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Abstract
Among still comparatively few G protein-coupled receptors, the adenosine A2A receptor has been co-crystallized with sev-
eral ligands, agonists as well as antagonists. It can thus serve as a template with a well-described orthosteric ligand binding 
region for adenosine receptors. As not all subtypes have been crystallized yet, and in order to investigate the usability of 
homology models in this context, multiple adenosine A1 receptor (A1AR) homology models had been previously obtained 
and a library of lead-like compounds had been docked. As a result, a number of potent and one selective ligand toward the 
intended target have been identified. However, in in vitro experimental verification studies, many ligands also bound to the 
A2AAR and the A3AR subtypes. In this work we asked the question whether a classification of the ligands according to their 
selectivity was possible based on docking scores. Therefore, we built an A3AR homology model and docked all previously 
found ligands to all three receptor subtypes. As a metric, we employed an in vitro/in silico selectivity ranking system based 
on taxicab geometry and obtained a classification model with reasonable separation. In the next step, the method was vali-
dated with an external library of, selective ligands with similarly good performance. This classification system might also 
be useful in further screens.
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Introduction

A particular focus of rational drug design is the selectiv-
ity of novel ligands, with the aim to reduce possible side 
effects. The computational prediction of binding patterns of 
small molecules against multiple proteins would thus be of 
considerable interest. An in silico method that has worked 
particularly well with G protein-coupled receptors (GPCRs) 
is docking [1]. With respect to binding patterns, docking of 
a set of either newly designed ligands or virtual screening 
database compounds to various subtypes of a proposed bio-
logical target might narrow the group of potential ligands to 
those that exclusively interact with the intended protein(s).

GPCRs cover  ~ 3% of the human proteome and repre-
sent the largest superfamily of membrane receptors. Built 
of seven transmembrane helices, they mediate signals from 
the out- to the inside of cells by sensing different agents. 
Binding of these agents leads to conformational changes 
and intracellular signaling cascades. Thus, GPCRs play a 
crucial role, either directly or indirectly, in the treatment 
of various pathophysiological states, evidenced by the fact 
that they are the targets of 30–50% of marketed drugs [2]. 
On the other hand, although the numbers have been rap-
idly increasing, only 62 members of the large family of 
GPCRs have been revealed as crystal structures up to date 
[3, 4]. Based on the fact that the transmembrane region of 
all GPCRs is well conserved, and knowing that most of 
class A GPCRs’ ligand binding cavities are open toward 
the extracellular region [5], homology modeling provides 
a useful tool for structure-based ligand design. However, 
the accuracy of the models can be limited, mostly in the 
area of extra- and intracellular loops. The reason for that 
can be sought in highly variable loop sequences often cor-
responding to unaligned regions in sequence alignments, 
as well as their location at the solvent-exposed surface of 
proteins that result in higher conformational flexibility [6].

Adenosine is an important regulator for homeostasis of 
the brain, heart, kidney and other organs. It interacts with 
four different GPCRs classified as A1, A2A, A2B and A3 sub-
types. Selective interaction with adenosine receptor (AR) 
subtypes offers very broad therapeutic potential, including 
CNS disorders, regulation of electrophysiological properties 
of the heart, immune system and inflammatory diseases, cell 
growth, asthma, kidney failure and ischemic injuries [7]. 
Adenosine receptors’ ligands are currently being developed 
as promising agents for CNS disorders (Parkinson’s, Alz-
heimer’s, epilepsy, ischemia) [8]. Also, the adenosine A2A 
receptor has been co-crystallized with several ligands, ago-
nists as well as antagonists, and serves as a model AR with 
a well-defined orthosteric ligand binding region.

In order to investigate the usability of homology mod-
els for SBDD, multiple adenosine A1 receptor (A1AR) 

homology models have been previously obtained and a 
library of lead-like compounds has been docked [9]. As 
a result, a number of potent and a few selective ligands 
toward the intended target were found. However, in in vitro 
experimental verification studies many ligands also turned 
out to bind to A2AAR and A3AR. Therefore, the aim of 
this work was to build an A3AR homology model, gener-
ated on the basis of the evolutionarily closest homologous 
templates, and dock all previously used ligands to all three 
receptor subtypes. We wanted to investigate whether the 
experimentally obtained binding profiles [9] can be repro-
duced in silico, as well as to see how, instead of looking at 
individual compounds, the set of compounds is predicted 
within a given campaign. Although A1AR crystal struc-
tures have been published recently [10–12], in this study 
we used a series of homology models for the sake of con-
sistency with our previous study. Likewise, an approach 
to construct a reliable in silico/in vitro correlation quanti-
fication system has been undertaken and its usability has 
been validated with an external library of highly selective 
ligands.

