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Abstract
Machine learning methods may have the potential to significantly accelerate drug discovery. However, the increasing rate 
of new methodological approaches being published in the literature raises the fundamental question of how models should 
be benchmarked and validated. We reanalyze the data generated by a recently published large-scale comparison of machine 
learning models for bioactivity prediction and arrive at a somewhat different conclusion. We show that the performance of 
support vector machines is competitive with that of deep learning methods. Additionally, using a series of numerical experi-
ments, we question the relevance of area under the receiver operating characteristic curve as a metric in virtual screening. 
We further suggest that area under the precision–recall curve should be used in conjunction with the receiver operating 
characteristic curve. Our numerical experiments also highlight challenges in estimating the uncertainty in model performance 
via scaffold-split nested cross validation.

Introduction

Computational approaches to drug discovery are often jus-
tified as necessary due to the prohibitive time and cost of 
experiments. Unfortunately, many papers fail to sufficiently 
prove that the proposed, novel techniques are actually an 
advance on current approaches when applied to realistic 
drug discovery programs. Models are often shown to work 
in situations differing greatly from reality, producing impres-
sive metrics that differ greatly from the quantity of interest. 

It is then often the time and cost of properly implementing 
and testing these proposed techniques against existing meth-
ods that becomes prohibitive for the practitioner. There is 
also the significant opportunity cost if models prove to be 
inaccurate and misdirect resources.

These concerns are not new to the field of computational 
chemistry. Walters [1], Landrum and Stiefel [2], and others 
have previously critiqued the state of the literature, even 
referring to many papers as “advertisements”. Furthermore, 
Nicholls has provided useful overviews of statistical tech-
niques for uncertainty quantification and method compari-
son [3–5]. Recent works provided an important review on 
the importance of evaluating bias in data and the implica-
tions for deep learning algorithms in virtual screening [6, 
7]. However, many authors still neglect the relevant issues, 
and results are frequently reported without error bars, proper 
train and test set splitting, and easily usable code or data.

Problems with validation are not unique to chemoinfor-
matics or computational chemistry: numerous papers and 
manuscripts in the machine learning literature have been 
devoted to the proper evaluation of methods, with special 
concern to the applicability of statistical testing procedures 
for method comparison [8–12]. Recent reviews also provide 
background into procedures for hyperparameter optimiza-
tion and model selection [13]. However, despite this work, 
researchers still find that new approaches frequently exploit 
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bias in the training set, likely overfit to benchmark datasets 
[14], and even find that thousands of papers may be based on 
an initial result that was simply statistical noise [15].

These errors are rampant for a number of reasons. One 
overarching issue is that the literature has many differing 
suggestions and involves theoretical statistical ideas—differ-
ent metrics reward different aspects of the model, and com-
monly used metrics in machine learning do not necessarily 
reward models that are useful in drug design. Moreover, 
even when practitioners are interested in a thorough analy-
sis of results, the task can be quite time intensive and costly. 
To properly test a new neural network architecture against 
older methods using several different random seeds, dataset 
splits, and learning rates might take on the order of 1000s of 
GPU hours and become a monetary concern.

Therefore, we find that there is a clear need for research 
regarding the proper way to compare models in compu-
tational chemistry. That is, we need to first ask the meta-
question of how to ask: which model is the best? For many 
research areas, including bioactivity prediction, past work 
has revolved around proving state-of-the-art (SOTA) perfor-
mance on a set of benchmark datasets [16]. While benchmark 
datasets are important and efforts such as ImageNet have 
been revolutionary for the computer vision and NLP com-
munities, their use has not been without controversy [17]. 
When SOTA performance on these benchmarks becomes 
the main goal of algorithm development, there becomes less 
focus on understanding the robustness and domains of appli-
cability for each model, while interesting, potentially fruitful 
ideas failing to achieve SOTA may be ignored. As a result, 
members of the NLP and computer vision communities have 
called for a renewed focus on careful dataset creation, such 
as constructing difficult “adversarial datasets” probing how 
certain models fail [18]. If a field is to indeed prioritize the 
optimization of model performance on a small selection of 
datasets, care should be taken to ensure that these datasets 
and performance metrics are proper surrogates for the more 
general problem of interest.

In this paper, we examine this question by reanalyzing 
the recent validation study by Mayr and coworkers [19]. Our 
study is made possible by their extensive effort in building a 
large-scale benchmarking study, as well as their generosity 
in making the code and data publicly available. The ques-
tions we will ask are: (1) Is one machine learning method 
significantly better than the rest, using metrics adopted by 
Mayr et al.? (2) Are the metrics adopted by Mayr et al. the 
most relevant to ligand-based bioactivity prediction? Our 
key conclusion is an alternative interpretation of their results 
that considers both statistical and practical significance—
we argue that deep learning methods do not significantly 
outperform all competing methods. We also show, via a 
series of examples, that the precision–recall curve is rel-
evant to ligand-based drug discovery and should be used in 

combination with the ROC–AUC metric. In reaching these 
conclusions, we also discuss and review issues of uncer-
tainty and model comparison that are central to the field.

The source code used for our reanalysis is available on 
GitHub https​://githu​b.com/mc-robin​son/valid​ating​_valid​
ation​_supp_info

Study design of Mayr et al.

