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Abstract
The activity cliff (AC) concept is of comparable relevance for medicinal chemistry and chemoinformatics. An AC is defined 
as a pair of structurally similar compounds with a large potency difference against a given target. In medicinal chemistry, 
ACs are of interest because they reveal small chemical changes with large potency effects, a concept referred to as structure–
activity relationship (SAR) discontinuity. Computationally, ACs can be systematically identified, going far beyond individual 
compound series considered during lead optimization. Large-scale analysis of ACs has revealed characteristic features across 
many different compound activity classes. The way in which the molecular similarity and potency difference criteria have 
been addressed for defining ACs distinguishes between different generations of ACs and mirrors the evolution of the AC 
concept. We discuss different stages of this evolutionary path and highlight recent advances in AC research.

Keywords  Activity cliff concept · Molecular similarity · Compound potency differences · Structure–activity relationships · 
Activity data analysis · Cliff categories

Introduction

Activity cliffs (ACs) are of high interest in medicinal chem-
istry and chemical informatics. A Google Scholar search 
with the combined key words “activity cliff, medicinal 
chemistry, chemoinformatics” currently yields 1860 entries 
(947 since 2014). In addition, the six most cited papers with 
the term “activity cliff” in the title that are referred to in this 
Perspective have a cumulative count of 1496 citations. Of 
course, much of the practical work on ACs takes place in 
pharmaceutical research and is rarely reported.

In medicinal chemistry and chemoinformatics, activity 
cliffs (ACs) are defined as pairs or sets of structurally similar 
or analogous compounds that are active against the same 
target and have large potency differences [1–4]. Accordingly, 
ACs are the embodiment of structure–activity relationship 
(SAR) discontinuity, which limits compound activity predic-
tions via quantitative SAR (QSAR) modeling [1], but pro-
vides important information for medicinal chemistry [2, 3].

Specifically, ACs reveal small chemical modifications 
with large potency effects that strongly influence or deter-
mine SARs. This information aids in compound optimiza-
tion. However, during late stages of lead optimization, when 
high compound potency should be retained and other optimi-
zation-relevant properties need to be improved, the presence 
of steep SARs and ACs is often undesirable [5]. Hence, ACs 
might be viewed controversially in the practice of medicinal 
chemistry, depending on when they are encountered. How-
ever, regardless of whether encountering ACs is desirable 
or not, they generally have high SAR information content.

Compounds forming ACs are typically involved in multi-
ple overlapping ACs. In fact, more than 90% of ACs availa-
ble in compound data sets are formed by groups of structural 
analogs with varying potency, resulting in multiple ACs per 
compound [6]. These AC configurations can be explored in 
detail using network representations [6]. In AC networks, 
nodes represent compounds and edges pairwise AC rela-
tionships. The coordinated formation of ACs gives rise to 
clusters in AC networks [6]. These AC clusters contain much 
more SAR information than ACs analyzed as individual 
compound pairs. AC clusters often contain highly potent 
compounds having multiple weakly potent analogs, which 
results in densely connected nodes called hubs following 
network terminology [6]. In a different analysis, such AC 
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hubs have also been designated AC generators [7], given 
their high propensity in forming ACs.

In compound data sets originating from different sources, 
for example, taken from different publications, as assembled 
in the ChEMBL database [8], ACs are likely detected with 
higher frequency than in individual compound series. How-
ever, these ACs are deprived of specific series-dependent 
optimization contexts [5]. While systematically identified 
ACs provide viable SAR information, they are more difficult 
to be appreciated by medicinal chemists than ACs detected 
in a specific optimization context.

Large-scale computational analysis of compound activity 
data has identified large numbers of ACs across currently 
available activity classes [9], yielding large volumes of SAR 
information. This information represents a valuable knowl-
edge base for compound optimization, provided it can be 
efficiently and understandably communicated to medicinal 
chemists.

A practicing chemist might intuitively  recognize and 
judge ACs while working on a particular compound series, 
based on experience. However, a systematic evaluation of 
ACs requires the unambiguous definition and consistent 
application of a molecular similarity criterion (i.e., when 
are two compounds “similar”?) and a potency difference 
criterion (i.e., when is a potency difference large enough to 
qualify as an AC?).

Setting these criteria and rationalizing their choice is 
at the core of the AC concept [2–4], as discussed in the 
following.

