as protein–ligand binding affinity or distri-
bution coefficient predictions. Different tautomers can have 
different binding affinities and partition coefficients.

In this paper, we demonstrated how experimental micro-
state information can guide the analysis further than the typi-
cal pKa evaluation approach that has been used so far. The 
traditional pKa evaluation approach focuses solely on the 
numerical error of the pKa values and neglects the difference 
between macroscopic and microscopic pKa definitions. This 
is mainly caused by the lack of pKa datasets with micro-
scopic detail. To improve pKa and protonation state predic-
tions for multiprotic molecules, it is necessary to embrace 
the difference between macroscopic and microscopic pKa 
definitions and select strategies for experimental data collec-
tion and prediction evaluation accordingly. In the SAMPL6 
Challenge, the analysis was limited by the availability of 
experimental microscopic data as well. As is usually the 
case, macroscopic pKa values were abundant (24 molecules) 
and limited data on microscopic states was available (8 mol-
ecules), although the latter opened new avenues for evalua-
tion. For future blind challenges for multiprotic compounds, 
striving to collect experimental datasets with microscopic 
pKa s would be very beneficial, despite the high cost of these 
measurements. Benchmark datasets of microscopic pKa  val-
ues with assigned microstates are currently missing because 
experimental determination of these are much more expen-
sive and time-consuming than macroscopic pKa measure-
ments. This limits the ability to improve pKa and tautomer 
prediction methods for multiprotic molecules. If the collec-
tion of experimental microscopic pKa s is not possible due to 

time and resource costs of such NMR experiments, at least 
supplementing the more automated macroscopic pKa meas-
urements with NMR-based determination of the dominant 
microstate sequence or tautomeric ratios of each ionization 
state can create very useful benchmark datasets. This supple-
mentary information can allow microstate-based assignment 
of experimental to predicted pKa  values and a more realistic 
assessment of method performance.

Evaluation strategy for pKa predictions must be deter-
mined based on the nature of experimental pKa measure-
ments available.

If the only available experimental data is in the form of 
macroscopic pKa values, the best way to evaluate computa-
tional predictions is by calculating predicted macroscopic 
pKa from microscopic pKa predictions. With the conversion 
of microscopic pKa to macroscopic pKa s, all structural infor-
mation about the titration site is lost, and the only remaining 
information is the total charge of macroscopic ionization 
states. Unfortunately, most macroscopic pKa measure-
ments—including potentiometric and spectrophotometric 
methods—do not capture the absolute charge of the mac-
rostates. The spectrophotometric method does not measure 
charge at all. The potentiometric method can only capture 
the relative charge changes between macrostates. Only pH-
dependent solubility-based pKa estimations can differentiate 
neutral and charged states from one another. It is, therefore, 
very common to have experimental datasets of macroscopic 
pKa without any charge or protonation position information 
regarding the macrostates. This causes an issue of assign-
ing predicted and experimental pKa values before any error 
statistics can be calculated.

As delineated by Fraczkiewicz  [23], the fairest and most 
reasonable solution for the pKa matching problem involves 
an assignment algorithm that preserves the order of pre-
dicted and experimental microstates and uses the principle 
of smallest differences to pair values. We recommend Hun-
garian matching with a squared-error penalty function. The 
algorithm is available in SciPy package (scipy.optimize.
linear_sum_assignment) [35]. In addition to the analysis of 
numerical error statistics following Hungarian matching, at 
the very least, the number of missing and extra pKa pre-
dictions must be reported based on unmatched pKa values. 
Missing or extra pKa predictions point to a problem with 
capturing the right number of ionization states within the pH 
interval of the experimental measurements. We have dem-
onstrated that for microscopic pKa predictions, performance 
analysis based on Hungarian matching results in overly opti-
mistic and misleading results—instead the employed micro-
state-based matching provided a more realistic assessment 
when microstate data is available.