Our study is motivated by the recent paper, entitled “Large-
scale comparison of machine learning methods for drug 
target prediction on ChEMBL”, by Mayr and coworkers. 
Realizing the recent success of deep learning in other fields 
and its introduction into drug-discovery [20, 21], Mayr and 
coworkers performed a large-scale evaluation of the meth-
od’s success against other commonly-used machine learning 
methods in the drug discovery community. Their goal was 
to combat three common problems with model evaluation 
in chemical prediction: (1) a lack of large scale studies, (2) 
compound series bias in testing of drug-discovery algo-
rithms, and (3) bias in hyperparameter selection.

The Mayr et al. evaluation, based entirely on ligand-based 
approaches, had the explicit goal of comparing “the perfor-
mance of deep learning with that of other methods for drug 
target prediction.” In pursuing this goal, the authors cited 
the relatively small number of assays in previous evaluation 
studies such as MoleculeNet [21] and the need for larger 
scale evaluation. The authors believe that these small stud-
ies “restrict the conclusions of the method comparisons to 
a certain subset of assays and underestimate the multitask 
learning effect in spite of the large amount of data being 
available publicly.” To correct this shortcoming, Mayr et al. 
extract data including roughly 456,000 compounds and over 
1300 assays from ChEMBL [22].

Notably, the ChEMBL data is quite heterogeneous. The 
diverse set of target classes includes ion channels, recep-
tors, transporters, transcription factors, while the similarly 
diverse assay types include ADME, binding, functional, 
physiochemical, and toxicity assays. The number of com-
pounds in each assay is also quite variable—ranging from 
roughly 100 compounds to over 30,000 in a given assay. In 
order to treat each problem as a separate binary classification 
procedure, the authors also develop a procedure to automati-
cally convert the assay measurements to binary labels. Each 
assay is then treated as an individual classification problem.

The compounds were then featurized using several dif-
ferent schemes including toxicophore features, semisparse 
features, depth first search features, and the popular (ECFP6) 
fingerprint [16]. In our study, we chose to examine the 
ECFP6 fingerprint, as implemented by Mayr et al. in jCom-
poundMapper, because the similar Morgan fingerprint with 
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radius 3 can easily be constructed from molecular data using 
the popular open-source program RDKit [23].

Is there a best model?

In their study, Mayr et al. concluded that “deep learning 
methods significantly outperform all competing methods.” 
Much of this conclusion is based upon small p-values result-
ing from a Wilcoxon signed-rank test used to quantify the 
differences in the average performance of the classifiers. 
For example, they report a p-value of 1.985 × 10−7 for the 
alternate hypothesis that feedforward deep neural networks 
(FNN) have a higher area under the receiver operating curve 
(AUC–ROC) than support vector machines (SVM). For the 
alternative hypothesis that FNN outperform Random For-
ests (RF), the p-value is even more extreme ( 8.491 × 10−88 ). 
From such low p-values, one might be led to believe that 
FNN is the only algorithm worth trying in drug discovery. 
Yet, a closer look at the data reveals that this conclusion is 
clearly erroneous and obscures much of the variability from 
assay to assay.

Are all assays created equal?

To demonstrate the problems, we begin with an initial exam-
ple of SVM and FNN performances using ECFP6 finger-
prints. Table 1 shows AUC–ROC results from the FNN and 
SVM classifiers for two assays in the Mayr et al. dataset. 
Assay A is a functional assay consisting of a small number 
of samples. Each fold is heavily imbalanced and consists 
mostly of active compounds. Importantly, this is often the 
opposite imbalance one would observe in a real screen. As 
is expected with a small amount of highly imbalanced data, 
both the FNN and SVM classifier show highly variable 

results with very large confidence intervals. In fold 2, where 
only a single active compound is present in the test set, it 
is not even clear how to calculate the confidence intervals 
for AUC–ROC. The mean and standard error of the mean 
(SEM) are also calculated over the threefold, though this is 
slightly dangerous since it discards all of our knowledge of 
uncertainty in each fold.

In contrast, assay B is a functional assay with large sam-
ples and imbalances that more closely resemble those typi-
cally seen in the literature. Performance is quite good, with 
the SVM classifier outperforming the FNN classifier on 
each fold. Furthermore, the confidence intervals for each 
AUC–ROC value are quite small. Again the mean and SEM 
are calculated across the folds for each classifier. Addition-
ally, Fig. 1 gives a visual representation of the performances 
for assay A and assay B.

One would likely agree that Fig. 1 shows a striking dif-
ference between the results of the two assays. While the 
results of assay A for FNN and SVM are extremely noisy 
and raise many questions, assay B shows a well-defined 
difference in the performance of the two algorithms, even 
relative to the noise levels of the measurements. Though 
not a formal analysis, due to the presence of noise, one 
would likely consider the difference in mean performances 
on assay A, 0.67 − 0.57 = 0.10 , to be much less meaning-
ful than the difference in mean performances on assay B, 
0.929 − 0.900 = 0.029 . To most practitioners, comparative 
performances on assay B would give much more evidence 
to SVM outperforming FNN than the comparative perfor-
mances on assay A, even though it is lower in magnitude. 
More formally, one can compare the effect size, which 
measures the difference in the performance of the two 
models relative to the standard deviation of the data, and 
thus accounts for the variability of the respective datasets. 
The effect size can also be related to the probability of one 
model outperforming the other [24]. Note that the p-value 

Table 1   Two separate assays from the Mayr et al. data with the accompanying FNN and SVM prediction results