Similarity and potency difference criteria 
for activity cliff analysis

Compound similarity

In chemoinformatics, similarity for AC analysis has often 
been calculated on the basis of fingerprint descriptors and 
the Tanimoto metric [2, 9]. As a numerical similarity index, 
the Tanimoto coefficient [Tc] is straightforward to calcu-
late. It ranges from 0 (for compound fingerprints without 
any overlap in bit settings) to 1 (identical fingerprints). For 
classifying compounds as similar, the choice of a similar-
ity threshold value is required. Given that fingerprints are 
abstract (bit string) representations, many structural differ-
ences between compounds might lead to comparable Tc val-
ues. Structural relationships between AC candidate com-
pounds detected on the basis of calculated similarity values 
are not limited to substitutions at given site(s). Rather, there 
might be multiple and different types of chemical modifica-
tions across these compounds. At a given Tc threshold value, 
a variety of whole-molecule similarity relationships are typi-
cally detected that may or may not be readily interpretable 

from a chemical viewpoint [2, 9]. Furthermore, calculated 
Tc values are dependent on the descriptors (fingerprints) 
that are used. Accordingly, generally applicable guidelines 
for the definition of Tc threshold values do not exist, and 
this also applies to other numerical similarity measures [9]. 
Because calculated similarity values are representation-
dependent, it has been attempted to identify ACs that would 
be formed regardless of the chemoinformatic representations 
used, so-called consensus ACs [10].

As an alternative to numerical similarity metrics, sub-
structure-based similarity measures are also applicable for 
AC definition and identification [3, 9]. The use of substruc-
ture-based similarity criteria does not require threshold 
values. The basic principle is that two compounds either 
contain a given substructure or not, yielding a binary (yes/
no) readout of similarity [9]. Of course, as a similarity cri-
terion, substructures can be defined in many different ways 
[9, 11] and there is no ultimate answer which substructure 
formalism might best be applied for AC assessment. A con-
venient way of algorithmically establishing substructure 
relationships, without the need to pre-define substructures, 
is the calculation of matched molecular pairs (MMPs) [12]. 
An MMP is defined as a pair of compounds that are only 
distinguished by a structural modification at a single site 
[12, 13]. If appropriate size restrictions for the core struc-
ture and substituent fragment are introduced, the resulting 
MMPs are essentially confined to pairs of structural analogs 
[14], providing the similarity criterion for MMP-cliffs [14], 
one of our preferred substructure-based AC definitions. For 
medicinal chemistry applications, the MMP-cliff formal-
ism has been further refined by generating MMP fragments 
on the basis of retrosynthetic rules, yielding RMMP-cliffs 
[15]. By definition, MMP- and RMMP-cliffs are limited to 
substitutions at a single site, which accounts for a subset of 
structural relationships in analog series where substitutions 
at more than one site often occur. Therefore, as an extension 
of the MMP-cliff concept, analog pairs might be system-
atically enumerated for given or computationally identified 
analog series [16], which makes it possible to identify ACs 
with multiple substitution sites originating from the same 
series [17]. Figure 1 displays representative examples of fin-
gerprint-, substructure-, and analog series-based ACs.

ACs formed by structural isomers (iso-ACs) [18] and chi-
rality ACs [11] capture overall smallest structural variations 
leading to AC formation. Iso-ACs contain the same substitu-
ent at two different sites in a compound while compounds 
forming chirality cliffs are only distinguished by different 
chirality at a given stereocenter. The formation of iso-ACs 
can also be combined with the detection of MMP relation-
ships, thereby establishing a category of ACs that is based 
upon a combination of different similarity criteria [18]. 
Furthermore, chirality ACs might also be represented using 
different chirality-depending chemical descriptors, yielding 
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so-called chiral cliffs [19], which have been used to study 
ACs formed by enantiomers tested in the same assays [19].

Potency difference thresholds

The assessment of potency differences that are relevant for 
AC formation relies on comparing experimental values. As 
potency measurements, the use of (in theory) assay-inde-
pendent equilibrium or dissociation constants (Ki or KD 
values, respectively) is generally preferred to ensure high 
accuracy of AC assignments. Although ACs can formally 
also be assessed as a continuum of pairs of compounds with 
increasing potency differences [20], the application of a con-
stant potency difference threshold has largely dominated AC 
analysis and the systematic search for ACs in compound 
databases [2, 3]. A constant potency difference threshold 
should be larger than most pairwise potency differences in 
analog series or compound activity classes and statistically 
significant. An at least 100-fold difference in potency has 

frequently been applied in AC analysis [2–4]. The appli-
cation of a constant potency difference threshold enables 
the computational search for ACs across different activity 
classes. Requiring an at least 100-fold potency difference for 
AC formation typically limits ACs to ~ 5% of all qualifying 
pairs of structurally similar compounds [2, 3]. However, a 
constant threshold does not take activity class-dependent 
differences in compound potency distributions into account.