Materials and methods

Homology modeling

In order to find the most suitable protein template for the 
A3AR receptor model, its sequence was obtained from 
UniProt database [13] (sp_P33765) and used for a BLAST 
search using two online tools: SwissModel [14] and Protein-
Blast (NCBI) [15]. In both cases, the default search modes 
to find the most similar PDB crystal structures were used. 
After comparison of the results, three templates were cho-
sen: 3EML (2.60 Å, 39.86% identity) [16], 2YDV (2.60 Å, 
42.6% identity) [17] and 3VG9 (2.70 Å, 43.34% identity) 
[18]. Template proteins were chosen according to their high-
est crystallographic resolution (as well as crystal structures 
availability at the time) among two independent BLAST 
search hits, in order to increase the chances to obtain a reli-
able model.

Protein structures were pre-processed using PyMOL 
[19]: ligands, co-crystallization agents (2YDV, 3EML), the 
lysozyme insertion instead of ICL3 (3EML) were removed. 
Protein sequences obtained in this way were aligned using 
the PROMALS 3D [20] online tool. The resulting alignment, 
after visual inspection (position of transmembrane domains, 
possible disulfide bridges) was used as an input for MODEL-
LER [21, 22].

Each of the 10 output models was then aligned to the 
3EML crystal structure and carefully inspected visually 
using UCSF Chimera [23]. In particular, the orientation of 
the side chain of ASN2506.55 (superscript numbers denote 
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Ballesteros–Weinstein numbers [24]) and other binding 
pocket amino acids was investigated and their possible, 
acceptable rotamers (according to the Dunbrack library 
[25]) were ascertained. Reasoning was supported by means 
of mutagenesis data [3, 4]. Similarly, we inspected the trans-
membrane domains to avoid gaps, obvious steric clashes, 
unnatural side chain amino acid folding, as well as a pres-
ervation of the disulfide bonds between CYS833.25–CYS 
16645.50.

Known ligand database preparation

The next step was to test the enrichment of ligands over 
non-binders in the orthosteric binding pockets of the 
selected models. For this purpose, two sets of ligands were 
obtained from the ChEMBL database [26]. The “ligands” 
set consisted of approx. 1500 molecules described as A3AR 
ligands with a Ki ≤ 100 nM. Second, the decoy set consisted 
of approx. 800 molecules, tested against the A3AR and 
described as inactive for this target. Structures of both sets 
of ligands were obtained from the ZINC database [27] by 
searching for corresponding ZINC IDs for all of the ligands 
extracted from ChEMBL. High quality 3D conformer 
ensembles of both sets were obtained using the OMEGA 
module [28, 29] of the OEDocking software package (maxi-
mum number of conformers = 100; RMS = 0.5).

Model refinement

The final A3AR homology model used in this study was 
obtained through the refinement process, using three differ-
ent, consecutive strategies.

Strategy 1

As a reference ligand for docking, co-crystallized within 
the 3EML structure, the ligand ZM241385 was placed 
in the A3AR receptor models after their alignment to the 
3EML structure, making sure that the hydrogen bonds with 
ASN2506.55 were formed. Two sets of ligands were then 
docked to the prepared receptor homology models using the 
HYBRID module (one pose per ligand, max. hitlist size 500 
molecules), implemented in the OEDocking Software 
[30–33]. After docking, the top 500 poses were inspected 
visually, and receiver operator characteristic (ROC) curves 
were generated along with calculations of the area under the 
curve (AUC), using an in-house script.

Docked ligands were minimized using the SZYBKI mod-
ule (OEDocking) [34] and the homology model of the pro-
tein (model 1) was minimized (with ligand present in the 
binding site) using CHARMM [35]. As several unfavorable 
energy poses and similar docking behavior was observed 

for the set of tested ligands, another modeling approach was 
then undertaken.