Confidence intervals for AUC–ROC are calculated through the Hanley–Mcneil method while the standard error of the mean (SEM) across folds 
is calculated in the standard fashion
*Indicates that the confidence interval is calculated using a different, simulation based approach because it is not possible to calculate the effec-
tive degrees of freedom in the usual way, when only one sample is given from the positive class

Fold 1 Fold 2 Fold 3 MEAN SEM

A: ChEMBL 1964055
 FNN AUC–ROC (95% CI) 0.44 (0.035, 0.94) 0.62 (0.0, 1.0)* 0.64 (0.34, 0.86) 0.57 0.05
 SVM AUC–ROC (95% CI) 0.38 (0.02, 0.94) 0.97 (0.0, 1.0)* 0.68 (0.38, 0.88) 0.67 0.14
 Test set size (actives/ inactives) 35 (32/3) 30 (29/1) 35 (29/6)

B: ChEMBL 1794580
 FNN AUC–ROC (95% CI) 0.889 (0.883, 0.895) 0.905 (0.900, 0.910) 0.906 (0.900, 0.911) 0.900 0.005
 SVM AUC–ROC (95% CI) 0.926 (0.921, 0.931) 0.926 (0.921, 0.930) 0.934 (0.930, 0.939) 0.929 0.002
 Test set size (actives/ inactives) 19388 (5553/13855) 25165 (6918/18247) 19363 (5491/13872)
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is dependent on sample size whereas the effect size is not—
with a sufficiently large sample, relying on p-values will 
almost always suggest a significant difference, unless there 
is no effect whatsoever (effect size is exactly zero). However, 
very small differences, even if significant, are practically 
meaningless. Using the canonical definition for effect size 
from Cohen (Cohen’s d):

where �1 and �2 are the mean performances and s1 and s2 are 
the standard deviations of the data, not the means. Using this 
formula, the effect size in assay B (4.40) is approximately 
eight times the size of the effect size in assay A (0.55). Nev-
ertheless, a problem arises because the Wilcoxon signed-
rank test used by Mayr treats the noisy, less informative 

d =
�2 − �1
√

s2
1
+s2

2

2

,

assay A as greater evidence than assay B for the superiority 
of SVMs over FNNs.

The Wilcoxon signed-rank test is a non-parametric paired 
difference test often used when determining if matched sam-
ples came from the same distribution. The test is perhaps 
best explained by example: imagine two methods, Mshallow 
and Mdeep are used on a variety of prediction tasks. These 
prediction tasks vary widely and the algorithms have vastly 
different expected performances on each task. For our 
example, consider the sample tasks of predicting a coin flip 
(COIN), predicting the species of a flower (FLOWER), and 
predicting the label of an image (IMAGE) among many 
other varying tasks. The tests to verify the accuracy (ACC) 
on these differing tasks are also quite different. For the coin 
prediction tasks, only ten coins are tossed. For the flower 
task, around 100 flowers are used. And for the image task 

Fig. 1   Figures displaying 
the information contained in 
Table 1. In the case of fold 2 
for assay A, 95% confidence 
intervals are calculated based on 
a simulation approach. For the 
mean values across all folds, a 
t-distribution with two degrees 
of freedom is used to calclulate 
95% confidence intervals for 
the mean AUC–ROC across the 
threefold

Table 2   The results form our 
imagined example

The signed-rank is simply the rank of the difference in ACCshallow − ACCdeep among all such differences 
multiplied by the sign of the difference

ACCshallow ACCdeep ACCshallow − ACCdeep

Absolute dif-
ference

Sign Signed Rank

... ... ... ... ... ...
COIN 0.6 (0.45, 0.75) 0.4 (0.25, 0.55) 0.2 + + 20
... ... ... ... ... ...
FLOWER 0.98 (0.97, 0.99) 0.99 (0.97, 1.0) 0.01 − − 2
... ... ... ... ... ...
IMAGE 0.894 (0.891, 0.897) 0.941 (0.938, 0.944) 0.057 − − 7
... ... ... ... ... ...
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10,000 images are used. Thus, our made up results when 
comparing the models may look like so (Table 2):

As our imagined table shows, the difference in perfor-
mance between the methods is most drastic for the COIN 
dataset, which is also the most noisy, as shown by the large 
confidence intervals. However, this result is also the most 
meaningless of the three shown, since we know that all 
methods will eventually converge to an accuracy around 0.5 
in the large number of test samples. The IMAGE dataset 
is likely the best indicator of the superior method (at least 
on image problems), but the “rank” of the difference (after 
ordering all the absolute differences) is quite small com-
pared that of the COIN, and potentially many other unreli-
able tests of performance. Unfortunately, since the Wilcoxon 
signed-rank test only relies on the signed-rank (rank of dif-
ference multiplied by the sign of the difference), all infor-
mation regarding the variability in a given test is discarded.

The null hypothesis of the Wilcoxon test is that the dif-
ferences in the methods are distributed symmetrically and 
centered on zero. The test statistic W is simply the sum of 
the signed ranks and has an expected value of zero, with a 
known variance. As a result, the larger magnitude differ-
ences between the two methods will be considered more 
important by the test, due to their high ranks. Unfortunately, 
in our illustrative example, the highly ranked differences are 
not those that give the best evidence of differences between 
the methods.

Coming back to the example from Mayr and coworkers, 
the test treats the difference in performances on each assay 
as commensurate, and assumes that the larger magnitude 
difference of mean AUC–ROC values in assay A should 
carry more weight than the smaller magnitude difference 
of mean AUC–ROC values in assay B. This, again, is not 
necessarily true.

