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Abstract 
Conformational equilibria are at the heart of drug design, yet their energetic description is often hampered by the insuffi-
cient accuracy of low-cost methods. Here we present a flexible and semi-automatic workflow based on quantum chemistry, 
ReSCoSS, designed to identify relevant conformers and predict their equilibria across different solvent environments in the 
Conductor-like Screening Model for Real Solvents (COSMO-RS) framework. We demonstrate the utility and accuracy of the 
workflow through conformational case studies on several drug-like molecules from literature where relevant conformations 
are known. We further show that including ReSCoSS conformers significantly improves COSMO-RS based predictions of 
physicochemical properties over single-conformation approaches. ReSCoSS has found broad adoption in the in-house drug 
discovery and development work streams and has contributed to establishing quantum-chemistry methods as a strategic 
pillar in ligand discovery.

Graphic abstract
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Introduction

The prediction of low-energy conformers of drug-like 
organic molecules is a long-standing problem in computa-
tional chemistry. Designing ligands towards optimal bind-
ing to protein sites of different size and polarity, hydration 
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patterns and plasticity, while simultaneously optimizing 
physicochemical and pharmacokinetic properties, is the 
essential challenge in drug design [1, 2] and relies in no 
small part on the correct description of tautomeric or proto-
meric forms, each featuring their own associated conforma-
tional space. Add to this the drug development challenge of 
polymorphism (ability of a molecule to crystallize in more 
than one crystal form) in crystalline solid dosage forms [3, 
4] and the need to control potential conformational polymor-
phic transformations [5], it is clear that a method capable of 
accurately and routinely identifying relevant solution con-
formers of drug-like molecules would be of great value in 
the pharmaceutical industry.

Finding “relevant conformations” is a non-trivial task 
that may be roughly split into two parts: sampling the con-
formational space and ranking the conformers in terms of 
their relative free energy in a particular solvent or set of sol-
vents. Keeping in mind that conformational flexibility is an 
important aspect to ligand binding, it is not surprising that 
conformer generation has been studied extensively in the 
field of computer-aided drug design [6, 7]. Recent assess-
ments of available open-source tools as well as commercial 
algorithms have demonstrated somewhat converging per-
formance of the most widely used generators in recapitulat-
ing protein-bound ligand conformations among the first few 
hundred conformers generated [8, 9]. With a selection of 
decent conformer generators to choose from, we focused our 
efforts on the second step: ranking the conformer energies 
in solution. Since conformer weights depend exponentially 
on the relative free energies (as described by the Boltzmann 
distribution), relatively small errors in calculated energies 
can result in large predicted shifts of the conformer equilib-
rium. Most papers studying the performance of conformer 
generators do not in fact discuss conformer energetics but 
rather focus on the ability of the algorithms to recapitulate 
known protein-bound conformations from crystal structures 
within a certain RMSD threshold (e.g. [8, 10]). In manu-
scripts where there is a focus on energetics, unsurprisingly, 
most current small-molecule force fields are shown not to 
be accurate enough [11, 12]. A very recent exhaustive study 
spanning force fields, machine-learning potentials, semiem-
pirical methods, wave-function methods and density func-
tional theory suggests that calculations at dispersion-cor-
rected DFT level may provide a good compromise between 
speed and accuracy [13]. This is particularly crucial in the 
fast-paced pharmaceutical industry environment. Modelling 
solvation effects accurately is another important piece of 
the puzzle for use in drug-design applications. With explicit 
solvation methods being prohibitively expensive at the DFT 
level, we chose to model solvent effects using COSMO-
RS [14–16] which has been shown to afford good perfor-
mance when combined with DFT-D for the calculation of 
host–guest complexes [17] and also allows the calculation 

of physicochemical properties like partition coefficients and 
ionization constants [18–21].

Drug-like molecules do not necessarily bind their biologi-
cal targets in a minimum-energy conformation [22, 23] so it 
is important to conduct thorough conformational sampling. 
Considering the rather inaccurate energies of small-molecule 
force fields that are used to drive the conformer generators, 
this often means having to postprocess hundreds of confor-
mations per compound of interest in a refinement step with 
more accurate quantum chemical methods including solva-
tion. The COSMOconf workflow, for instance, employs a 
hierarchical scheme starting from force field geometries and 
energies and then conducts energy assessments and geom-
etry optimizations at increasingly involved levels of theory 
[24, 25]. Depending on the thresholds set in such a workflow 
(for example, number of conformers to be optimized at the 
highest level of theory), the resulting calculation times are 
rather long; on the other hand, setting too stringent cut-off 
values on the number of conformers to be considered during 
the workflow runs the risk of discarding relevant conform-
ers that have higher energies at lower level of theory. We 
therefore set out to design a different workflow to allow the 
identification of only a handful of diverse and representa-
tive solution conformers per molecule without setting strict 
cut-offs on numbers and to only optimize those relevant low-
energy conformations with full DFT-D. Doing this required 
the introduction of a novel clustering and selection strategy 
employed after conformer generation. In accordance with 
its purpose, the workflow is dubbed Relevant Solution Con-
former Sampling and Selection (ReSCoSS) and has found 
considerable adoption in our in-house discovery and devel-
opment work streams.

ReSCoSS workflow architecture

We aimed to design a flexible and semi-automatic workflow 
that selects a relevant subset of conformers from a large con-
former ensemble for full geometry optimization at DFT level 
and subsequent COSMO-RS energy calculations. A graphi-
cal overview is presented in Fig. 1a; further computational 
details are given at the end of the manuscript. ReSCoSS is 
a Python workflow that can use 2D SDF as input, which 
allows the user to sketch the molecule of interest in tools 
like ChemDraw or alternative sources of 2D coordinates. 
In a first step, the molecule set is split by tautomers (if tau-
tomers exist) and initial 3D coordinates are generated using 
CORINA [26–28]. The next step, conformer generation, is 
interfaced with three tools, Schrodinger’s Macromodel [29], 
CCG’s MOE LowModeMD [30, 31], and RDKit ETKDG 
[32, 33] as open-source alternative, and these tools can be 
used on their own or in combination. ReSCoSS also allows 
inputting a user-defined set of conformers in case that is 



401Journal of Computer-Aided Molecular Design (2021) 35:399–415	

1 3

desired. This flexibility has proven to be quite useful in 
practice as using multiple tools can avoid sampling issues 
introduced by any particular conformer generator. The set of 
resulting conformers is handled as a 3D multi-SD file within 
ReSCoSS and in the next step all conformers of this set are 
optimized using GFN2-xTB [34] using the GBSA-water 
model with runtimes in the order of 1–2 s per conformer for 
a drug-like molecule.