Strategy 2

Due to the fact that ZM241385 appears to be inactive 
towards A3AR and therefore might unduly bias the shape of 
the binding pocket during modeling, in a second round of 
modeling the previously identified ligand ZINC12533962, 
which is potent and selective towards A3AR (A3AR 
Ki = 40 nM) was placed manually in the crystal structure of 
3EML instead, retaining similar ligand-receptor interactions. 
As the conformation of the ligand, the previously obtained 
pose from docking to the A1AR [9] was used. The protein 
conformation prepared this way served as a template using 
the same input alignment for MODELLER as for model 1, 
excluding the 2YDV and 3VG9 X-ray structures and includ-
ing the ligand and its position during modeling.

From the output of ten models, the best scoring one 
(according to Modeller’s scoring functions; model 2) was 
chosen for evaluation.

Strategy 3

Due to possible steric clashes between the ligand and 
TRP2436.48 in the bottom part as well as PHE16845.52 
(ECL2) at the top of the binding pocket in model 2, again the 
position of ZINC12533962 in 3EML structure was corrected 
manually and the thus prepared receptor served again as a 
template for MODELLER. The resulting model (model 3) 
showed also potential steric clashes between the ligand and 
PHE16845.52, thus the ligand position in the template protein 
was again corrected, and the protein was remodeled. To the 
output model (model 4), after visual inspection, the set of 
actives and decoys was docked. This model (4), without fur-
ther refinement and minimization, was chosen for all further 
docking studies. ECL2 was not remodeled, as it aligned well 
with the reference 3EML structure. Binding pockets of all 
four homology models obtained are presented in Fig. 1.

Docking

In order to see whether the experimentally obtained binding 
profiles can be reproduced in silico, the next step involved 
docking of the previously described set of 39 ligands (test 
set) [9] to all three receptor subtypes (four A1AR homology 
models [9], the crystal structure of 3EML for A2AAR and the 
A3AR homology model). All ligands were prepared accord-
ing to the same procedure described herein for the “binders/
decoys” sets and docked to all receptors using the HYBRID 
module. As HYBRID docks multiconformer molecules into 
receptor-ligand complexes using an exhaustive search that 
systematically samples rotations and translations of each 
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conformer of the ligand within the active site (defined by the 
“bound” ligand), no docking grid/sphere was set beforehand. 
For all of the docked sets, the preservation of a hydrogen 
bond with ASN6.55 as well as the orientation of the ligands 
in the binding pockets was inspected visually.

In silico screening evaluation

For the quantification of the in silico/in vitro correlation, 
and, quite literally, to check how far from each other the 
results of those screenings are, an approach incorporat-
ing Taxicab geometry (City Block Distance, CBD) [36] 
and a traffic light system was utilized. Instead of the 

usual distance in Euclidean geometry, Taxicab geometry 
defines a new metric in which the distance between two 
points (d1) is the sum of the absolute differences of their 
Cartesian coordinates (p, q).

Among a variety of everyday life applications, CBD 
systems can also be used to assess the differences in dis-
crete frequency distributions. In our study, instead of Car-
tesian coordinates, in vitro (v = Ki) and in silico (s = dock-
ing/rescore score) values were used for calculations.

d1(p, q) = ‖p − q‖1 =
n�

i=1

��pi − qi
��

Fig. 1   The four obtained A3AR homology models (1–4, detailed 
information can be found in Model refinement section; left to right, 
upper and lower panel). Binding pocket residues were depicted as 

thick sticks (only labeled in model 1 panel). The X-ray crystallo-
graphic structure of the template, A2AAR (3EML), is shown in dark 
green
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So as to organize the results of both, the in vitro and in 
silico screenings, the results were in a first instance clas-
sified empirically (Fig. 2), according to the following key:

•	 for in vitro values: green for Ki values in the range below 
1000 nM, yellow for Ki values higher than 1000 nM, but 
still at a measurable level, red expresses no detectable 
binding.

d1(v, s) = ‖v − s‖1 =
n�

i=1

��vi − si
��

•	 for in silico values: green expresses first 20% of the 
obtained docking score range, yellow next 20% of the 
obtained docking score range, red expresses the remain-
ing 60% of docking score range (preliminary partition-
ing),

while the CBD values (0–2) were assigned to each color 
in the manner: 0 for red, 1 for yellow and 2 for green (CBD 
calculation run 1; CR-1). The division for in vitro data 
remained unchanged for further data development. However, 
it has been shown that the position of the ligand pose clos-
est to the native pose is distributed rather randomly among 