Instead, effect size, which measures the magnitude of the 
difference relative to the uncertainty, is more important than 
pure magnitude differences. As another complication, dif-
ferences in AUC/probability space are not straightforward: 
p = 0.01 and p = 1 × 10−6 have a smaller difference in abso-
lute magnitude than p = 0.51 and p = 0.52 ; however, the 
difference between one in 100 and one in a million is likely 
much more important than the difference between 51 and 
52%. Lastly, these concerns aside, assuming commensurate 
results were already problematic given the heterogeneity of 
the assay types, changing sample sizes, varying imbalances, 
and diverse target classes.

A different test, a different question

Having realized that the Wilcoxon signed-rank test is inap-
propriate, we turn to the sign test as perhaps the most appro-
priate procedure. The sign test essentially counts the pro-
portion of “wins” for a given algorithm over another on all 

of the datasets. That is, we simply consider the sign of the 
difference in performance between the methods. The test 
allows us to probe the question: “on a given dataset/assay, 
which of the methods will perform the best?” This ques-
tion addresses the concern of a practitioner implementing a 
bioactivity model and considering many potential predictive 
models. In contrast, the statistic of the Wilcoxon signed-rank 
test is much less interpretable, providing less clarity to the 
user.

As with many of these tests, the null hypothesis of the 
sign test is that the two models show the same AUC–ROC 
performance on the datasets. Assuming this null hypothesis, 
the algorithm displaying the better performance on a given 
assay should be determined by a coin-flip. Therefore, given 
N assays, we expect each classifier to win on approximately 
N/2 assays. In our illustrative example, if both Mshallow and 
Mdeep were tested on 100 different datasets, each method 
would be expected to “win”, i.e. outperform the other 
method, on approximately 50 of the datasets. Obviously, 
variability is expected, which can be quantified by devia-
tion from the expected binomial distribution.

There are, of course, still problems with the sign test. 
First, the test still discards most of the uncertainty informa-
tion. Secondly, the test still counts the assays in Table 1 and 
Fig. 1 of equal weight, which is better than in a rank test, but 
still suboptimal. Additionally, due to the lack of parametric 
assumptions, the sign test has low power, meaning that it 
often fails to detect a statistically significant difference in 
algorithms when one exists.

Using the sign-test we calculated 95% Wilson score inter-
vals for the sign-test statistic for the alternative hypothesis 
that FNN has better AUC–ROC performance than SVM, the 
second best performing classifier according to Mayr et al. 
Using all 3930 test folds in the analysis (since each is indeed 
an independent test set) gives an interval of (0.502, 0.534), 
while only comparing the mean AUC values per assay gives 
a confidence interval of (0.501, 0.564). While both of these 
tests are narrowly significant at the � = 0.05 level (intervals 
do not include 0.5), it is worth examining the practical mean-
ing of these results.

According to the statistic, our data is compatible with an 
FNN classifier beating an SVM classifier on 50% to 56% 
of the assays, Thus, if one were to conclude that only an 
FNN classifier is worth trying, the user would be failing to 
use a better classifier almost 50% of the time! And this is in 
the case of a two classifier comparison. Considering all the 
classifiers, FNN and SVM both perform the best in 24% of 
the assays, while every other classifier considered by Mayr 
et al. is the best performing classifier on at least 5% of the 
assays (Table 3 shows a breakdown of wins). Clearly, some 
of these results are just noise due to small assay sizes; how-
ever, it indicates that classifier performance is likely assay 
dependent, and one should try multiple classifiers for a given 
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problem. (It is also noteworthy that the dataset comprises 
many assay types, e.g. enzyme inhibition/binding affinity/
efficacy, which are qualitatively different.)

Unfortunately, though the sign test may be an improve-
ment, the act of averaging results over many heterogeneous 
assays still fails to properly quantify the applicability and 
robustness of each model. Reporting merely the average per-
formance occludes the success of each method on assays 
with differing makeups of actives and inactivates, similari-
ties among molecules, and levels of noise.

The above considerations are illustrated by the data in 
Figs. 2 and 3. Figure 2 shows that the FNN and SVM 

performance is almost identical for large datasets, but the 
difference between the performances varies quite spo-
radically for assays with fewer compounds (the smaller 
points in the figure). Additionally, Fig. 3 shows the best 
performing algorithm for each independent test fold; we 
also plot the other algorithms that Mayr et al. considered, 
namely random forest (RF), k-nearest neighbours (kNN), 
Graph Convolutional neural networks (GC), Weave, and 
Long Short-Term Memory networks with SMILES input 
(LSTM). As one can see, the results are quite varied for 
smaller assays, and the best performing algorithm is 
largely dataset dependent. Much of this variation is due 
to the threefold CV procedure of Mayr et al. that is quite 
susceptible to large variations because of the small dataset 
size.

However, as the training size increases, the deep learn-
ing and SVM algorithms dominate. Interestingly, among all 
datasets with greater than 1000 compounds in the test set, 
SVM performance is better than FNN performance on 62.5% 
of assays, which is counter to the usual wisdom that deep 
learning approaches beat SVMs in large assays. Notably, 
GC, LSTM, and Weave, show the best performance on only 
a small number of large assays, casting doubt on their utility 
over a standard FNN or SVM. With all of these observa-
tions, it should be noted that the results could be due to sub-
optimal hyperparameter optimization—and perhaps some of 
these models can achieve state-of-the-art performance in the 
hands of expert users. However, hyperparameter optimisa-
tion can take a considerable amount of time and computing 
resources.