Compound potency distributions in activity classes vary 
greatly and so do compound similarity relationships [21]. 
Accordingly, AC formation should best be considered in an 
activity class-dependent manner. The derivation of class-
dependent potency difference thresholds further refines AC 
analysis for specific biological activities. Therefore, statisti-
cally significant activity class-dependent potency difference 
thresholds have been systematically investigated (Fig. 2). 
On the basis of statistical considerations, class-dependent 
thresholds were ultimately determined as the mean of the 
compound pair-based potency difference distribution plus 

First
generation

Second
generation

Third
generation

pKi: 5.7

pKi: 9.0 

MACCS
Tc 0.86

pKi: 6.2

pKi: 8.1

MMP

pKi: 6.4

pKi: 8.5 

Analog
series

pKi: 6.2

pKi: 8.1

RMMP

Fig. 1   Exemplary activity cliffs. On the left, a MACCS-based AC is 
shown (Tc 0.86). Fingerprint-based ACs are first generation ACs. In 
the center, an MMP-cliff and a retrosynthetic version (RMMP-cliff) 
applying an activity class-dependent potency difference threshold are 
depicted (exemplary second generation ACs). On the right, an analog 
series-based AC with class-dependent potency difference threshold is 

shown (third generation AC). Further details are provided in the text. 
For all compounds, potency (pKi) values are reported and structural 
differences are highlighted in red. From the left to the right, AC tar-
gets were the histamine H4, adenosine A1, and adenosine A2a recep-
tor, respectively
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two standard deviations [22] (Fig. 2). The introduction of 
class-dependent thresholds changes global AC statistics 
across bioactive compounds, as expected and further dis-
cussed below.

Different generations of activity cliffs

The way in which similarity and potency difference criteria 
are addressed and combined mirrors the evolution of the AC 
concept. Considering this evolutional path, we have recently 
distinguished between three generations of molecular graph-
based (two-dimensional; 2D) ACs [4, 23], as illustrated in 
Fig. 1.

According to this classification scheme, “first genera-
tion” ACs are characterized by the use of numerical or 

substructure-based similarity measures and application of 
a constant potency difference threshold across all activity 
classes.

In addition, “second generation” ACs result from the 
application of the (R)MMP-cliff formalism, capturing 
structural analogs with single substitution sites, and vari-
able activity class-dependent potency difference thresholds.

Furthermore, “third generation” ACs are formed by ana-
logs from the same series, i.e. analog pairs with single or 
multiple substitution sites, applying activity class-dependent 
potency difference thresholds.

As a rule of thumb, the chemical interpretability and SAR 
information content of ACs increases over these generations.

Fig. 2   Activity class-dependent potency difference thresholds. The 
compound potency distribution for neurokinin 1 receptor ligands (top 
left) is represented in a boxplot (center) and the interquartile range 
(IQR) is determined (right). On the basis of the IQR, activity classes 
are assigned to different categories (IQR < 1; CAT 2: 1 ≤ IQR < 2; 
CAT 3: IQR ≥ 2) and only classes of CAT 2 or 3 are subjected to AC 

analysis. At the bottom, the corresponding potency difference distri-
bution of RMMPs is displayed (left). From the mean and standard 
deviation (σ) of the distribution (center), the activity class-dependent 
potency difference threshold for AC formation is calculated as the 
mean plus two σ (ΔpKi = 1.4) (right)
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Three‑dimensional activity cliffs

Importantly, the assessment of ACs is not limited to 
molecular graph-based representations. ACs can also be 
studied in three dimensions. Currently, there is no crys-
tallographic study reported that has set out to determine 
structures of complexes of a given target with ligands 
forming ACs identified on the basis of molecular graphs. 
However, ACs can be also defined on the basis of three-
dimensional (3D) structures of protein–ligand complexes, 
leading to the identification so-called 3D-cliffs [24, 25]. 
Therefore, crystallographic complexes of compounds 
bound to the same target protein must be identified, target 
structures from different complexes carefully superposed, 
and binding poses of compounds transferred to a refer-
ence complex. For the resulting target-based ligand over-
lays, 3D similarity of ligand binding modes is calculated 
in a pairwise manner and related to potency differences 
obtained from literature sources [24]. Different numeri-
cal 3D similarity functions are available to quantify shape 
and/or molecular property overlap, for example, using 
atomic property density functions [26, 27]. As with any 
numerical similarity measure, threshold values for 3D 
similarity must be pre-defined (e.g., 85% binding mode 
similarity).

3D-cliffs are attractive because they reveal differences 
in ligand-target interactions that might be responsible for 
AC formation. Accordingly, 3D-cliffs have been classified 
according to different interactions that distinguish between 
weakly and highly potent cliff compounds such as, among 
others, the presence or absence of specific hydrogen bonds 
or hydrophobic substituents (filling complementary hydro-
phobic pockets in binding sites) [24]. Figure 3 shows differ-
ent examples of 3D-cliffs. Hypotheses concerning critical 
interactions derived from X-ray structures and 3D-cliffs are 
still subject to experimental evaluation and confirmation. 
Regardless, 3D-cliffs provide valuable information for SAR 
exploration and drug design. Importantly, insights obtained 
from 3D-cliffs are limited to differences between short-range 
interactions revealed by X-ray structures, which represent 
the endpoint of binding events. Moreover, X-ray structures 
provide an incomplete picture of binding processes, which 
involve a variety of factors that influence binding such as 
solvation/desolvation energies or entropy changes associ-
ated with or going beyond the hydrophobic effect. There-
fore, there are frequent examples of 3D-cliffs that cannot 
be rationalized on the basis of differences between ligand-
receptor interactions revealed by X-ray structures [24].