The second step, clustering and reduction, constitutes the 
heart of the workflow and sets ReSCoSS apart from other 
available tools. We noticed that for relatively large drug-
like molecules the usual hierarchical strategy of retaining 
large sets of low-energy conformers at low level of theory 
(e.g. force-fields or semiempirics methods), then reducing in 
further optimization steps and finally running more sophisti-
cated calculations on the remaining set is often tedious and 
computationally expensive. However, reducing the size of 
the conformer set too early can be dangerous as well since 
it runs the risk of discarding relevant conformers early on 
and ending up with a non-representative set of conformers 
in the output. In some cases, especially when calculating 
ionized or very polar compounds, the limited accuracy in 
the description of solvation effects with fast models such as 
GBSA can also lead to problems. With ReSCoSS we aimed 
to tackle both issues: we introduce COSMO-RS solvation 

early in the workflow, expecting that this will lead to a more 
accurate energy description of the conformations; and we 
use a clustering scheme based on quantum-derived descrip-
tors to define diverse shape classes out of which low-lying 
conformers are picked for further processing. The aim was to 
ensure that the selected subset to be used further for DFT-D 
optimization is diverse, so that it contains “extended” and 
“folded” conformations, those with and without intramo-
lecular H-bonds, both “cis” and “trans” conformations, for 
example.

After the conformer set is fully optimized using the fast 
GFN2-xTB/GBSA method, we conduct single-point energy 
calculations for each conformer at the B97-3c/COSMO [35, 
36] level of theory using Turbomole [37, 38]. B97-3c [35] 
is a relatively recent refit of the B97-D functional com-
bined with a reduced triple-ζ basis (mTZVP) and strikes 
an ideal balance between speed and accuracy [13]. These 
single-point calculations take about two minutes per con-
former. As we generate COSMO files for each conformer 
at this level, next to standard descriptors used for clustering 
such as RMSD we also evaluated descriptors derived from 
the σ-surfaces in the COSMO-RS framework [14–16] to 
characterize conformer shapes, as opposed to simple pure-
geometry descriptors. We tested several different descriptor 
combinations and found that the dipole moment, the sigma 

Fig. 1   The ReSCoSS workflow. a Graphical scheme highlighting the 
main steps in the workflow. b A closer look at the descriptors used 
in clustering using N-(((4,6-dimethylpyrimidin-2-yl)amino)carbono-
thioyl)benzamide (CSD: AWUBID) as an example molecule. Con-
formers shown include the crystallographic conformation (green 

carbons) overlaid onto the lowest-energy conformer (c0) from the 
conformer set (grey carbons) alongside other conformers. For each 
conformer, the values of the four descriptors used in the k-means 
clustering are shown
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H-bond donor moment, the sigma H-bond acceptor moment 
and the sigma total surface area (all four calculated after the 
B97-3c/COSMO single point calculations from the COSMO 
output file) were the four most relevant descriptors. In com-
bination, these four could well capture and distinguish the 
typical conformer shapes of drug-like molecules.

Using N-(((4,6-dimethylpyrimidin-2-yl)amino)carbono-
thioyl)benzamide (CSD: AWUBID) [39] as an example mol-
ecule, we show in Fig. 1b how well these descriptors can dif-
ferentiate five different classes of conformations that contain 
different intramolecular H-bonding patterns and extended 
vs folded shapes. Conformers c0 and c1 exhibit the same 
intramolecular H-bond but differ in how extended they are, 
which is captured and differentiated by the sigma surface 
descriptor. Conformer c3 also exhibits an intramolecular 
H-bond, however, a different one involving the carbonyl, 
which causes a change in the molecular dipole moment. 
Conformers c2 and c4 do not have intramolecular H-bonds 
and hence have larger sigma H-bond acceptor and donor 
moments than the other conformations featuring an intra-
molecular H-bond. Conformers c2 and c4 are distinguished 
with a different COSMO surface area as the former is quite 
folded in shape and the latter completely extended.

Using these four COSMO-derived shape descriptors as 
features, we use the k-means clustering algorithm as imple-
mented in scikit-learn [40] in Python to cluster the con-
former ensemble in a four-dimensional shape space. The 
parameter k determines the number of clusters to be used 
in the clustering procedure. k is read as an input variable in 
ReSCoSS and it is not straightforward to establish its ideal 
value. Usual procedures in machine-learning applications to 
determine k, like the so-called elbow method or the silhou-
ette method, are less suitable in our case as the shape-space 
clustering is just one part of the conformer selection proce-
dure. We need to add the conformer energies and select the 
low-energy conformers from each shape cluster, rather than 
some representative average conformer from each cluster.

As we are interested in relevant solution conformers, it 
is decisive that we use solution energies during the con-
former selection. We use the chemical potential, calculated 
by COSMOtherm [41, 42] (at the TZVP level) in ten differ-
ent media: water, DMSO, cyclohexane, 1-octanol, metha-
nol, chloroform, acetone, perfluoropyrrole, acetonitrile and 

vacuum. These solvents are chosen to ensure maximum 
coverage of possible dielectrics and H-bonding capabili-
ties of the solvents. The example of AWUBID conformers 
in Table 1 shows that although conformer c0 is identified 
as the lowest-lying conformer in all solvents, the second-
best ranked conformer varies between the solvents. Note 
that there are significant conformer free energy differences 
between different COSMO-RS solvents and also compared 
to the electronic energy from B97-3c/COSMO alone; this 
ability of COSMO-RS to differentiate clearly between the 
solvents by taking into account more than just the dielec-
tric environment sets it apart from simpler implicit solvent 
models.

Having partitioned the whole conformer set into k clusters 
using the k-means procedure described above, we select N 
conformers from each cluster by their COSMO-RS chemi-
cal potential in each of the solvents. The two parameters 
k and N thus determine the conformer selection out of the 
total ensemble. Setting k = 1 corresponds to bypassing the 
shape clustering and simply selecting conformers based on 
their chemical potentials in the ten solvents. By varying the 
k and N combinations, denoted kN set in the following for 
simplicity, we can test how the conformer selection changes 
if we place more emphasis on shape diversity (by increas-
ing k) or more emphasis on the COSMO-RS free energy 
landscape (increasing N). We expect that the ideal combi-
nation of k and N is dependent on the molecule of interest. 
Figure 2 visualizes the clustering step for a highly flexible 
drug, the histamine H2 receptor antagonist Famotidine [43]. 
In this case, the first step of the workflow (combined MOE 
and Macromodel conformer search) generates a conformer 
set of 404 conformers, featuring a large diversity of shapes. 
The clustering step for the case of k = 5 clusters is shown in 
Fig. 2a, where we show only two out of the four descriptor 
dimensions for visualization purposes (dipole moment and 
COSMO surface) together with the computed free energies 
in water.