Fig. 2   Distribution of CBD ranks for in vitro values (left panel), in silico, first docking run (“CR-1”, middle panel) and in silico second docking 
run with following rescoring (“CR-4”, right panel). Rank colors are assigned as stated in text. Detailed binding data can be found in [9]
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all generated poses and ordered with respect to the docking 
score [37]. Hence, the docking results were rescored using 
DSX-Online and the color scheme was adapted as follows: 
green < − 100, − 100 < yellow < − 90, red > − 90 (Fig. 2; CR-
2). The next step of proposed platform evaluation was re-
docking of the whole set of ligands to all four adenosine A1 
receptor models, using ZINC12533962 as a reference ligand 
instead of ZM241385, in order to obtain a fair comparison 
for the docking procedure. This has been done by overlay-
ing the obtained A3AR homology model onto the back-
bone of the A1AR models and preserving the coordinates 
of ZM241385. Using the same data partitioning as in the 
preliminary calculations, a CBD value was calculated (CR-
3). A rescoring procedure was incorporated as described 
above (CR-4). To eliminate potential boundary effects aris-
ing from the in vitro/in silico data partitioning, the system 
was changed to a binary distribution (CR-5–CR-8 for each 
previous run respectively) for either active or nonactive 
for the biological target (CBD = 1 for previous greens and 
yellows, 0 for reds) and recalculated (Fig. 4). Moreover, in 
order to determine the relative CBD value (CBDrel = CBD/
CBDmax), the maximal possible CBD (CBDmax) values for 
each distribution were calculated. A CBDrel of less than 1 
indicates better-than-random performance.

Method validation

In order to test the usability and versatility of the described 
method, a library of 88 selective ligands previously described 
by Katritch et al. [38] was used. This ligand database was 
prepared according to the same procedure described herein 
for the “binders/decoys” sets and docked to all receptors 
using the HYBRID module. Likewise, the same data parti-
tion system as described in “In silico screening evaluation” 
subsection was applied. However, due to the high affinity of 
the ligands, the second system was incorporated:

•	 for in vitro values: green for Ki values in the range below 
100 nM, yellow for Ki values between 100 and 1000 nM, 
red expresses over 1000 nM or no detectable binding

Detailed information on the used set along with partition-
ing systems incorporated can be found in the Supplementary 
Material.

Results

Homology modeling

The homology model of the A3AR developed for this study 
exhibited good quality, as characterized by the fact that 

97.2% residues are in the favored region of the Ramachan-
dran plot.

As MODELLER outcome, ten models (#mo1–#mo10; 
Modeller output) were constructed using the input align-
ment. Models were characterized by relatively high DOPE 
(Discrete Optimized Protein Energy, atomic distance-
dependent statistical function), GA341 (describing reliabil-
ity of a model, derived from statistical potentials) scores and 
molpdf values (molecular PDF, Modeller objective func-
tion—the sum of all restrains). The three best-scoring A3AR 
models (denoted: #mo3, #mo9, #mo2) were used for further 
evaluation strategies based on two main criteria: AUC of 
binders/non-binders docking evaluation and visual inspec-
tion of the docked ligands. The most convincing binding 
modes, as well as an AUC = 0.776 were observed for model 
#mo3, which was consequently chosen for further studies, 
and denoted as model 1.

Despite its high enrichment and acceptable binding 
modes of the “active” set of ligands, we have to note that 
possible steric clashes between ligands and amino acids 
were observed, as well as narrowing of the bottom part of 
binding pocket, indicating a low quality model that might 
lead to false results Therefore another modeling approach 
(denoted as Strategy 2) was undertaken.

Model 2  (molpdf: 1823.76904, DOPE score 
− 41,914.38281) was obtained as a result of strategy 2, by 
placing the highly potent and selective (A3AR Ki = 40 nM) 
triazine-based molecule ZINC12533962, into the binding 
pocket instead of ZM241385, the ligand inactive for A3AR, 
but co-crystallized within the 3EML structure, used again 
as a template. Since ZINC12533962 was a hit derived from 
the previous study [9] its selection for purpose of this study 
was straightforward. Models 3 (molpdf: 3149.86035, DOPE 
score: − 41,785.51562) and 4 (molpdf: 1593.80505, DOPE 
score: − 41,855.65625; used further in docking/selectivity 
studies) were the results of strategy 3. This entailed mod-
eling after manual corrections of the ZINC12533962 ligand 
in the template structure, in order to obtain models with high 
enrichment ratios and possibly no steric clashes. The final 
model 4 used for the docking studies was characterized by 
a QMEAN score of 0.512 [39, 40], and 97.2% residues in 
the favored region according to the Ramachandran plot [41]. 
For all of the models, the orientation of the side chains in 
the binding side and the preservation of disulfide bonds was 
also checked visually. Binding pockets of all four obtained 
homology models are presented in Fig. 1.