In a recent study, so-called off-pockets cliffs were iden-
tified where distinguishing structural modifications of AC 
compounds in X-ray structures mapped to the solvent envi-
ronment and were not involved in ligand-target interactions 

[28]. Exemplary off-pocket cliffs were then analyzed compu-
tationally via molecular dynamics simulations and Markov 
state modeling. The results indicated that solvent-exposed 
compound modifications with apparent potency impact often 
changed the dynamics of ligand-target interactions and sol-
vation, inducing propagating effects on buried moieties of 
bound ligands that were likely to modulate the strength of 
interactions [28]. An exemplary off-pocket cliff is shown in 
Fig. 3 (bottom).

It should be noted that the analysis of graph-based (2D) 
ACs and 3D-ACs is not mutually exclusive. Thus far, we 
have not identified 3D-cliffs that were not detectable on the 
basis of molecular graph comparison. The analysis of ACs 
in two and three dimensions can be combined in different 
ways. For example, SAR information provided by 3D-cliffs 
can be further increased by identifying active structural ana-
logs of cliff compounds through database searching [25]. 
This facilitates an extension of 3D-cliffs through the addition 
of 2D analogs that might form additional 3D/2D-ACs [25]. 
In a recent systematic analysis of X-ray structures of small 
molecules in complexes with human targets from the Protein 
Data Bank [29], a total of 630 3D-cliffs were identified for 
which high-confidence activity data [30] were available [24]. 
These ACs covered 61 human target proteins. A systematic 
search identified 1980 analogs of 268 3D-cliff compounds 
in ChEMBL for which high-confidence activity data were 
also available. These analogs extended 414 3D-cliffs that 
were active against 50 human targets [25]. Hence, there is 
a substantial body of structural AC information available, 
which can be complemented through analog searching. 
Going a step further, 2D- and 3D-ACs with shared com-
pounds have been assessed using similarity calculations 
based upon molecular graph-derived fingerprints as well as 
3D interaction fingerprints. 3D-ACs established on the basis 
of interaction fingerprints were designated interaction cliffs 
[31]. For kinase inhibitors and their X-ray complexes, only 
about a quarter of detected 2D-ACs could be reproduced 
on the basis of calculated 3D interaction similarity [31]. 
Nonetheless, interaction similarity provides an alternative 
to other 3D similarity measures and is particularly suitable 
for uncovering interaction hot spots across 3D-ACs for a 
given target family.

Identifying activity cliffs on a large scale

Computational compound representations and well-defined 
structural similarity and potency difference criteria enable 
the systematic search for ACs across the current spectrum 
of bioactive compounds, going far beyond the analysis of 
individual compound series. In this section, we summarize 
results of recent large-scale investigations of different gen-
erations of ACs, as defined above.



934	 Journal of Computer-Aided Molecular Design (2020) 34:929–942

1 3

Fig. 3   Three-dimensional 
activity cliffs. Shown are three 
exemplary 3D-cliffs where 
ligands are distinguished by 
different types of interactions. 
Bound conformations of highly 
and weakly potent cliff com-
pounds are colored green and 
red, respectively. In addition, 
an exemplary off-pocket cliff 
according to reference 28 is 
shown at the bottom
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First generation ACs

A systematic survey of these ACs was reported in 2015 
on the basis of ChEMBL release 20 [32]. From ChEMBL, 
48,244 unique compounds with activity against 746 tar-
gets were extracted for which high-confidence activity 
data [30] including Ki values were available. For these 
746 activity classes (also termed target sets), first genera-
tion ACs (ΔpKi ≥ 2) were determined using two finger-
prints of different design, MACCS structural keys [33] and 
the extended connectivity fingerprint with bond diameter 
4 (ECFP4) [34], as well as applying the MMP formal-
ism. The results are summarized in Table 1 (left). Nearly 
twice as many fingerprint-based ACs (ECFP4 or MACCS) 
than MMP-cliffs were identified. Specifically, there were 
31,975 ECFP4- and 34,813 MACCS-based ACs compared 
to 17,111 MMP-cliffs. Thus, MMP-cliffs were a structur-
ally more conservative representation of ACs. The num-
bers of AC-forming compounds were very similar for the 
fingerprint-based ACs (16,186 and 16,614 corresponding 
to 33.6% and 34.5%, respectively) compared to a reduced 
number of 11,030 compounds (22.9%) participating in 
MMP-cliffs.