Lessons from the first pKa blind challenge will guide 
future decisions on challenge rules, prediction reporting 
formats, and challenge inputs.
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We solicited three different submission types in SAMPL6 
to capture all the necessary information related to pKa 
predictions. These were (1) macroscopic pKa values, (2) 
microscopic pKa values and microstate pair identities, and 
(3) fractional population of microstates with respect to pH. 
We realized later that collecting fractional populations of 
microstates was redundant since microscopic pKa values 
and microstate pairs capture all the necessary information 
to construct fractional population vs. pH curves  [26]. Only 
microscopic and macroscopic pKa values were used for the 
challenge analysis presented in this paper.

While exploring ways to evaluate SAMPL6 pKa Chal-
lenge results, we developed a better way to capture micro-
scopic pKa predictions, as presented in [26]. This alternative 
reporting format consists of reporting the charge and rela-
tive free energy of microstates with respect to an arbitrary 
reference microstate and pH. This approach presents the 
most concise method of capturing all necessary information 
regarding microscopic pKa predictions and allows calcula-
tion of predicted microscopic pKa s, microstate population 
with respect to pH, macroscopic pKa  values, macroscopic 
population with respect to pH, and tautomer ratios. Still, 
there may be methods developed to predict macroscopic 
pKa s directly instead of computing them from microstate 
predictions that justifies allowing a macroscopic pKa report-
ing format. In future challenges, we recommend collecting 
pKa predictions with two submission types: (1) macroscopic 
pKa values together with the charges of the macrostates and 
(2) microstates, their total charge, and relative free energies 
with respect to a specified reference microstate and pH. This 
approach is being used in SAMPL7.

In SAMPL6, we provided an enumerated list of micro-
states and their assigned microstate IDs because we were 
worried about parsing submitted microstates in SMILES 
from different sources correctly. There were two disadvan-
tages to this approach. First, this list of enumerated micro-
states was used as input by some participants which was not 
our intention. (Challenge instructions requested that predic-
tions should not rely on these microstate lists and only use 
them for matching microstate IDs.) Second, the first iteration 
of enumerated microstates was not complete. We had to add 
new microstates and assign them microstate IDs for a cou-
ple of rounds until reaching a complete list. In future chal-
lenges, a better way of handling the problem of capturing 
predicted microstates would be asking participants to specify 
the predicted protonation states themselves and assigning 
identifiers after the challenge deadline to aid comparative 
analysis. This would prevent the partial unblinding of pro-
tonation states and allow the assessment of whether meth-
ods can predict all the relevant states independently, without 
relying on a provided list of microstates. Predicted states 
can be submitted as mol2 files that represent the microstate 
with explicit hydrogens. The organizers must only provide 

the microstate that was selected as the reference state for the 
relative microstate free energy calculations.

In the SAMPL6 pKa Challenge, there was not a require-
ment that participants should report predictions for all com-
pounds. Some participants reported predictions for only a 
subset of compounds, which may have led these methods to 
look more accurate than others due to missing predictions. In 
the future, it will be better to allow submissions of only com-
plete sets for a better comparison of method performance.

A wide range of methods participated in the SAMPL6 
pKa Challenge—from very fast QSPR methods to QM meth-
ods with a high-level of theory and extensive exploration 
of conformational ensembles. In the future, it would be 
interesting to capture computing costs in terms of average 
compute hours per molecule. This can provide guidance to 
future users of pKa prediction methods for selection of which 
method to use.

Some molecules suffered from less accurate pKa predic-
tions than others in SAMPL6. To understand the reason for 
these failures better, it can be helpful to ask participants who 
submit empirical prediction methods to inspect their training 
sets for the presence of similar compounds and optionally 
report it.

It is advantageous to field associated challenges with 
common set of molecules for different physicochemical 
properties.

Future blind challenges can maximize learning oppor-
tunities by evaluating predictions of different physico-
chemical properties for the same molecules in consecutive 
challenges. In SAMPL6, we organized both pKa and log P 
challenges. Unfortunately only a subset of compounds in 
the pKa datasets were suitable for the potentiometric log P 
measurements [8]. Still, comparing prediction performance 
of common compounds in both challenges can lead to ben-
eficial insights especially for physical modeling techniques if 
there are common aspects that are beneficial or detrimental 
to prediction performance. For example, in SAMPL6 pKa 
and log P Challenges COSMO-RS and EC-RISM solvation 
models achieved good performance. Having access to a vari-
ety of physicochemical property measurements can also help 
the identification of error sources. For example, dominant 
microstates determined for pKa challenge can provide infor-
mation to check if correct tautomers are modeling in a log P 
or log D challenge. pKa prediction is a requirement for log D 
prediction and experimental pKa values can help diagnosing 
the source of errors in log D predictions better. The physical 
challenges in SAMPL7, for which the blind portion of the 
challenges have just concluded on October 8th, 2020, follow 
this principle and include both pKa , log P, and membrane 
permeability properties for a set of monoprotic compounds. 
We hope that future pKa challenges can focus on multiprotic 
drug-like compounds with microscopic pKa measurements 
for an in-depth analysis.
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Conclusion