In order to compare different kN combinations we use 
violin plots to visualize the spread in the descriptors. These 
are essentially one-dimensional histograms and allow easy 
comparison of different distributions. Figure 2b shows vio-
lin plots of the spread in the H-bond donor and acceptor 
moment descriptors in the full famotidine conformer set and 

Table 1   Energetics of N-(((4,6-
dimethylpyrimidin-2-yl)amino)
carbonothioyl)benzamide 
(AWUBID) conformers

AWUBID 
Conf. #

ΔE (B97-3c/COSMO) 
(kcal/mol)

ΔG (COSMO-RS) in solvent (kcal/mol)

Acetonitrile Chloroform Water Methanol

c0 0.00 0.00 0.00 0.00 0.00
c1 2.77 1.97 2.24 2.80 1.81
c2 5.70 2.56 4.38 2.36 1.96
c3 1.58 2.07 2.40 2.64 1.52
c4 8.52 6.48 10.94 4.37 5.55
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in subsets of different kN. The numbers in brackets indicate 
the total number of conformers in each set. For example, 
the notation k1N3 (#8) indicates a conformer set where no 
shape clustering was performed (k = 1) and the three lowest 
conformers were selected in any of ten solvents (N = 3), in 
this case resulting in eight selected conformers. Although we 
use ten different COSMO-RS solvents in the selection and 
pick the lowest-lying three conformers in each solvent (N = 
3), significantly less than the maximum of 30 conformers 
are chosen in this case. In general, the relative ranking in 
terms of free energies among the solvents is often conver-
gent for drug-like molecules, with one class of conformer 
being dominant in the more polar, hydrogen-bonding sol-
vents such as water and methanol and another considered 
dominant in the apolar environment simulated by chloro-
form, cyclohexane or vacuum/gas phase. Once a conformer 
has been picked in one solvent environment, it is not picked 
again even if it corresponds to the N lowest-lying conformers 
in other solvents in order to avoid duplication.

From the plots in Fig. 2b it is clear that the k1N3 con-
formers have a small diversity in the H-bond donor and 
acceptor moments compared to the full set. With larger k, 

as expected, we obtain more diverse sets, which are close to 
reproducing the diversity seen in the whole conformer set.

The third step of the ReSCoSS workflow is simply a full 
geometry optimization of all conformers in the selected kN 
set at the B97-3c/COSMO level. Because this step is rate-
limiting in terms of the total runtime of the workflow (taking 
up to 6 h per conformer), we tested several GGA and mGGA 
functionals (BLYP, BP86, PBE, TPSS) in combination with 
dispersion corrections and double- and triple-ζ basis sets 
and found that B97-3c was the best compromise in terms of 
accuracy and speed. Finally, a single point at the COSMO-
RS FINE19 level (BP86-D3(BJ)/TZVPD/COSMO-FINE) is 
conducted. This is needed as input for COSMOtherm evalu-
ations at the FINE19 level. Using COSMOtherm, calculation 
of Boltzmann weights in different solvents (chosen by the 
user) is conducted and various properties are calculated if 
desired, for example logP(o/w).

For Famotidine both the k1N10 and the k5N2 set contain 
three of the four known crystallographic conformations, 
as given in the CSD with refcodes FOGVIG01 and FOG-
VIG07 (extended conformations) as well as FOGVIG02 and 
FOGVIG03 (folded conformations), shown in Fig. 2c. At 
the selection step, the four experimental crystallographic 

Fig. 2   Conformer clustering 404 conformers of Famotidine. a 3D 
scatter plot showing the dipole moment, COSMO surface area, and 
ΔG (COSMO-RS water) energies in water for k = 5. The different 
conformer clusters are represented by different coloring; red crosses 
indicate the experimentally known solid-state conformers. b Violin 
plots of the H-bond donor and acceptor moment descriptor spreads 
in the full conformer set and for selected kN combinations. The num-
bers in brackets indicate the number of conformers chosen for full 

optimization in each set. c Relevant famotidine conformations: four 
conformations from the CSD (green carbons) overlaid onto the most 
similar ReSCoSS conformer from the k1N10 set (grey carbons). Con-
formers #165 and #224 are the lowest-energy conformers in water 
at the selection step and final COSMO-RS energy assessment after 
B97-3c/COSMO optimization, respectively. Energies given are at 
COSMO-RS FINE19 level relative to the FOGVIG01 conformer, for 
water and acetonitrile
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conformations are located in three different clusters (marked 
with red crosses in Fig. 2a). Conformer c165 is the lowest 
energy conformer in water at the COSMO-RS (TZVP) level 
of theory before full optimization, however it is considerably 
less favored in energy after the full optimization (see Fig. 2c) 
and conformer c224 is the overall lowest in the set. This 
observation supports our strategy of not solely relying on 
calculated free energies during the workflow but combining 
it with shape diversity as well.

Assessing k and N through conformational 
case studies

Having established the principle of our conformer clustering 
and selection strategy, we next analyze the performance of 
ReSCoSS in detail on three diverse molecules as a function 
of the kN clustering. To this end, we fully optimized all 
conformers of the molecules at the B97-3c/COSMO level 
followed by COSMO-RS FINE19 single point energy cal-
culations. This allows us to assess how well our selection 
strategy is capable of picking the relevant conformers and 
the lowest-energy conformers in solution. For all three mol-
ecules there are small-molecule single crystal X-ray struc-
tures available and crucially, for two out of three there is 
solution NMR data.

Analyzing conformational preferences of small drug-
like molecules in the solid state, e.g. from crystallographic 
databases like the CSD [44], can provide an understanding 
of ground-state conformations and is often used to drive 
design strategies [45]. While these analyses are undoubt-
edly of great utility and have the advantage of relying on 
experimental data, they reflect behavior in the solid state and 
not necessarily conformations in solution. For example, it is 

known that molecules can crystallize in rather strained con-
formations if favorable packing interactions such as hydro-
gen bonding in the crystal lattice are involved. Molecules 
can also crystallize in two or more very different confor-
mations showing large free energy difference as computed 
on the isolated conformers [4]. Accordingly, throughout the 
development of ReSCoSS, we used available crystal struc-
tures as reference structures that we aim to reproduce in the 
chosen kN subsets as they are clearly relevant but kept in 
mind that crystal structures do not always reflect the solu-
tion-state minimum.