For comparison, we report here up-to-date statistics 
for first generation ACs using ChEMBL release 25. To 
these ends, only activity classes that contained at least 
100 compounds were considered. A total of 65,766 unique 
compounds having high-confidence activity data with Ki 
values for 192 targets were obtained. Notably, compared 
to MMP-cliffs, numbers of fingerprint-based ACs signifi-
cantly increased from twofold (ChEMBL 20) to three- to 
fourfold (ChEMBL 25). While 18,749 MMP-cliffs were 
identified, 61,524 ECFP4- and 79,338 MACCS-based ACs 
were detected. However, the number of qualifying com-
pound pairs, i.e., pairs exceeding a Tc threshold value of 
0.55 (ECFP4) or 0.85 (MACCS), dramatically increased to 
more than a million. Despite this unprecedented increase 
in qualifying compound pairs, the proportion of ACs 
remained essentially constant, with 5.9% (ECFP4), 6.9% 

(MACCS), and 4.6% (MMP-cliffs), consistent with earlier 
findings. This unexpectedly large increase in the number 
of compound pairs then resulted in the three- to fourfold 
increase in fingerprint-based first generation ACs over the 
course of only four to five years.

Second generation ACs

The first systematic search for second generation ACs was 
carried out in ChEMBL release 23. A total of 212 activity 
classes with available Ki measurements and potency value 
distributions with potential for AC formation [21] were iden-
tified that yielded a total of 16,096 class-dependent RMMP-
cliffs [22]. The majority of activity class-dependent potency 
difference thresholds fell into the range 1 ≤ ΔpKi ≤ 2.5. 
When a constant potency difference threshold of ΔpKi ≥ 2 
was applied across all activity classes, 11,773 RMMP-cliffs 
were identified in 195 classes [22]. The comparison showed 
that the application of class-dependent potency difference 
threshold led to the formation of more ACs covering more 
targets than a generally applied constant potency differ-
ence threshold of comparable magnitude. In addition, given 
the statistically grounded definition of class-dependent 
potency difference thresholds, ACs were more evenly dis-
tributed across different activity classes. Furthermore, sec-
ond generation ACs were also defined taking compounds 
into account that were confirmed to be inactive (rather than 
weakly potent) in screening assays available in PubChem 
[35]. For eight of 73 activity classes with available screening 
data, only 145 additional RMMP-cliffs involving inactive 
compounds were identified [36]. Hence, taking screening 
data into account, there only was a small increase in the 
number of second generation ACs.

In Fig. 4, small exemplary AC networks are shown for a 
generally applied potency difference criterion and compared 
to corresponding networks based on activity class-depend-
ent potency difference thresholds. In the example at the top, 
the number of RMMP-cliffs decreased from 99 to 65 when 
the class-dependent threshold was applied. However, SAR 

Table 1   First generation activity 
cliff statistics

“# ACs” reports the total number of activity cliffs for each molecular representation and “# QPs” gives the 
total number of qualifying compound pairs meeting the respective similarity criteria for AC formation. “% 
ACs” reports the percentage of all QPs that formed ACs. In addition, “# AC compounds” gives the total 
number of compounds involved in the formation of ACs and “% AC compounds” the proportion of all 
compounds forming ACs

ChEMBL 20 ChEMBL 25

ECFP4 MMP MACCS ECFP4 MMP MACCS

# ACs 31,975 17,111 34,813 61,524 18,749 79,338
# QPs 624,420 384,725 564,071 1,106,985 354,751 1,076,185
% ACs 5.1% 4.8% 6.2% 5.9% 4.6% 6.9%
# AC compounds 16,186 11,030 16,614 24,657 9590 26,223
% AC compounds 33.6% 22.9% 34.5% 37.5% 14.6% 39.9%
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information was essentially retained since seven of eight AC 
clusters remained. By contrast, in the example at the bottom, 
application of the class-dependent threshold increased the 
number of RMMP-cliffs from 34 to 88. Here, the gain of 54 
additional ACs gave rise to the formation of five new AC 
clusters with different structural contexts and thus led to a 
substantial increase in SAR information.

A large collection of second generation ACs resulting 
from our systematic analysis has been made publicly avail-
able [36].

Third generation ACs

A systematic search in ChEMBL release 24.1 identified 
16,454 analog series-based ACs applying class-dependent 
potency difference thresholds [17]. However, with 4205 

instances, only 25.6% of these third generation ACs were 
multi-site cliffs that included 3805 (90.5%) dual-site (ds-) 
ACs [17]. Hence, most third generation ACs only contained 
a single substitution site and ds-ACs clearly dominated the 
distribution of multi-site ACs.