The first SAMPL6 pKa Challenge focused on molecules 
resembling fragments of kinase inhibitors, and was intended 
to assess the performance of pKa predictions for drug-like 
molecules. With wide participation, we had an opportunity 
to prospectively evaluate pKa predictions spanning various 
empirical and QM based approaches. In addition to com-
munity participants, a small number of popular pKa predic-
tion methods that were missing from blind submissions were 
added as reference calculations after the challenge deadline.

Practical experimental limitations restricted the overall 
size and microscopic information available for the blind 
challenge dataset [8]. The experimental dataset consisted of 
spectrophotometric measurements of 24 molecules, some of 
which were multiprotic. For a subset of molecules there was 
also NMR data to inform the dominant microstate sequence, 
though microscopic pKa measurements were not performed. 
We conducted a comparative analysis of methods repre-
sented in the blind challenge in terms of both macroscopic 
and microscopic pKa prediction performance avoiding any 
assumptions about the interpretation of experimental pKas.

Here, we used Hungarian matching to assign predicted 
and experimental values for the calculation of accuracy and 
correlation statistics, because the majority of experimental 
data was macroscopic pKa values. In addition to evaluating 
error in predicted pKa values, we also reported the mac-
roscopic pKa errors that were not captured by the match 
between experimental and predicted pKa values. These 
were extra or missing pKa predictions which are important 
indicators that predictions are failing to capture the correct 
ionization states.

We evaluated microscopic pKa predictions utilizing 
the experimental dominant microstate sequence data of 
eight molecules. This experimental data allowed us to use 
microstate-based matching for evaluating the accuracy of 
microscopic pKa values in a more realistic way. We have 
determined that QM and LFER predictions had lower accu-
racy in determining the dominant tautomer of the charged 
microstates than the neutral states. For both macroscopic and 
microscopic pKa predictions we have determined methods 
that were consistently well-performing according to multiple 
statistical metrics. Focusing on the comparison of molecules 
instead of methods for macroscopic pKa prediction accuracy 
indicated molecules with sulfur-containing heterocycles, 
iodo, and bromo groups suffered from lower pKa prediction 
accuracy.

The overall performance of pKa predictions as captured 
in this challenge is concerning for the application of pKa 
prediction methods in computer-aided drug design. Many 
computational methods for predicting target affinities and 
physicochemical properties rely on pKa predictions for 

determining relevant protonation states and the free energy 
penalty of such states. 1 unit of pKaerror is an optimistic 
estimate of current macroscopic pKa predictions for drug-
like molecules based on SAMPL6 Challenge where errors in 
predicting the correct number of ionization states or deter-
mining the correct dominant microstate were also common 
to many methods. In the absence of other sources of errors, 
we showed that 1 unit over- or underestimation of the pKa 
of a ligand can cause significant errors in the overall bind-
ing affinity calculation due to errors in multiple protonation 
state correction factor.

The SAMPL6 GitHub Repository contains all informa-
tion regarding the challenge structure, experimental data, 
blind prediction submission sets, and evaluation of methods. 
The repository will be useful for future follow up analysis 
and the experimental measurements can continue to serve 
as a benchmark dataset for testing methods.

In this article, we aimed to demonstrate not only the com-
parative analysis of the pKa prediction performance of con-
temporary methods for drug-like molecules, but also to pro-
pose a stringent pKa prediction evaluation strategy that takes 
into account differences in microscopic and macroscopic pKa 
definitions. We hope that this study will guide and motivate 
further improvement of pKa prediction methods.
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