One such example where the experimental crystallo-
graphic conformer exhibits a rather unusual cis carbamate 
conformation is the dipeptide Boc-Phe-m-aminobenzoic 
acid, CSD refcode YASNUD [46]. Other related dipeptide 
molecules with the aminobenzoic acid moiety in the para 
or ortho position crystallize in the more usual trans carba-
mate conformation, as observed in CSD entries TIFJAV and 
TIFJEZ. Out of the 334 conformers generated in the initial 
step for YASNUD, the solid-state cis carbamate conforma-
tion is ranked #52 at the selection step and clearly k > 1 
clusters are needed to select and carry over the experimental 
conformation into the geometry optimization step. Figure 3 
shows the relevant crystallographic and low-energy con-
formers, as well as the final energy distribution in different 
kN sets, visualized with violin plots. Only the k4N3 and the 
k10N1 sets include the crystallographic conformation. The 
best cis and best trans carbamate conformations in the crys-
tallization solvent methanol are completely extended ones. 
The lowest-energy conformer in methanol in the final set 
is only picked by the k10N1 set. Importantly, the cluster-
ing results in a clear and significant reduction by more than 
2 kcal/mol of the median energy in each kN set, compared 
to the full set. Notably, the k10N1 set (selection focusing 

Fig. 3   Relevant conformations of YASNUD [46]. a Crystal struc-
ture (green carbons) overlaid onto the most similar structure from 
the conformer set after B97-3c/COSMO optimization (grey carbons). 
In addition, the lowest-energy conformers at the selection and final 
steps are also shown, including their COSMO-RS FINE19 energies in 

methanol, relative to the crystallographic conformer. b Final energy 
spread in methanol at the COSMO-RS FINE19 level for different kN 
subsets. The energy of the crystallographic conformation is high-
lighted with a yellow horizontal line. The asterisks indicate the sets 
that selected the exact crystal conformation
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on shape diversity at the selection step) even has a lower 
median energy at the final energy level than the k1N10 set 
(selection only based on energies at the selection step). This 
indicates that the shape clustering does not introduce unre-
alistic high-energy conformations into the subsets but indeed 
results in low-energy diverse conformer sets.

Next, we looked at Compound 28 from [47] which 
describes a series of α-methylpiperidine carboxamide dual 
orexin receptor antagonists (DORA). In the absence of pro-
tein crystal structure for the orexin receptor, elucidating 
the conformational behavior of active ligands proved to be 
paramount and the minimization of 1,3-allylic strain was an 
important design principle. For DORA-Cpd28, a solution 
NMR structure in chloroform is described as reference in 
addition to a small-molecule X-ray crystal structure, CSD 
refcode VATBID. The two conformations are distinct as 
shown in Fig. 4a.

For DORA-Cpd28, the ReSCoSS full conformer set 
consisted of 216 conformations. Figure 4b shows the over-
lays of the selected conformers in different sets of kN. As 
expected, the k1N3 set results in a set of low diversity 

where several conformers are very similar. Picking N = 10 
low-energy conformers at the selection step without shape 
clustering (k1N10) results in a selection of 17 out of the 216 
conformers. In contrast, with the k3N3 selection strategy 16 
conformers are selected yet the shape diversity is clearly 
higher than in the k1N10 case and the median energy of 
the set is similar in both cases as evidenced by the energy 
violin plots in Fig. 4c. In this case, we chose two differ-
ent solvents for analysis, water and chloroform, the latter 
being relevant for the NMR conformation as chloroform 
was the solvent used in the NMR experiments. Again, the 
crystallographic conformation is used as a reference for the 
relative conformer free energies in each set and is indicated 
by the yellow horizontal line in the plots. There is another 
X-ray-like conformer in the set, indicated by the red hori-
zontal line, featuring the same shape except for a rotated 
fluoropyridine ring, which lies 0.2 kcal/mol and 1.7 kcal/
mol above the X-ray conformer in water and chloroform, 
respectively. The exact X-ray conformer is only picked in 
the k1N10 and k3N3 sets with k3N3 being most attractive 
from a diversity and subset conformer numbers standpoint. 

Fig. 4   ReSCoSS analysis of dual orexin receptor antagonist Cpd28. a 
Representative conformers from solid state (CSD refcode VATBID) 
and those fulfilling the ROE restraints from solution NMR [47] as 
well as the lowest-lying conformer in water. The conformers are all 
overlaid on the central piperidine moiety. b Overlay of the selected 
conformer subsets for the k1N3, k1N10 and k3N3 combinations, 
showing that k3N3 selects a more diverse set than k1N10 while the 
overall number of conformers is similar (16 vs. 17). c Relative free 
energy spread according to COSMO-RS FINE19 in water and in 

chloroform for the different kN combinations. In brackets the number 
of conformations in each set is given. The free energy of the X-ray 
conformation is used as reference (yellow line at y = 0 kcal/mol); the 
conformer with rotated fluoropyridine group is denoted “X-ray-like” 
and its energy is indicated with the red horizontal line. Two confor-
mations fulfilling the NMR constraints are marked in blue and green. 
The sets annotated with an asterisk indicate sets that contain both 
conformers known from experiment
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The alternative “X-ray-like” conformer is picked in all sets 
with k = 3, 4, or 5. Larger values of k do not select any of 
the two X-ray-like conformers. In addition, the k10N1 set 
also does not pick the best conformer in water that exhib-
its a stacking interaction between the fluoropyridine and 
pyrimidine rings. Two very similar conformers that differ 
by a rotation of the fluoropyridine moiety both satisfy the 
NMR constraints and are indicated by blue and green hori-
zontal lines in Fig. 4. Interestingly, these two related confor-
mations are quasi equienergetic in water and approximately 
2 kcal/mol more favorable than the X-ray conformation. 
However, in chloroform one (blue) is more favorable than 
the other by about 2.1 kcal/mol, most likely because the 
rotation of the pyridine places the polar nitrogen in a less 
shielded position in the less favored conformer. The more 
favorable conformer in line with NMR constraints is picked 
in all tested kN sets, as is the alternative NMR conforma-
tion. It is very encouraging that ReSCoSS predicts the best 
conformer in chloroform correctly in line with the NMR 
results from [47].

In the final example, we studied a charged molecule, 
Compound 10 from a series of antagonists of X-linked 
inhibitor of apoptosis proteins (XIAP) [48], denoted XIAP-
Cpd10 in the following, to assess the performance of ReS-
CoSS for non-neutral species. There is solution NMR data 
and an X-ray crystal structure of Cpd10 bound to XIAP-
BIR3 available as reference (PDB: 5M6E). The binding 
pose in the protein pocket requires a folded conforma-
tion of XIAP-Cpd10 featuring intramolecular π-stacking 
between the pyrazole and amide moieties. In NMR studies 
in a phosphate buffer, ROEs consistent with a folded con-
formation were observed, leading the authors to conclude 
that the bound conformation is also the dominant conforma-
tion in water. We observe little dependence of the overall 
performance on varying k and N. All our kN sets picked the 
crystallographic conformation with the exception of k10N1. 
The energy violin plots among the different low- and mid- k 

sets are quite similar, as shown in Fig. 5b. Although the 
crystallographic conformation is indeed a low-energy con-
formation, we find that according to COSMO-RS, it is not 
the minimum-energy conformation in water environment as 
reported in [48]. We find that an additional similar but fur-
ther folded conformation, shown in Fig. 5a, with the phenyl 
ring rotated towards the 4-methyl pyrazole, lies 2.2 kcal/mol 
lower in energy. Indeed, this conformation is also consist-
ent with the distances observed in the ROESY experiment 
from [48] and might even explain the observed data better 
since the relevant H1-H7 and H2-H8 distances are shorter 
for our predicted conformation compared to the X-ray bind-
ing pose.