Known ligand database docking and CBD system 
evaluation

As expected, most of the previously selected 39 test set 
ligands docked to the newly obtained A3AR homology 
model forming two hydrogen bonds with the key residue 
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ASN2506.55 in the calculated poses. Also, for most in vitro 
active compounds, π–π stacking interactions between their 
(hetero)aromatic rings and PHE16845.52 were observed. Fig-
ure 3 depicts exemplary binding mode to the adenosine A3 
receptor homology model 4.

In fact, in terms of productivity, our adenosine A3AR 
model gave an average true positive rate of 27 correct in 
silico/in vitro matches, out of 39 docked structures. A simi-
lar tendency was observed for all four used adenosine A1AR 
models, in contrast to, interestingly, a slightly lower score 
obtained using the crystal structure of the adenosine A2A 
receptor. Also, exchange of the “original” ligand in the bind-
ing pocket of the A1AR models did not affect the overall 
productivity score. On the other hand, rescoring with DSX 
slightly increased the hit/non-hit ratio for the A1AR and 
A2AAR results.

A similar influence was observed for CBD system incor-
porated in this study for selectivity prediction purposes 
(CR-1 CBD = 61, avg = 1.56; CR-3 CBD = 56, avg = 1.44). 
Rescoring, by increasing the productivity of models, resulted 
in slightly decreasing the CBD value in the first docking 
procedure (CR-2 CBD = 60, avg = 1.53; CR-4 CBD = 58, 
avg = 1.49). By changing the computational data partition-
ing to a binary system (either active or inactive, “greens & 
reds”, CR-5–CR-8) we were able to obtain CDB values of 46 
for the docking (CR-5), and 37 for the rescoring procedures 
(CR-8). The same tendency was observed when calculating 
CBD values for particular targets (e.g. 13 vs. 12 for A3AR, 
Fig. 4) and relative CBD values as well. With CBDmax value 

of 172 for ‘0–1–2′ and 117 for binary distributions at given 
in vitro data, the CBDrel values decreased from 0.36 (CR-
1) to 0.32 (CR-8), proving the effectiveness of conducted 
calculations.

Overall, using the a priori data partitioning, starting from 
the average error of 1.56 blocks per compound (bpc), we 
were able to improve the CBD ranking method to an aver-
age error of 1.49 bpc. Binarization of the data partitioning 
allowed to decrease the distance even further, from average 
error of 1.18 bpc to 0.95 bpc.

CBD system validation

The usability and versatility of the described CBD-based 
method has been assessed also with a set of reference com-
pounds with strong selectivity, described by Katritch [38]. 
While the obtained CBD results of these validation runs 
(“VR”, for details please refer to Supplementary Material) 
were higher than for the test set, they still bore correlation 
to the CR’s. Starting from VR-1 CBD resulted in avg. = 2.76 
(when compared to 1.56 for test set), the method allowed 
for VR-8 CBD avg. = 1.17. While the absolute values are 
somewhat different, a strong correlation with an R value of 
0.96 (R2 = 0.92) between CR and VR runs can be determined. 
A tendency similar to the one for the test set—decreas-
ing CBDrel values for each run—was also observed. With 
CBDmax value of 476 for ‘0–1–2′ and 264 for binary distri-
butions at given in vitro data, the CBDrel values decreased 
from 0.51 (VR-1) to 0.39 (VR-8).

While the validation set expressed affinity for biologi-
cal targets at much higher level than the test set, the sensi-
tivity of method was increased, by exchanging the in vitro 
data partitioning system (Second Validation Run; SVR). 
With sensitivity set at Ki < 100 nM for greens and yellows 
for 100 nM < Ki < 1000 nM, CBD avg. obtained CBD val-
ues appeared slightly higher than those of VR’s (CR/SVR 
CBD R = 0.88, R2 = 0.77). However, the trend of decreas-
ing CBDrel values was maintained, and remained at the ~ 0.4 
level.