To complement recent AC surveys, we have also deter-
mined the growth of second and third generation ACs over 
time, covering a number of years prior to their formal intro-
duction [4]. From ChEMBL release 25, all compounds with 
available high-confidence activity data, Ki values, and an 
explicitly reported year of publication or release were sys-
tematically extracted. In 2018, 65,766 qualifying compounds 
with activity against 192 targets were available. Beginning 
with this data set, annually added compound increments 
were traced back to 2009 and for each year, cumulative data 
subsets were generated (containing compounds released up 

General definition Target set-dependent definition

ΔpKi ≥ 2.0

99 RMMP-cliffs

49 compounds

8 clusters 
5 coordinated
3 isolated

ΔpKi ≥ 2.28

65 RMMP-cliffs

32 compounds

7 clusters      
4 coordinated
3 isolated

ΔpKi ≥ 2.0

34 RMMP-cliffs

36 compounds

8 clusters 
6 coordinated
2 isolated

ΔpKi ≥ 1.65

88 RMMP-cliffs

75 compounds

13 clusters      
11 coordinated
2 isolated 

G protein-coupled receptor 44

Calcitonin gene-related peptide type 1 receptor

Fig. 4   Activity cliff networks. For two activity classes, RMMP-cliff 
networks are shown. Nodes represent compounds and edges pair-
wise ACs. Highly and weakly potent cliff partners are colored green 
and red, respectively. Networks on the left and right were generated 
applying are constant potency difference threshold (ΔpKi ≥ 2) and an 

activity class-dependent threshold (as specified), respectively. In each 
case, the number of ACs, participating compounds, and AC clusters 
are reported. Clusters containing coordinated ACs are distinguished 
from clusters formed by isolated ACs
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to and including that year). For each activity class and year, 
an increment of at least 100 compounds was required.

Then, the number of second and third generation ACs 
was determined for each year. Results for six of 10 years 
are summarized in Table 2. The number of second genera-
tion RMMP-cliffs increased from 3134 in 2009 to 9787 in 
2018. Hence, the number of ACs increased around three-fold 
and the number of activity classes with ACs nearly doubled 
from 91 in 2009 to 170 in 2018. The proportions of second 
generation ACs among qualifying compound pairs remained 
constant at ~ 5.0% over the course of 10 years. In addition, 
third generation ACs increased from 5516 occurrences in 
108 activity classes in 2009 to 16,957 in 192 classes in 2018. 
However, the proportion of analog pairs forming ACs also 
remained constant at ~ 5.0%. Furthermore, there was a slight 
increase in the proportion of multi-site ACs compared to 
single-site ACs. The comparison shows that we continue to 
experience substantial growth in AC information over time, 
with an essentially constant proportion of new bioactive 
compounds and pairs participating in AC formation.

Prediction of activity cliffs

In addition to identifying ACs on the basis of large-scale 
activity data analysis, attempts have also been made to pre-
dict ACs in compound data sets. The first study reported 
applied random forest (RF) modeling in combination with 
descriptor aggregation and SAR analysis functions to pre-
dict compounds that would form ACs with given ones [37]. 
The resulting models were predictive but their accuracy 
was limited. Higher prediction accuracy was achieved in 
distinguishing between pairs of analogs that formed or did 
not form ACs. These predictions were facilitated using 

support vector machine (SVM) classification with espe-
cially designed kernel functions that captured structural 
differences between paired compounds [38]. SVM models 
were trained to associate structural modifications captured 
in MMPs with potency differences between MMP-forming 
compounds applying a constant threshold for AC formation 
and used to predict MMP-cliffs [38]. Furthermore, support 
vector regression (SVR) models were built to quantitatively 
predict MMP-associated potency changes, yielding accurate 
predictions for a variety of activity classes [39]. Here, SVR 
models reached higher performance levels than RF regres-
sion models. This approach enabled the prediction of ACs of 
varying magnitude. However, as mentioned above, potency 
predictions for AC compounds using QSAR approaches 
are generally difficult, regardless of descriptors and meth-
ods used [40]. This is the case because QSAR modeling is 
principally based on the presence of SAR continuity when 
gradual changes in molecular structure cause small to mod-
erate changes in potency.

SVM and SVR modeling were also applied to predict 
ACs represented using the condensed graph of reaction 
formalism (adapted from chemical reaction modeling) or 
descriptor recombination (adapted from QSPR modeling of 
non-additive mixtures) [41]. These representations encoded 
ACs as single feature vectors, hence alleviating the need to 
use special kernel functions for SVR or SVR modeling, but 
yielded comparable prediction accuracy. Furthermore, chiral 
cliffs were also predicted among pairs of enantiomers using 
logistic regression, RF, and gradient boosting on the basis of 
vectors of various chirality-sensitive molecular descriptors 
[19]. The resulting models produced accurate predictions, 
with gradient boosting achieving slightly higher accuracy 
than RF [19].