Although the ideal choice of k and N is not always the 
same and does depend on the molecule studied and its 
conformational landscape, the case studies shown here 
demonstrate two trends, namely that a very low k (e.g. 1 
or 2) is not ideal because it usually leads to very uniform-
looking conformer subsets while choosing a high value for 
k with associated small N leads to diverse sets as expected. 
In some cases, however, relevant conformers that do not 
correspond to the lowest-energy conformations at the 
clustering step due to less accurate energetics are missed 
out in sets of high k and low N. In our in-house applica-
tions we usually employ a medium k value and N > 1 in 
combinations such as k4N2, k5N2 and the balanced k3N3 
which delivers medium-sized diverse conformer sets for 
optimization and has emerged as the de facto standard. 
Judging from the cases discussed here as well as several 
years experience in in-house application of ReSCoSS, we 
conclude that while there is certainly no one-size-fits-all 
k/N combination, the risk of discarding ultimately relevant 
conformers from the set at the selection step can be mini-
mized by employing medium k and N > 1. In our experi-
ence, the inability of conformer algorithms to generate all 
relevant conformations in the first place is often the bigger 
issue than finding the ideal k/N. This can be mitigated by 

Fig. 5   ReSCoSS analysis of XIAP-Cpd10. a Left: Crystallographic 
binding pose (PDB: 5M6E, green carbons, from [48]) overlaid onto 
closest ReSCoSS conformer pose (grey carbons). Right: Minimum-
energy conformation in water according to COSMO-RS FINE19. The 
hydrogen atoms that are relevant for the ROEs reported in [48] are 

indicated with the same numbering as in the original publication. b 
Relative free energy spread of the different kN subsets indicated with 
violin plots. The asterisks indicate sets where the bound conformation 
was picked during selection
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using a combination of conformer generation algorithms 
and tools that ReSCoSS allows for.

Applying ReSCoSS in the industry 
environment

One of the central concepts in the development of the ReS-
CoSS workflow is to enable a more informed approach to 
molecular design by putting quantum-chemistry methods 
at the fingertips of the medicinal chemistry community. 
Due to the clustering and selection strategy described pre-
viously, only a limited number of relevant conformers for 
each molecular species have to be fully optimized at DFT 
level, which makes the workflow performant enough to 
enable turnaround times of hours to roughly a day for a 
molecule of interest at maximum in most cases. It is there-
fore routinely applied in-house in both structure-based and 
ligand-based design as well as in conformer generation for 
properties prediction in drug development. ReSCoSS pro-
vides a final set of conformers with COSMO-RS free ener-
gies and Boltzmann weights in a range of solvents chosen 
by the user. The ReSCoSS conformers serve as input for 
further property predictions using COSMO-RS such as free 
energy of solvation, partition coefficients such as logP(o/w) 
and pKa values, if protomers are considered and calculated 
in addition.

AZD5991: ReSCoSS applied to macrocycles

AZD5991 is a macrocyclic Mcl-1 inhibitor with selectivity 
over Bcl-2 and is currently in clinical studies for relapsed or 
refractory hematologic malignancies [49]. Its rational design 
was driven by AstraZeneca’s conformational analysis plat-
form which uses selected hydrogen positions in a molecule 
as “conformational 1H NMR reporters” that allow to judge 
conformational preorganization in solution [50]. AZD5991 
is a large (MW = 672.3 Da) and conformationally flexible 
molecule and hence represents a challenging test case for 
ReSCoSS. Of note, the authors remark in the original paper 
that the bioactive conformation is not the same as the cal-
culated global minimum-energy conformation in water at 
the level of theory used (B3LYP/6-31G* with PCM-water) 
[50]; yet the bioactive conformation was experimentally 
confirmed as the dominant one in solution both in water and 
DMSO-d6 as by NMR spectroscopy. ReSCoSS produces a 
total of 316 conformations, and after B97-3c/COSMO single 
points and k-means clustering using k = 3, N = 3, 20 diverse 
conformers are selected for full optimization (Fig. 6a). Grati-
fyingly, the conformation out of the final set of 20 corre-
sponding to the global energy minimum in both water and 
DMSO according to COSMO-RS FINE19 is very similar the 
published bioactive and co-crystallized conformation (PDB: 
6FS0) with a heavy-atom RMSD of 0.6 Å—the closest in the 
set. The aforementioned alternative conformation discussed 

Fig. 6   Application of ReSCoSS to the macrocyle AZD5991. a ReS-
CoSS conformer generation and selection procedure identifies the 
experimentally known dominant solution conformer out of 316 
(generated) and 20 (selected with k3N3) conformers. b Top-ranked 

conformers in water and DMSO with respective Boltzmann weights. 
The conformation in purple corresponds to the non-bioactive confor-
mation discussed in [50]. The experimentally validated conformer is 
identified by ReSCoSS as the dominant one in both solvents
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in the original manuscript as the global minimum structure 
is also recapitulated by ReSCoSS as third-most prevalent 
conformation in water with a weight of 21.6% (ΔΔG = + 
0.53 kcal/mol); it is not ranked as relevant in DMSO where 
it lies + 2.73 kcal/mol above minimum (Fig. 6b). Everything 
considered, the performance of ReSCoSS on AZD5991 is 
very convincing both with regards to choosing the relevant 
conformers for minimization out of a very diverse set and 
with regards to the free energy assessment of the final set 
of conformers.

Applying ReSCoSS in property prediction

In our in-house workflows, ReSCoSS is used in a dual capac-
ity: gaining insight into the conformational landscape of a 
molecule of interest, whether already synthetized or a novel 
virtual design, and at the same time predicting properties 
of interest such as logP/D, pKa, or free energy of solvation. 
These properties are easily obtained using the .cosmo files 
computed at the COSMO-RS FINE19 level, which are gen-
erated at the end of each ReSCoSS run. We recently applied 
ReSCoSS in our submission to the SAMPL6 blind chal-
lenge for the prediction of pKa values where it gratifyingly 
ranked among the top quantum chemistry based submissions 
and 4th overall [19]. The prediction of ionization constants 
depends on quite a number of different factors, among which 
the selection of relevant conformations is an important fac-
tor but by no means the only one. In addition, the level of 
theory and the choice of linear free energy relationship 
(LFER) fit have a considerable influence on the resulting 
pKa prediction. The winning submission in the SAMPL6 
challenge, a quantum chemistry based one from the Grimme 

group, relied on using a double-hybrid DFT gas phase ener-
gies combined with explicit modelling of thermochemical 
contributions and COSMO-RS solvation and a refit of the 
LFER parameters. This level of theory, while certainly more 
accurate than COSMO-RS FINE19, requires runtimes which 
we deem too inefficient in the industry environment, at least 
given the current state of typical in-house computational 
capacity.