In light of these validation results, we think that the rank-
ing system herein presented can be used as an in silico/
in vitro correlation quantification system independently of 
ligand selectivity.

Discussion

Predicting the subtype selectivity of ligands to GPCRs using 
in silico methods still remains a challenge for modelers [37] 
for a number of receptors share a high degree of structural 
similarity among their subtypes. Adenosine receptors are no 
different indeed—all AR subtypes share core interactions 
within their conserved residues. These interactions include 

Fig. 3   Calculated binding pose of ZINC 12533962 in adenosine A3 
homology receptor (model 4) binding pocket. Blue lines indicate 
hydrogen bonds formed with ASN2506.55. Latin numbers indicate 
helices, helix VII was removed for better viewing purposes
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key strong hydrogen bonding with Asparagine in position 
6.55, aromatic stacking with Phenylalanine in position 5.29 
along with hydrophobic interactions with conserved Iso-
leucine and Leucine side chains in positions 7.39 and 6.51, 
respectively. Nonetheless, small mutations in overall highly 
homologous structures serve as key selectivity determinants 
for AR subtypes. In case of A1AR, that has a close similarity 
to A2AAR and A2BAR, a difference is caused by four muta-
tions in the periphery of the binding pocket (e.g. position 
7.35) and relatively shorter ECL2, which results in the for-
mation of an additional hydrophobic sub-pocket in the loop 
region, allowing ligands to be more mobile in the binding 
pocket [42]. On the other hand, A3AR is the most disparate 
among ARs, having 10 (out of 20) unique amino acids in the 
binding pocket. The key difference is believed to be caused 
by exclusive Glutamate to Valine replacement in position 
5.30 which plays an important role in ligand binding to for 
the remaining ARs [38].

Therefore, finding a ligand that is recognized by just one 
binding pocket and refused by all other subtypes heavily 
relies on the quality of protein models used for the studies, 
as well as the docking procedure, and data analysis. Up to 
date, a number of virtual screening approaches to find such 
ligands for adenosine receptors have been undertaken. Just 
to mention the latest few: Rodriguez et al. [43] were able to 
identify 9 A2AAR ligands out of 20 predicted while scan-
ning a library of 6.7 million compounds, however none of 
them activated the target receptor. Later studies from this 
group incorporating virtual libraries allowed for the iden-
tification of two ligands targeting A1 and A3AR [44]. From 
the 63 structurally diverse ligands identified by VS by Tian 
et al. [45], 11 exhibited substantial activity against A2AAR 
in experimental tests, 2 of which with Ki in nanomolar level 
and good A2A/A1 selectivity. Last but not least, a non-typ-
ical, interesting incorporation of virtual screening in later 
stage of drug development, namely safety profiling, was 
described recently by Fan et al. [46].

Even though the selectivity of the compounds in the 
selected dataset was not extraordinary and we did not have 
the highest-affinity ligands known for the ARs in this set, for 
the sake of consistency with previous studies we used the 
same receptors and ligand sets. This also ensured data com-
parability. Moreover, we wanted to see how, instead of look-
ing at individual compounds, the entire set of compounds 
is predicted—within a real-world campaign, one might not 

have a validated set of high-affinity ligands. From this study 
two main results emerged. First, our A3AR model is a reli-
able one in the sense that it is capable of recognizing the 
active ligands with high confidence (AUC = 0.844). This 
was also proven by accurate predictions for 27 out of the 
39 ligands used in this study. The overall hit ratio is compa-
rable with the A1AR homology models used in this study. 
Yet, in comparison to the A1AR models used for screen-
ing, the docking procedure involved only one A3AR homol-
ogy receptor in a rigid state. Taking into account the high 
GPCR flexibility and the fact that only one out of a number 
of possible receptor conformations was used to obtain a rela-
tively good hit ratio, it might be concluded that the obtained 
model can be further used for screening of larger libraries 
of compounds.

Second, the employed in silico ranking method based on 
Taxicab Geometry proved to be a useful metric to evaluate 
the performance of the in silico methods. The idea was to 
estimate and visualize how far from “exact” the screening 
results would be. As this study was the continuation of a 
previously described one [9] we already had the binding data 
in hand. Therefore, dividing the data into active and inactive 
compounds was the first step of applying the method.