Additionally, the correlation between the mean 
AUC–ROC performances for all models is shown in Fig. 4 
for the 177 assays with more than 1000 test set samples on 
average over the threefold. As can be seen, most of the deep 
learning models perform quite similarly, with NB, KNN, 
and Weave seeming to show the worst performance. The 
figure showing how well the models correlate on assays 
of all sizes is also included in the supporting information. 
Unfortunately, it is tough to make inferences regarding the 
relative performance in small sizes due to the inherent noise 
of the datasets and threefold CV procedure.

Taking all of the above into consideration, it appears that 
the FNN and SVM models are the best performing models, 
especially in the case of large datasets. In small datasets, 
NB, KNN, and RF can often still perform competitively. It is 

Table 3   The percent of test folds, across all assays, that a method is the best performing method

SVM and FNN are clearly the best performing methods, and it is noteworthy that SVM outperforms deep learning methods such as GC, LSTM 
and Weave

Method SVM FNN GC NB LSTM RF Weave KNN Tie

% of folds that the method is the best performing method 24.6 24.6 9.99 9.69 7.91 7.71 7.51 5.73 2.34

Fig. 2   A comparison of FNN and SVM AUC–ROC performance on 
all test folds. The orange line indicates the identity line of slope 1, 
while the dot size indicates the size of the test set

Fig. 3   The best performing algorithm (indicated by color) in terms of 
AUC–ROC for all test folds as the training size increases
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also unclear how well the frequently used gradient-boosted 
decision tree algorithm would compare, since it was not 
included in the study. The Mayr et al. data contains quite a 
lot of information and we provide it and our code online for 
all who wish to further analyze it.

What performance metric do we need?

Having reevaluated different machine learning methods 
using the metric suggested by Mayr et al. —ROC–AUC—
we now turn to consider the more general question of what 
performance metric is most closely correlated to practical 
success in drug discovery.

Fig. 4   The correlation in mean AUC–ROC performance for all mod-
els on assays with more than 1000 samples in the test set. The orange 
line indicates the identity line of slope 1, while the dot size indicates 

the size of the test set. The density plots on the diagonal represent the 
distribution of mean AUC–ROC scores for the given classifier
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What does ROC–AUC measure?

Typical machine learning performance measures such 
as accuracy, true positive rate (TPR), false positive rate 
(FPR), precision, specificity, are combinations of the 
entries of the confusion matrix, shown in Table 4.

In the virtual screening literature, researchers frequently 
use the area under the curve (AUC) of the receiver operat-
ing characteristic curve (ROC), which plots TPR vs FPR, 
defined below,

The AUC–ROC is not based on a single threshold, and 
instead gives an indication of classifier performance over 
a range of varying classification thresholds. In this way, 
the AUC–ROC captures how well a classifier discriminates 
between the classes of interest. Conveniently, the AUC–ROC 
can also be interpreted as the probability that a randomly 
chosen member of the positive class will be correctly ranked 
before a randomly chosen member of the negative class. 
Therefore, an AUC–ROC of 1.0 indicates perfect discrimi-
nation between classes, and an AUC–ROC of 0.5 indicates 
random guessing.

While the AUC–ROC is more robust than metrics such as 
accuracy in cases of class imbalance, it is still not without 
criticism. These critiques, popularized by Hand and cowork-
ers [25], are perhaps best understood if one interprets the 
ROC–AUC as the expected TPR averaged over all classifica-
tion thresholds (false positive rates). Therefore, if two ROC 
curves cross, the AUC of one curve may be higher even if 
it performs much worse (has a lower TPR) over the region 
containing the classification thresholds of interest. Addi-
tionally, Hand raises concerns about the “incoherence” of 
AUC–ROC, since the measure ignores relative cost concerns 
of each threshold when simply taking an expected value over 
all such decision thresholds (FPR from zero to one).

The critique of AUC–ROC most widely seen in drug 
discovery is that it does not account for the “early behav-
ior” of a classifier. Since the purpose of virtual screening 

TPR =
TP

TP + FN
, FPR =

FP

FP + TN

procedures is often to rank the compounds by likely activity 
and avoid experimentally screening an intractable number of 
compounds, the classifier is only useful if active compounds 
are ranked at the top of the list and prioritized for actual 
screening. Unfortunately, the AUC–ROC does not take into 
account this early performance and only measures average 
discrimination performance.

As a result of these shortcomings, many alternative meth-
ods including BedROC and RIE have been proposed, as 
described in [4]. However, these methods are sensitive to a 
tunable parameter and are not as interpretable as a metric as 
AUC–ROC. In drug discovery, the enrichment factor is often 
used to quantify this early behavior, which describes how 
many of the total actives are found in the top X% of ranked 
compounds. Unfortunately, this metric can be quite noisy 
and is sensitive to both the chosen percentage and specific 
ordering of compounds at the top of the list. Alternatives 
such as ROC enrichment, which instead uses the fraction 
of inactives and is related to the AUC–ROC, have also been 
proposed [4].

Instead of focusing on specific drug discovery metrics, 
we propose that the widely used area under the preci-
sion–recall curve (AUC–PRC) may serve as an important 
complement to the AUC–ROC in chemical applications. 
Precision–recall curves plot the precision or positive-pre-
dicted-value ( PPV =

TP

TP+FP
 ) on the vertical axis and recall 

(same as TPR) on the horizontal axis. To illustrate why 
AUC–PRC may be more appropriate than AUC–ROC, we 
describe below a series of numerical simulations. Our simu-
lations build on the results of Saito and Rehmsmeier [26].