Assured by the good performance of ReSCoSS for pKa 
prediction in the SAMPL6 challenge, we turned to two other 
physicochemical properties that can be predicted using 
the COSMO-RS framework: The free energy of hydra-
tion, ΔG(hyd), and the octanol/water partition coefficient, 
logP(o/w). logP(o/w) is routinely measured and calculated 
during lead optimization campaigns as well as pharmaceuti-
cal development. Both properties are expected to be at least 
partially influenced by the selection of conformers and hence 
serve as an indirect benchmark to assess the conformer 
selection strategy of ReSCoSS.

Mobley and Guthrie have compiled an excellent free 
repository of measured hydration free energies for neutral 
small molecules, FreeSolv [51]. This dataset contains 643 
molecules, most of which are quite small, with ΔG(hyd) 
measured between − 25.5 and 3.4 kcal/mol. Using just a 
single extended 3D conformation generated by CORINA 
[26, 27] followed by B97-3c/COSMO optimization and 
calculation of ΔG(hyd) at the COSMO-RS FINE19 level 
already results in a very good agreement with experimental 
values (Fig. 7a) with an MAE of 0.74 kcal/mol. Using ReS-
CoSS conformers and the k3N3 combination in the selection 
step further improves the result with the MAE decreased 
to 0.63 kcal/mol and R2 = 0.94 (Fig. 7b). Notably, both 
COSMO-RS based predictions outperform the MD-based 

Fig. 7   Application of ReSCoSS to the prediction of free energies of 
hydration. The 643 experimentally determined ΔG(hyd) values from 
the FreeSolv v0.51 dataset are plotted against; a calculated ΔG(hyd) 
using COSMO-RS FINE19 based on a single extended conforma-

tion optimized with B97-3c/COSMO; b calculated ΔG(hyd) using 
COSMO-RS FINE19 based on ReSCoSS conformers (k3N3) fol-
lowed by B97-3c/COSMO optimization
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approach outlined in the original publication of FreeSolv 
[51] which shows a MAE of 1.12 kcal/mol and R2 = 0.87 
to experiment.

The octanol/water partition coefficient, logP(o/w) (as 
well as the related logD that additionally takes ionization 
into account) is one of the most important parameters used 
in driving lead optimization and developability assessment. 
It simultaneously has bearing on aqueous solubility and 
permeation properties and therefore it is no surprise that 
together with on-target affinity, logP(o/w) features promi-
nently in drug likeness estimates like LLE [52] and lipE 
[53]. From a conformer selection standpoint, logP(o/w) is 
one of the most interesting properties because the relevant 
solution-phase minimum-energy conformations can often 
differ between the polar water phase and the rather apolar 
octanol phase and therefore the ReSCoSS selection strategy 
is expected to significantly impact the calculated logP(o/w) 
compared to only using a single conformer per compound. 
As comprehensive logP(o/w) sets on drug-like molecules 
measured under the same conditions are rare in literature, 
we experimentally determined the partition coefficients for 
25 approved drugs in this work. This ensures consistent 
logP(o/w) measurements in the same lab under the same 
conditions and hence represents an ideal dataset to assess 
the performance of ReSCoSS in logP(o/w) prediction. We 
then computed different established fast logP metrics as 
well as COSMO-RS FINE19 logP(o/w) calculated on sin-
gle conformers and also using ReSCoSS conformers. The 
experimental logP range for these drugs spans over 5.5 log 
units (logP = 0.43 to 6.00) and a comparison of experimen-
tal with calculated data is given in Table 2. In addition we 
computed uncertainties in R2, RMSD and MAD and report 
the approximate 95% confidence intervals for each of the 
parameters as well.

Fast in silico estimators like clogP and RDKit molLogP 
show decent performance on this dataset with RMSDs 
around 0.8 log units but both can deviate by over 2 log units 
in some cases. This is in line with our in-house experience 
where we use these fast estimators for general application 
and run ReSCoSS analyses where the standard tools do not 
show a good performance. It is worth nothing that simply 
using COSMO-RS to calculate logP(o/w) based on a single 
conformation does not lead to generally improved predic-
tions over the fast methods. Indeed, with an RMSD of close 
to 1 unit and R2 = 0.73, the single-conformer approach is 
inferior to clogP and molLogP on this dataset. Expand-
ing and selecting out of the tautomer and conformer space 
with ReSCoSS improves the performance of COSMO-RS 
FINE19 significantly, with RMSD reduced to 0.64 and R2 = 
0.88 achieved using the k3N3 combination (Fig. 8). In Fig. 9, 
three concrete examples from the dataset are analyzed. For 
Mirdametinib (Fig. 9a), the logP is underestimated using the 
single-conformation approach (calculated 1.18, measured 