At this point one has to deal with the uncertainties asso-
ciated with experimental data. For this reason, and also to 
avoid classifying e.g. two compounds with 999 nM and 
1001 nM affinity, respectively, as “active” and “inactive”, we 
introduced the “buffer” category yellow. The same applies 
for molecules with a percentage of inhibition close to 50%. 
In the docking part of our study, we chose to impose the set 
delimiters by percentage of the entire set, thus avoiding the 
issue of category-crossing error bars on e.g. ‘greens’ and 
‘yellows’. By using a percentage-based splitting and focus-
ing on the correlation of the entire set of molecules, the per-
formance and assignment of an individual compound does 
not influence the overall performance to a large extent. Of 
course, in a prospective setting this percentage-based separa-
tion into categories is not obvious. Users might be guided 
by the commonly achieved hit rates in such cases, or, alter-
natively, by the capacity available for experimental testing.

On the other hand, dividing the computational docking 
data a priori was challenging. How to divide the docking 
results without being biased by the biological test data? 
This was even amplified when incorporating the third cat-
egory, “moderately active”, to both sets of data to make 
the estimation more precise. However, even when jug-
gling and correcting the screening data division, followed 
by redocking as well as rescoring of all of the poses, we 
were able to only get CBD values quite far from ideal. 
Nonetheless, comparing these values with an in-house 
script generating multiple 0–1–2 distributions, we were 
able to ascertain that the results were better than random. 
Further changing the data division to binary, either active 

Fig. 4   Upper panel: distribution of CBD values calculated in 0–1–2 
mode for each receptor used; Middle panel: distribution of CBD 
values calculated in binary mode for each receptor; Lower panel: 
in  vitro/in silico hit rate for all 6 used proteins (four A1AR models 
and one each for A2AAR and A3AR). Each column depicts one run 
according to the legend. For detailed information on proteins used, as 
well as “CR’s” please refer to “Materials and Methods”: Docking and 
In silico screening evaluation sections respectively

◂



706	 Journal of Computer-Aided Molecular Design (2020) 34:697–707

1 3

or inactive, in fact yielded lower CBD values, resulting 
in an average error of less than 1 block per compound. 
Such a rank division seems satisfying, due to a high hit/
no-hit ratio yield, clearly better than random, and should 
be accurate enough to be used also in a prosepctive setting. 
Again, using the same script generating multiple 0–1 dis-
tributions, results also appeared to be slightly better than 
random. The strength and effectiveness of these calcula-
tions were confirmed with relative CBD values calculated 
for each run, clearly proving their non-randomness.

As a further matter, for the purpose of method valida-
tion, we used a set of 88 highly affine and selective ligands. 
Albeit the obtained results appeared slightly higher than 
for the test set, they still prove the effectiveness of the 
method in both 0–1–2 and 0–1 distributions. The main 
reason for such performance might be the overall higher 
ligand affinity to the adenosine receptors. This issue was 
partly resolved by fine-tuning of the method, by increasing 
the sensitivity of in vitro data partitioning (eg. VR-1 CBD 
avg. = 2.76 vs. SVR-1 CBD avg. = 2.12). It also allowed 
us to show that such a sensitivity increase is not only pos-
sible, but also productive.

Nevertheless, docking to multiple receptors and ranking 
the data might be a challenge. First, four different homol-
ogy models of one receptor (A1AR) generated only small 
differences in binding values, as the models only differ 
slightly from each other. Taking into account ranks from 
all four models seems like a sensible strategy, but care 
has to be taken not to bias the overall ranking just for this 
one target. Second, with each additional target and the 
set of screened ligands, the amount of data combinations 
increases, and ranks have to be divided carefully. Third, 
one must keep in mind that the assignment of docking 
ranks and scores to the different categories might still be 
influenced by the researcher deciding on the cutoffs.

Contemporary searches for novel GPCRs ligands rely 
heavily on docking of newly designed chemical compounds 
and virtual libraries to protein homology models and crystal 
structures. Still, the exact identification of hits and predic-
tion of their selectivity profiles remains a challenge for com-
putational chemists. The ranking system described herein 
might find its use in the search for selective compounds, but 
also those that are designed to act at more than one target. 
Despite its simplicity, it helps to condense a rather complex 
comparison into single numbers and cutoffs for classifiers.
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