Precision–recall should be used in conjunction 
with AUC–ROC

We first consider a theoretical classifier of positive and nega-
tive examples, shown in Fig. 5a. This theoretical classifier 
shows decent discrimination between the two classes, as 
shown by the separation of the two normal distributions.

Because this hypothetical classifier assigns scores to each 
class based on well known distributions, we can computa-
tionally take samples from each distribution. In our exam-
ple, we take N+ = 100 samples from the positive class and 
N− = 10, 000 samples from the negative class in order to 
mimic a 1% hit rate of actives that might be observed in a 
virtual screen. After repeating this experiment ten times, we 
then plot ROC curves, PRC curves, and percent enrichment 
factor curves for each round of the simulation, as shown in 
Fig. 5b–d.

The first thing to notice in these plots is the large dis-
crepancy between the average AUC–ROC and AUC–PRC 
scores. This difference results from the large number of false 
positives which cause the precision–recall scores to be quite 

Table 4   An example confusion matrix

In the drug discovery literature, the positive class (+) represents the 
actives, while the negative class (−) represents the inactives. Note 
that there are mixed conventions in the literature regarding the correct 
axis of the predicted and actual classes

Predicted class

+ −

Actual + True positive (TP) False negative (FN)
Class − False positive (FP) True negative (TN)
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low. Importantly, one may wrongly conclude that the perfor-
mance of the classifier is almost perfect by merely observing 
the ROC plot, while observing the PRC plot indicates poor 
precision.

We next consider an alternate theoretical classifier with 
improved early performance in Fig. 6a. In this case, the 
negative samples are drawn from the same normal dis-
tribution as in the aforementioned simulation, while the 
positive samples are drawn from a Beta distribution to 
bias the results towards improved early retrieval of actives.

The same simulation procedure is repeated with the 
same class imbalance, and the results of the simulation 
are shown in Fig. 6b–d. Notably, the average AUC–ROC 
is almost the same as in the previous simulation but the 
average AUC–PRC and enrichment factors show a marked 
increase. Therefore, we observe that the precision–recall 
curve better accounts for the desired early performance 
behavior in drug-discovery applications. To show that this 
is not merely due to intricacies of our simulation setup, we 

replicate the simulations of Saito and Rehmsmeier, which 
show the same effect, in the supporting information.

We note that the “early-part” of the ROC curve (TPR 
values at low FPR values) also indicates the early perfor-
mance. However, in benchmarks or cross-validation pro-
cedures, one does not often observe the complete ROC 
curve, and instead just observes the AUC–ROC values 
themselves.

As an example of the utility of the AUC–PRC score, 
we plot the AUC–ROC and AUC–PRC performances of 
FNN on all 1310 assays. As one can see in Fig. 7, the 
two metrics are not necessarily well correlated, and thus 
indicate large class imbalances. Additionally, observing 
that the AUC–PRC was often large when the AUC–ROC 
indicated mediocre performance alerted us to the fact 
that many of the assays show the opposite class skew 
we would expect from virtual screening assays. Impor-
tantly, a majority of the labeled compounds were active 
in a large number of assays (in 165 of the 1310 assays, 
there is at least one test fold consisting of 90% or greater 

Fig. 5   a Distributions of classification scores for a theoretical classi-
fier of positive and negative examples. The negative scores follow a 
N(� = 0.4, � = 0.1) distribution, while the positive scores follow a 
N(� = 0.6, � = 0.1). Adapted from the simulations in [26]. b ROC, 

c PRC, and d enrichment factor curves for predictions from the theo-
retical classifier shown in (a). The curves result from ten runs of a 
simulation with large class imbalance ( ∼ 1% actives)
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Fig. 6   a Distributions of classification scores for a theoretical clas-
sifier of positive and negative examples with improved early perfor-
mance. The negative scores follow a N(� = 0.4, � = 0.1) distribution 
as before in Fig. 5a, while the positive scores follow a B(a = 3, b = 1) 

distribution. b ROC, c PRC, and d enrichment factor curves for pre-
dictions from the theoretical classifier shown in (a). The curves 
result from ten runs of a simulation with large class imbalance ( ∼ 1% 
actives)

Fig. 7   The relationship between 
AUC–ROC scores and AUC–
PRC scores for all test folds for 
the FNN model. Note the lim-
ited range of AUC–ROC scores 
in comparison to the AUC–PRC 
scores, which vary considerably. 
We can only compare ROC and 
PRC for FNN because PRC 
values were not reported for the 
other methods



727Journal of Computer-Aided Molecular Design (2020) 34:717–730	

1 3

actives), even though virtual screening applications usu-
ally involve situations where the inactives far outnumber 
the active hits (in nearly all collected and literature pub-
lished datasets, molecular diversity is generally greater 
and not focused on an active series or related molecules).

Understanding what we want to measure

The above discussion details how AUC–PRC may be use-
ful for evaluating the performance of computational meth-
ods in drug discovery. However, this is not to say that 
precision–recall is always the correct metric. In general, 
the correct metric is largely dependent on the problem 
of interest and the associated costs of false positives and 
false negatives.