Table 2   Monitoring second and 
third generation activity cliffs 
over time

“# Targets” reports the number of activity classes and “# ACs” the total number of activity cliffs for each 
year. “% ACs” gives the proportion of ACs among qualifying compound pairs. In addition, “# ss-ACs” and 
“# ds-ACs” separately report the number of third generation single-site and dual-site ACs and “% ss-ACs” 
and “% ds-ACs” the proportion of ss-ACs and ds-ACs among qualifying compound pairs

2009 2010 2012 2014 2016 2018

Second generation activity cliffs (RMMP-cliffs)
 # Targets 91 103 123 145 163 170
 # ACs 3134 4057 5041 7808 9409 9787
 % ACs 5.0% 4.9% 5.0% 5.0% 5.0% 5.0%

Third generation activity cliffs (RMMP-cliffs)
 # Targets 108 121 144 171 184 192
 # ACs 5516 7031 8787 13,602 16,168 16,957
 % ACs 5.0% 4.9% 5.0% 4.9% 5.0% 5.0%
 # ss-ACs 4080 4836 5829 9994 12,005 12,326
 # ds-ACs 1319 2061 2729 3302 3811 4214
 % ss-ACs 4.4% 4.2% 4.1% 4.2% 4.3% 4.2%
 % ds-ACs 8.3% 7.8% 8.7% 8.9% 9.1% 9.4%
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Few attempts have been made to predict 3D-cliffs and 
the compound potency differences they represent. Differ-
ent docking techniques and scoring schemes were applied 
to investigate 3D-cliffs, approximate potency differences 
between cliff-forming compounds, and predict compounds 
that would form ACs with similar ones having experimen-
tally known or hypothetical binding models [42]. In addi-
tion, potency differences between 3D-cliff compounds have 
been predicted using free energy perturbation calculations, 
frequently with an accuracy of close to or within one order 
of magnitude compared to experiment [43]. Although only 
very few structure-based AC predictions have been reported 
so far, they have produced some promising results. For free 
energy perturbation methods, high-confidence 3D-ACs pro-
vide excellent test cases.

Notably, in independent studies, machine learning on 
the basis of conceptually different AC representations often 
reached prediction accuracy at or even beyond the 80% level. 
Accurate predictions indicated that ACs systematically cap-
ture structural patterns responsible for large potency varia-
tions of compounds with specific biological activities, hence 
reinforcing the utility of ACs for SAR exploration from a 
different perspective.

Emphasis on medicinal chemistry 
applications

Systematic identification and prediction of ACs falls into the 
methodological arena of chemoinformatics. Equally impor-
tant are computational studies on ACs that impact medicinal 
chemistry. For example, ds-ACs (containing substitutions 
at two sites) can be further analyzed and interpreted by 
searching for analogs that capture chemical modifications 
at individual sites and make it possible to evaluate their 
contribution to AC formation (single-site analogs). For 297 
of the ds-ACs reported, we have identified two single-site 
analogs that contained the individual substitutions [17]. If 
both single-site analogs are available for a given ds-AC, a 
new four-compound data structure is obtained. Comparing 
the potency of ds-AC compounds with associated single-site 
analogs identified a number of ds-ACs whose potency dif-
ferences were accounted for by a single substitution (termed 
redundant ds-ACs). In addition, additive, synergistic, and 
compensatory potency effects of substitutions in ds-ACs 
were detected [17], which rationalized ds-AC formation and 
provided additional SAR information. Figure 5a shows an 
exemplary ds-AC with both single-site analogs displaying 
a compensatory potency effect. In addition, Fig. 5b shows 
another ds-AC complemented with structural isomers of 
ds-AC compounds, which also aided in rationalizing AC 
formation.

Similar considerations are applicable to isomer/MMP-
cliffs combining two substructure-based similarity criteria 
[18]. In a recent study, 597 isomer/MMP-cliffs were identi-
fied by first identifying MMP-cliffs and then searching for 
structural isomers of MMP-cliff compounds [18]. Figure 6 
shows an exemplary isomer/MMP-cliff arrangement.

Another application of immediate relevance for medicinal 
chemistry is the exploration of ACs formed by compounds 
containing privileged substructures (PSs) [44]. These struc-
tures are often found in compounds with preferential activity 
against individual target families and are thus of high inter-
est for compound design in medicinal chemistry [44, 45]. 
Recently, a systematic search has been carried out for ACs 
with PSs (PS-ACs) [46]. For 24 PSs found in at least 100 
ChEMBL compounds, a total of 15,919 PS-ACs were identi-
fied, accounting for 46.7% of all detected ACs. Exemplary 
PS-ACs are shown in Fig. 7. Among them, PS-containing 
MMP-cliffs dominated the distribution, followed by ds-ACs, 
and iso-ACs (with 12,150, 3544, and 225 instances, respec-
tively). On the basis of molecular property analysis (includ-
ing, among others, logP and ligand efficiency), there were 
no statistically significant differences between ACs with and 
without PSs. However, for individual PSs, substantial differ-
ences in the frequency of PS-AC formation were detected. In 
addition, many PS-containing compounds were on average 
more frequently involved in AC formation than other bio-
active compounds. If one considers ACs as an indicator of 
SAR responses, PSs are likely to display varying SAR char-
acteristics in different structural environments, lending fur-
ther support for their consideration as target family-directed 
scaffolds in medicinal chemistry.