3.06). Looking at the highest ranked three conformations in 
both octanol and water phase from the ReSCoSS run indi-
cates why. In octanol, Mirdametinib is predicted to adopt 
an extended conformation with the polar end of the mol-
ecule bearing two hydroxyl groups on one end, and the very 
hydrophobic iodophenyl moiety at the other. This is in line 
with the nature of octanol as a hydrophobic elongated mol-
ecule with a polar head group. In water, Mirdametinib is pre-
dicted to be predominantly folded with the polar head groups 
shielding the iodophenyl moiety from the polarity of sur-
rounding water. These two classes of conformers are quite 
distinct and both are needed to reach a good accuracy of the 
COSMO-RS prediction. The single conformation generated 
by CORINA, on the other hand, bears similarity to the water 
conformations but is less compact, while it is distinct from 
the octanol ones, and so the logP is predicted too low, i.e., 
the molecule is predicted to be more “happy” in water than 
it is in reality. Moexipril (Fig. 9b) is another example where 
ReSCoSS significantly improves the predictions, albeit for 
a different reason. Moexipril contains a carboxylic acid as 
well as secondary amine so it can exist in its net neutral form 
either as a zwitterionic molecule with the acid deprotonated 
and the amine protonated or as an uncharged neutral mol-
ecule. As described previously, ReSCoSS allows for several 
tautomeric forms of a molecule to be present during the 
run. Each tautomeric form is conformer-expanded followed 
by GFN2-xTB/GBSA minimization and B97-3c/COSMO 
single points. The following cluster step then selects diverse 
conformations from the combined set for further optimiza-
tion. Since the tautomers (in this case: zwitterion and neutral 
form) usually have different properties in terms of dipole 
moment, hydrogen bond acceptor and donor strength, they 
fall into different clusters and representatives of each tau-
tomer survive the clustering process if they are reasonably 
low in energy in any given solvent. In the case of Moex-
ipril, the zwitterionic form clearly dominates in the aqueous 
phase but the neutral form dominates in the octanol phase, 
therefore causing any prediction based on only one of the 
two forms to be considerably wrong. ReSCoSS, taking both 
forms into account, achieves good predictivity in this case. 
A third example, Bicalutamide (Fig. 9c), shows the chal-
lenges that can hamper COSMO-RS predictions even when 
the relevant conformers have likely been correctly identified. 
Bicalutamide has been crystallized both bound to its target, 
the Androgen receptor (PDB: 1Z95), as well as off-targets 
such as human serum albumin (PDB: 4LA0) and the human 
CYP46A1 P450 enzyme (PDB: 4FIA). The bound confor-
mation of bicalutamide to both HSA and P450 is a compact 
conformation with intramolecular π-stacking. ReSCoSS 
identifies a perfect overlay to the HSA-bound conforma-
tion as the major conformer in water. More extended con-
formations are present in the final of set of conformers but 
only one of them, the third-ranked conformation in octanol 
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(18.4%), is predicted relevant at the COSMO-RS FINE19 
level. This leads to the logP being underestimated by 1.2 
units (predicted 1.72, measured 2.93). In contrast, the sin-
gle conformation from CORINA is extended and leads to a 
prediction of logP(o/w) = 4.15 which is also off by 1.2 units 
but in the opposite direction. This relatively large devia-
tion of the COSMO-RS prediction based on ReSCoSS con-
formers, the largest in the whole set of 25 molecules, may 
be caused either by the COSMO-RS parameterization, the 
underlying imprecision of the selected level of DFT theory 
(BP86-D3(BJ)/TZVPD) or by the fact that thermochemical 
contributions including entropy are not explicitly modelled. 
It is of course possible to tackle some of these potential 

sources of error, e.g. by computing thermochemical contri-
butions explicitly and conducting single point calculations 
in gas phase at a higher level of theory; we have recently 
employed this strategy for the prediction of pKa values [19] 
with success and a similar improvement may be expected 
for logP. On the other hand, it has also been shown that 
changing the underlying density functional does not neces-
sarily improve COSMO-RS performance in general [54]. 
In addition, especially for very polar molecules one could 
alternatively take one or more solvent molecules explicitly 
into account during the conformer generation procedure. In 
conclusion, we note that the COSMO-RS logP(o/w) predic-
tions are clearly and significantly improved by the inclusion 

Table 2   Calculated logP(o/w) for 25 approved drugs in comparison with experimental data

a COSMOtherm logP(o/w) (TZVPD-FINE19) using a single 3D conformation (CORINA) optimized at B97-3c/COSMO level
b COSMOtherm logP(o/w) (TZVPD-FINE19) using ReSCoSS conformations selected with k = 3, N = 3/k = 5, N = 2, optimized with B97-3c/
COSMO
c Moexipril exists as Zwitterion in aqueous phase, logP is given as logD(max) = 0.9

Drug logP (exp.) logP (FINE19, SC)a logP (ReSCoSS k3N3)b logP (ReSCoSS k5N2)b clogP RDKit MolLogP

Amprenavir 2.42 3.00 2.87 2.87 3.29 2.40
Procyclidine 4.80 5.70 5.70 5.74 4.59 3.94
Semagacestat 1.01 0.52 1.28 1.21 1.66 0.38
Tofacitinib 1.09 0.29 0.53 0.62 1.52 1.06
Dasatinib 3.36 1.95 3.85 3.95 2.53 3.31
Ezetimibe 4.60 4.90 4.31 4.60 3.96 4.89
Cefamandole 0.43 − 0.30 1.42 1.41 0.11 − 0.23
Navarixin 2.80 3.69 3.21 3.23 1.46 2.90
Bicalutamide 2.93 4.15 1.72 1.74 2.71 2.88
Abacavir 1.36 0.82 1.12 1.05 0.81 1.09
Moexiprilc 0.90 3.79 0.62 1.42 1.39 2.58
Alogliptin 0.65 − 0.12 − 0.36 − 0.35 0.99 0.39
Tioconazole 5.30 4.99 4.63 4.58 4.79 5.86
Begacestat 2.80 3.21 3.21 3.19 2.31 2.78
Regorafenib 6.00 5.70 6.07 6.02 5.19 5.69
Simvastatin 4.50 4.62 3.50 3.50 4.48 4.59
Mirdametinib 3.06 1.18 2.99 2.53 3.00 2.47
Pazopanib 1.60 3.12 2.74 2.75 3.65 3.14
Fluconazole 0.50 0.72 0.61 0.62 − 0.44 0.74
Pevonedistat 2.85 3.15 2.96 2.89 1.16 2.06
Lurasidone 5.80 5.71 5.81 5.84 5.61 4.26
Entinostat 1.19 2.28 1.60 1.61 0.82 3.34
CI-1040 5.20 4.94 5.41 5.39 5.97 5.04
Erlotinib 3.30 3.39 3.64 3.63 4.34 3.41
Roflumilast 3.83 5.09 5.02 5.02 3.00 5.03
MAD 0.775 0.514 0.529 0.666 0.567
MAD, 95% CI 0.544–1.028 0.360–0.660 0.390–0.684 0.495–0.848 ND
RMSD 1.007 0.638 0.653 0.819 0.824
RMSD, 95% CI 0.674–1.334 0.478–0.778 0.495–0.791 0.594–1.055 ND
R2 0.733 0.878 0.871 0.797 0.782
R2, 95% CI 0.476–0.893 0.796–0.939 0.768–0.938 0.609–0.913 ND
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of the ReSCoSS conformations such that only two predic-
tions out of 25 exceed an error margin of 1 log unit.

Conclusions and outlook

We have developed ReSCoSS, a quantum-chemistry based 
workflow designed to produce small sets of relevant solu-
tion conformers for drug-like molecules. ReSCoSS uses 
the COSMO-RS/COSMOtherm framework to predict con-
former weights in solvents of interest defined by the user and 
can be further used in the prediction of other COSMO-RS 
properties such as logP(o/w) among many others. Through 
several case studies and real-life industry applications, we 
have shown that ReSCoSS is able to correctly identify rel-
evant conformer subsets and that the inclusion of ReSCoSS 
conformers in COSMO-RS based property predictions has 
a significant positive effect.

At Novartis, the workflow has found adoption in property 
prediction for ADME optimization as well as structure-based 
and ligand-based drug design in early research, but is also 
used in drug development, allowing a quantum-chemistry 
perspective on active pharmaceutical ingredients, solid form 
design and formulation challenges.