As with AUC–ROC, there are known problems with use 
of the precision–recall curve. For example, Boyd and cow-
orkers have shown that there are “unachievable regions” 
of the PRC space [27]. Flach and Kull have further sug-
gested the alternative precision–recall–gain curve for fix-
ing incoherence issues and improving model selection 
[28]. Additionally, we note that the AUC–PRC of a ran-
dom classifier (  N+

N++N−

 ) is dependent on the number of posi-
tive and negative samples in a dataset, whereas the 
AUC–ROC of a random classifier is always 0.5.

Appreciating these concerns, the metric of interest must 
be chosen after carefully considering the problem of inter-
est and the quality of the associated data. One clear differ-
ence between the ROC and PRC curves is the considera-
tion of true negatives. While true negatives greatly impact 
the AUC–ROC because they factor into the calculation of 
FPR, the AUC–PRC metric does not consider the correct 
classification of negative/inactive samples. Therefore, if 
the inactives are uninformative, use of AUC–ROC may 
be dangerous. In the particular domain of drug discovery, 
inactives may be uninformative because they are mere 
“assumed inactives,” because they are deemed inactive by 
an arbitrarily chosen activity cutoff value, or because they 
show inactivity for any number of unknown unknowns 
(e.g. the molecules are simply insoluable). Thus, select-
ing models based on superior AUC–ROC performance 
may result in models that are best at classifying negative 
samples, even though that is not the behavior of interest.

How should models be trained and tested?

Another major issue in the chemical machine learning lit-
erature that Mayr and coworkers hoped to address was the 
way models are trained and tested. They combined two 
innovative methodologies – nested cross validation and 

scaffold splitting. We will summarise those methodologies 
below, and then discuss the tradeoffs.

Cross‑validation and scaffold splitting

Machine learning models often contain many hyperpa-
rameters. Cross-validation (CV) is a strategy that enables 
the user to tune those hyperparameters without overfitting. 
The nested CV protocol consists of an outer and inner CV 
loop. The entire procedure is perhaps best understand as 
a simple k-fold CV procedure, in which the holdout test 
set is one of n distinct folds. The n × k nested CV setup 
thus consists of n different simple k-fold CV procedures 
for model selection, followed by model evaluation on the 
n distinct testing folds. Accordingly, the average of the 
performance on the n testing folds provides an almost 
completely unbiased estimate of the true generalization 
performance [13, 29].

However, cross validation alone is insufficient to estimate 
the true performance of models. Compounds in chemical 
datasets are often centered around easily synthesized scaf-
folds, which are then modified by adding functional groups. 
Therefore, certain machine learning algorithms may just 
memorize properties of certain scaffolds and fail to gener-
alize to new chemicals. Thus, if similar compounds are con-
tained in both the training and test sets, we expect that esti-
mates of machine learning performance would overestimate 
the true generalization performance on new compounds.

To counteract this problem, it is now popular to perform 
“scaffold splitting”, where compounds are split into sub-
sets based on their two-dimensional structural framework. 
An implementation is included in the DeepChem package 
[30], and the results of random splitting have been explored 
both in the MoleculeNet benchmark paper, wherein Wu and 
coworkers reported larger differences between training and 
testing performance with scaffold splitting than with random 
splitting, as is expected.

However, we note that active compounds of different scaf-
folds may interact with a given target through a different 
mode of action. Therefore, expecting a model to generalize 
by learning from other scaffolds may be unrealistic.

Table 5   The results of an FNN deep learning model on the ChEMBL 
1243971 assay. The AUC–ROC scores for the three disjoint test folds 
are reported

Fold 1 Fold 2 Fold 3

AUC–ROC 0.69 0.00 0.56
Test sen Number
Actives/inactives

18/18 2/1 3/3
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Averages and outliers

We return now to examining the specific model evaluation 
and comparison approaches found in Mayr et al. Generally, 
their approach involves performing the aforementioned 
3 × 2 nested cluster-cross-validation model evaluation pro-
cedure on all 1310 assays. Importantly, due to the setup 
of their clustering approach, the number of compounds in 
each fold is not the same. Furthermore, the ratio of active 
to inactive compounds in each fold may be quite different. 
For example, consider the FNN results shown in Table 5 
on a particularly troublesome assay CHEMBL1243971, 
which measures the inhibition of the PI4-kinase beta subu-
nit. This assay is one of the smallest in the entire dataset, 
and includes folds that are heavily imbalanced in terms 
of size. In order to compare the performance of FNN to 
other models on this assay, the mean and standard devia-
tion AUC–ROC scores over all threefold were calculated 
by Mayr et al. However, this averaging completely dis-
cards the inherent uncertainty of each independent test 
fold, which can be useful information.

Taking fold 2 as an example, we can take the approach 
of [31] and recognize that the AUC–ROC, which is again 
the probability that a randomly chosen positive sample is 
correctly ranked higher than a randomly chosen negative 
sample, is equivalent to the value of the Wilcoxon-Mann-
Whitney statistic. Doing this calculation, we find that a 
classifier can achieve three possible values of AUC–ROC 
with two active and one inactive compound in the test set, 
AUC–ROC = 0.0 , AUC–ROC = 0.5 , and AUC–ROC = 1.0 
. Therefore, a completely random classifier, would achieve 
a mean AUC of 0.5 on fold 2 with a standard deviation of 
0.41. Thus, most confidence intervals of interest would 
include the entire possible range of AUC values, [0, 1], 
and any result on this fold is essentially meaningless. 
Even the larger, more balanced, fold 1 has a relatively 
large 95% confidence interval of AUC–ROC ∈ [0.49, 0.84] 
using the approximation in [3] and thus cannot be rejected 

as a random classifier (AUC–ROC = 0.5 ) at the � = 0.05 
significance threshold. Importantly, since averaging treats 
all folds the same, the result on fold 1 is treated as of 
equal importance to the meaningless result on fold 2. Fur-
thermore, one outlier fold performance can significantly 
affect the average AUC on a given assay. Thus, the use of 
unequal fold sizes coupled with averaging AUC scores 
renders interpretation challenging.