Conclusions and perspective

ACs were first discussed in the computational and medicinal 
chemistry literature about 25 years ago. The way in which 
molecular similarity and potency difference criteria are 
defined plays an important role for the assessment, interpre-
tation, and utility of ACs and mirrors the evolution of the AC 
concept. Much of our current knowledge and understanding 
of ACs resulted from chemoinformatics, in particular, large-
scale analysis of compound activity data applying different 
AC definitions. However, the major application areas for 
AC information are SAR analysis and compound optimiza-
tion in medicinal chemistry. In our experience, AC infor-
mation from external sources is still underutilized in the 
practice of medicinal chemistry. Any hit-to-lead and lead 
optimization campaign should take already available SAR 
information from other compounds active against the target 
of interest into consideration. However, communicating this 
information to medicinal chemists in a meaningful way is 
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Fig. 5   Dual-site activity cliffs and single-site analogs. a Shown is an 
exemplary ds-AC together with both single-site analogs displaying a 
compensatory potency effect on AC formation. Structural modifica-
tions at different sites are colored orange and blue, respectively, and 
pKi values are reported in circles. b Shown is an exemplary ds-AC 

with two structural isomers (connected with the highly and weakly 
potent ds-AC compound through dashed green and red arrows, 
respectively). Structural modifications are highlighted in orange and 
pKi are reported in circles

Fig. 6   Isomer/MMP-cliffs. 
Shown is an exemplary isomer/
MMP-cliff with activity against 
the prostanoid EP4 receptor. A 
structural isomer of the weakly 
potent MMP-cliff compound 
was identified forming an addi-
tional AC with the highly potent 
cliff compound
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challenging, given that their natural focus is on sequential 
optimization efforts and individual compound series. We 
envision that expert systems might be required to retrieve all 
ACs from a database that involve structurally related com-
pounds for a series of interest having the same activity. Such 
on-demand access to AC information might help to close the 
gap between chemoinformatic analysis and the practice of 
medicinal chemistry.

In our view, major steps forward in AC research have 
been the recent rationalization and application of activ-
ity class-dependent potency difference thresholds and the 
study of multi-site ACs (that these works originated from 
our group is by coincidence and not to be regarded as a 
promotional effort). The introduction of variable potency 
difference thresholds pays tribute to varying SAR charac-
teristics of compound activity classes and the fact that ACs 
for a given target might not at all be comparable to ACs 
for another. Class-dependent potency difference thresholds 
render AC analysis dependent on compound potency distri-
butions for given targets and lead to a balanced distribution 
of ACs over different activity classes. In addition, multi-site 
ACs enable the investigation and comparison of contribu-
tions of individual substitution sites to AC formation, as 
shown herein, which further improves the interpretability of 
ACs and their relevance for SAR exploration.

We also note that different extensions of the AC con-
cept have been introduced over time such as 3D-cliffs and 
interaction cliffs discussed herein or promiscuity cliffs (PC) 

[47, 48], which we are particularly interested in. In PCs, 
compound potency differences are replaced with the differ-
ence in the number of target annotations of cliff compounds. 
Accordingly, PCs and further extended data structures gen-
erated on the basis of PCs [48] are of interest for systemati-
cally exploring structure-promiscuity relationships and bet-
ter understanding the basis of multi-target activity of small 
molecules.

Where do we go from here? The AC concept will cer-
tainly further evolve and new AC variants will likely be 
considered. In addition, new strategies for predicting 
ACs and identifying structural features that might be 
signatures of potent compounds across different activity 
classes should be interesting topics for future research, 
with implications for drug design. Furthermore, as X-ray 
data continue to grow significantly, there are opportunities 
to further extend and refine the study of 3D-ACs, which 
will likely yield guidelines for structure-based design. It 
is also noted that 3D-ACs provide attractive test cases for 
scoring functions used in docking or free energy methods. 
In some ways, it is surprising that only very few stud-
ies have been reported to date that explicitly make use 
of 3D-cliffs for testing and calibrating quantitative com-
putational approaches for activity or free energy predic-
tions. Perhaps this might be attributed to difficulties in 
reliably predicting potency values or relative free energies 
of binding. Regardless, one would hope for more studies 
addressing such prediction tasks on the basis of 3D-ACs. 

Fig. 7   Activity cliffs with 
privileged substructures. Dif-
ferent ACs containing PSs are 
shown. Substituents and the PS 
are colored in orange and pink, 
respectively. For each AC, the 
target name and potency values 
are provided

Purinergic receptor 
P2Y1 Progesterone receptor Serine/threonine-protein 

kinase PIM1

pKi: 5.92

pKi: 7.96

pKi: 5.40
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pKi: 7.04
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Many potential test cases have been made publicly avail-
able. Last but not least, how to improve the utility of large 
volumes of AC information for medicinal chemistry con-
tinues to be an essentially open yet critical question. As 
we have gained substantial knowledge about ACs and their 
characteristics by now, translating AC information into 
practically applicable compound design strategies will 
without doubt be a major goal going forward.
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