Over the past few years, the usage of ReSCoSS as a “com-
putational assay” is emerging: its accuracy allows triaging 
of in silico ideas, helps avoid syntheses of compounds with 
suboptimal properties, and in some projects has even been 
shown to produce prediction accuracy on par with experi-
mental assays. It thus demonstrates the great potential of 

bringing quantum chemistry methods more prominently 
to the fore in drug discovery and development. In future 
publications, we will demonstrate the utility of ReSCoSS in 
tackling further challenges in the pharmaceutical context, 
for example the analysis of solvent-mediated conformational 
polymorphism and use of the workflow for permeability 
prediction.

Computational details

Starting from 2D structures, 3D conversion was done using 
the CORINA software [28]. Conformer searches were car-
ried out using Schrodinger Macromodel release 2019.3 [29] 
with the Monte Carlo multiple minimum (MCMM) method, 
the OPLS2005 force field including the GBSA implicit sol-
vation model for water. The all-atom RMSD threshold for 
detections of duplicates was set to 0.75 Å and the poten-
tial energy cutoff set at 30 kJ/mol. Additionally, we used 
CCG MOE 2019.01 [31] to conduct LowModeMD searches 
[30] with standard settings using the MMFF94x force field, 
the Born solvation model, the RMSD increased to 0.75 Å 
with hydrogen detection switched on (all-atom RMSD). All 
conformers were then combined and duplicate conformers 
identified and discarded using the GetConformerRMS code 
in RDKit and a cutoff of 0.5 Å. The remaining conformers 
were then fully optimized at the GFN2-xTB/GBSA(water) 
level [34] in the standalone xtb code v.6.2.1 [55].

All further QM calculations were carried out using Tur-
bomole v. 7.3 [37, 38]. Single point calculations as well as 

Fig. 8   Application of ReSCoSS to the prediction of logP(o/w). We 
experimentally determined logP(o/w) for 25 drugs (Table 2). a Cal-
culated vs. experimental logP(o/w) using COSMO-RS FINE19 based 
on a single extended conformation optimized with B97-3c/COSMO; 
b calculated vs. experimental logP(o/w) using COSMO-RS FINE19 

based on a set of conformers based on ReSCoSS conformers (k3N3) 
followed by B97-3c/COSMO optimization. Dark blue and light blue 
shading indicate 0.5 and 1 log units deviation from identity, respec-
tively
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full geometry optimizations after selection of subsets were 
carried out using the B97-3c composite method [35] with 
COSMO solvation [16]. After geometry optimization, a 

BP86 [56, 57]/def2-TZVPD [58, 59]/COSMO single point 
calculation including empirical D3(BJ) dispersion correction 
[60, 61] was carried out for all conformers. The resulting.

Fig. 9   Comparison of single 3D conformation generated by CORINA with the most relevant conformations in octanol and water for a Mir-
dametinib, b Moexipril and c Bicalutamide, with associated logP(o/w) values
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cosmo files were used in calculations with COSMOtherm 
release 19.0.1 [42] at the FINE19 level using standard set-
tings. All molecular depictions were prepared using PyMOL 
[62]. Violin plots and 3D plots were prepared with Matplot-
lib [63]. The correlation plots in Figs. 7 and 8 were prepared 
in Origin 2019 [64].

For the logP(o/w) set we computed uncertainties in R2, 
RMSD and MAD implementing a bootstrapping procedure 
in Python. In this procedure, we considered the pairs (exper-
imental, predicted) as sample of interest and we constructed 
the bootstrap resample by sampling with replacement from 
these pairs uniformly at random. We used 1000 replicates 
and a new linear regression model was fitted to each sampled 
data, yielding a bootstrap statistic for R2, RMSD and MAD. 
We report the approximate 95% confidence intervals for each 
of the parameters in Table 2. The confidence interval extends 
from the 2.5th percentile to the 97.5th percentile.

Miniaturized Shake‑Flask logP 
determination

The 1-octanol/water partitioning coefficient (logP) was 
determined using a miniaturized Shake-Flask equilibrium 
method adapted from [65]. logD was measured in three dif-
ferent buffers of varying pH (2, 7.4 and 11) and the logP 
was extracted from the measured logD at the pH where the 
compound is neutral. Prior to starting the experiment the two 
phases were pre-saturated, so “water-saturated 1-octanol” 
and “1-octanol-saturated water” were used. The samples 
were initially dissolved in DMSO as a 10 mM stock con-
centration. The samples and an internal standard were dis-
pensed in a 1 ml deepwell plate and DMSO was evaporated 
prior to dissolution in 1-octanol at a target concentration of 
150 µM while shaking at 1000 rpm during 8 h. The buffers 
were added with a phase ratio K of 1 (where K = Vwater/
Voctanol) and then the samples were shaken 4 h on a shaker 
at 1000 rpm. The deepwell plate was then centrifuged at 
3000 rpm prior to phase separation. A × 10 dilution for the 
aqueous phase and a × 1000 dilution for the octanol phase 
were prepared and quantified by LC-HRMS against an inter-
nal standard (Dexamethasone) with a known logD = 1.9 
using the following equation:

Column used: Zorbax_SB_AQ 50 × 2.1 mm 1.8 µm 
– Column oven temperature = 50 °C.

Mobile phase: A = 100% water UHPLC grade + 0.08% 
Formic acid. B = 100% ACN + 0.08% Formic acid. Flow 
rate = 0.5 ml/min. Gradient mode: starting at 95% A up to 
95% B in 0.5 min and kept constant during 1 min before 

logD = log

(

Analyte peak area in octanol ∗ 1000∕IS peak area in octanoll∕0.794

Analyte peak area in aqueous ∗ 10∕IS peak area in aqueous

)

to restore initial conditions within 0.1 min. Vinj = 5 µl. 
Full positive acquisition mode—Full scan 130 to 1800 m/z 
and Resolution = 35,000.[M + H]+ ion chromatogram was 
extracted for each compound. This protocol was followed for 
all compounds except Navarixin and Moexipril.

Potentiometric logP determination

The partitioning coefficients for Navarixin and Moexipril 
were determined on the commercial SiriusT3 instrument 
(Pion-inc.com) as described by Avdeef [66]. Briefly, 0.5 
to 1 mM of test solutions were titrated from pH 2 to 12 
for bases or 12 to 2 for acids. Titrations were conducted at 
25 °C and in 0.15 M ionic strength. Aqueous titrations were 
performed in triplicate in 0.15 M KCl. A minimum of three 
titrations in varying amounts of octanol as partitioning sol-
vent were performed for extracting the logP information. For 
each titration, initial estimates of apparent pKa values were 
obtained from Bjerrum difference plots (number of bound 
protons versus pH) and then were refined by the instrument 
software.
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