Cross‑validation underestimates error

Leaving the concern of variable amounts of data for each 
fold aside, a fundamental question is whether cross-vali-
dation provides an accurate measure of error. Varoquaux 
previously performed extensive simulations to show that 
the standard error across cross-validation folds consider-
ably underestimates the actual error [32]. To understand the 
extent of this error, we adapted his simulation procedures 
focusing on prediction accuracy to measure the systematic 
errors in AUC–ROC estimation from cross-validation. All 
of our code for these simulations has been made available 
in the supplementary information.

We begin by constructing an artificial high-dimensional 
dataset of two relatively well separated Gaussian distribu-
tions. The separation of the distributions is adjusted such 
that a Linear SVM classifier will achieve an AUC–ROC 
= 0.75 on the data. A training set of size Ntrain is then drawn 
from the artificial two-class dataset. The Linear SVM is 
trained on these Ntrain samples then deployed on a test set 
of size 10,000 samples, which gives an estimate of the true 
generalization performance. This true generalization per-
formance is compared to the mean performance of a three-
fold CV procedure on the original Ntrain training samples. 
Thus, we can compare the classifier’s true generalization 
AUC–ROC performance to the estimate of that performance 
from cross-validation.

Fig. 8   The distribution of the 
errors when estimating true gen-
eralization performance from 
threefold CV for Ntrain = 300 
training samples. The dotted 
black lines indicate the 2.5 and 
97.5 percentiles, thus denoting 
the boundaries of a 95% confi-
dence interval
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Figure 8 shows the results from 1000 runs of the simula-
tion using Ntrain = 300 training samples. As can be seen, 
the CV estimates of performance are still frequently off by 
over 0.05 in AUC–ROC space. Moreover, the distribution 
of errors is asymmetric, as is to be expected for AUC–ROC. 
It should be noted that these large errors result even in the 
case of an artificial dataset of well-behaved distributions and 
equal sized folds with small class imbalance.

In addition to measuring CV errors in estimation of gen-
eralization performance, we can use these simulation results 
to measure how well the standard error of the mean (SEM) 
represents the variability of the CV procedure. To meas-
ure this, we construct 95% confidence intervals centered 
around the mean 3-fold CV performance. Theoretically, 
95% of the confidence intervals constructed in this fashion 
should contain the true generalization performance if the 
cross-validation procedure is unbiased. However, we find 
that the confidence interval coverage is only 79.7% for Ntrain 
= 300, even when using the extremely generous bounds to 
the t-distribution with 2 degrees of freedom.

The coverage is similarly poor for other sizes of Ntrain, and 
would be much worse if one naively used the ±2 × (SEM) 
rule to construct confidence intervals. These results unfortu-
nately indicate that the confidence intervals on cross valida-
tion means are often too optimistic. This bias results from 
the correlation of training data across folds, thus violating 
independence assumptions. These simulation results cast 
doubt on the ability of cross validation procedures with 
small sample sizes to accurately reflect the generalization 
performance of a classifier with appropriate uncertainty.

As Varoquaux notes, these results are particularly gall-
ing since cross-validation seems to be our current best tool 
to estimate model performance. Like Varoquaux, we have 
no specific suggestions for alternatives, but rather hope that 
others come to understand this uncertainty.

When benchmarks such as MoleculeNet [21] or the 
work examined herein report results as confidence intervals 
from cross-validation procedures, these estimates are likely 
underestimates of the true variability. Furthermore, simply 
averaging results across cross-validation folds may mask 
the uncertainty in the results of each individual fold. There 
are indeed multiple types of uncertainty such as that arising 
from model training, dataset splitting, the sometimes arbi-
trary delineation of actives/inactives, etc. And unfortunately, 
not all of these uncertainties are likely incorporated into 
confidence intervals. Only once we respect these limitations, 
will the gap between performance estimates in the literature 
and actual results in the lab/clinic begin to narrow.

Conclusion

We build on the recent large-scale benchmarking study by 
Mayr and coworkers and reanalysed the reported perfor-
mance data of different machine learning models, arriving at 
a different conclusion to Mayr and coworkers. We show that 
support vector machines achieve competitive performance 
compared to feed-forward deep neural networks. Moreover, 
we show, via numerical simulations, that the area under the 
precision–recall curve can be more informative than the area 
under the receiver operating characterise curve in terms of 
assessing the performance of machine learning models 
in contexts relevant to drug discovery. We also highlight 
challenges in interpreting scaffold splitting cross validation 
results.

All of these results show a clear need for further research 
into proper validation procedures for chemoinformatics. We 
have demonstrated that the current approach of examining 
average performance across diverse assays ignores great 
uncertainty in our evaluation procedures. Furthermore, the 
current approach does not yield special insight into which 
models are best suited for which classes of problems. Each 
model has its own inductive biases, and we propose more 
research into understanding when each model will work/
fail on chemical data. This future work will likely require 
focus on high-quality, representative data, rather than large 
amounts of heterogeneous data.
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