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Abstract
Partition coefficients describe the equilibrium partitioning of a single, defined charge state of a solute between two liquid 
phases in contact, typically a neutral solute. Octanol–water partition coefficients ( K

ow
 ), or their logarithms (log P), are 

frequently used as a measure of lipophilicity in drug discovery. The partition coefficient is a physicochemical property that 
captures the thermodynamics of relative solvation between aqueous and nonpolar phases, and therefore provides an excel-
lent test for physics-based computational models that predict properties of pharmaceutical relevance such as protein-ligand 
binding affinities or hydration/solvation free energies. The SAMPL6 Part II octanol–water partition coefficient prediction 
challenge used a subset of kinase inhibitor fragment-like compounds from the SAMPL6 pK

a
 prediction challenge in a blind 

experimental benchmark. Following experimental data collection, the partition coefficient dataset was kept blinded until 
all predictions were collected from participating computational chemistry groups. A total of 91 submissions were received 
from 27 participating research groups. This paper presents the octanol–water log P dataset for this SAMPL6 Part II partition 
coefficient challenge, which consisted of 11 compounds (six 4-aminoquinazolines, two benzimidazole, one pyrazolo[3,4-d]
pyrimidine, one pyridine, one 2-oxoquinoline substructure containing compounds) with log P values in the range of 1.95–
4.09. We describe the potentiometric log P measurement protocol used to collect this dataset using a Sirius T3, discuss the 
limitations of this experimental approach, and share suggestions for future log P data collection efforts for the evaluation 
of computational methods. 

Keywords  Octanol–water partition coefficient · log P · Blind prediction challenge · SAMPL · Kinase inhibitor fragments · 
4-Aminoquinazoline · Potentiometric log P measurement

Abbreviations
SAMPL	� Statistical Assessment of the Modeling of Pro-

teins and Ligands
log P	� log10 of the organic solvent-water partition 

coefficient ( K
ow

 , refers to partition of neutral 
species unless stated otherwise)

log D	� log10 of organic solvent-water distribution coef-
ficient ( D

ow
)

log R	� log10 of the volumetric ratios of partition sol-
vents (octanol to water)

pKa	� −log10 of the acid dissociation equilibrium 
constant

poKa	� −log10 apparent acid dissociation equilibrium 
constant in octanol–water biphasic system

ISA	� Ionic-strength adjusted solution with 0.15 M 
KCl

SEM	� Standard error of the mean
LC-MS	� Liquid chromatography-mass spectrometry
NMR	� Nuclear magnetic resonance spectroscopy
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HRMS	� High-resolution mass spectrometry
octanol	� 1-Octanol, also known as n-octanol

Introduction

The Statistical Assessment of the Modeling of Proteins and 
Ligands (SAMPL) challenges (http://sampl​chall​enges​.githu​
b.io) are a series of blind prediction challenges for the com-
putational chemistry community that aim to evaluate and 
advance computational tools for rational drug design [1]. 
These challenges focus the community on specific phe-
nomena relevant to drug discovery—such as the contribu-
tion of force field inaccuracy to binding affinity prediction 
failures—and, using carefully-selected test systems, isolate 
these phenomena from other confounding factors. Through 
recurring community exercises involving blind prediction 
followed by data sharing and discussion, these challenges 
evaluate tools and methodologies prospectively, enforce 
data sharing to learn from failures, and generate high-quality 
datasets into the community as benchmark sets. As a result, 
SAMPL has driven progress in a number of areas over six 
previous rounds of challenge cycles [2–15].

To assess the accuracy of different computational meth-
ods, SAMPL has relied on the measurement of simple host-
guest association affinities [6, 8, 11, 15–19] and other physi-
cal properties that isolate issues such as failing to capture 
relevant chemical effects, computationally-intensive confor-
mational sampling, and force field accuracy. In SAMPL5, 
for example, a log D challenge was devised with the goal of 
isolating the accuracy of protein-ligand force fields from the 
difficulties of configurational sampling [20, 21]. In addition 
to being a useful surrogate for the accuracy of force fields 
in predicting binding free energies, partition or distribution 
coefficients are frequently used as a measure of lipophilicity 
in pharmacology [22], or as surrogates for solubility, per-
meability [23], and contributors to affinity [22, 24]. Lipo-
philicity is a critical physicochemical property that affects 
ADMET (absorption, distribution, metabolism, excretion, 
and toxicity) [22, 25, 26]. Since log P is utilized as a predic-
tor for good drug-like properties in terms of pharmacokinet-
ics and toxicity [25], accurate log P predictions of virtual 
molecules have high potential to benefit drug discovery and 
design.

Surprisingly, the cyclohexane-water log D challenge 
proved to be particularly problematic due to the necessity 
to account for protonation state effects to correctly com-
pute the distribution coefficients, which assess the partition-
ing of all ionization states between phases [20]; failing to 
account for these protonation state effects led to modeling 
errors up to several log units [27]. As a result, the SAMPL6 
Part II log P prediction challenge [28] aimed to further iso-
late the assessment of force field accuracy from the issues 

of conformational sampling and the modeling of ioniza-
tion state equilibria by inviting participants to predict the 
partitioning of neutral drug-like molecules between aque-
ous and nonaqueous phases1. For maximum synergy with 
previous competitions, the challenge compound set was 
constructed to be a subset of kinase inhibitor fragment-like 
small molecules drawn from the SAMPL6 pKa Challenge 
set [29], where the accuracy of participants to predict pKa 
values was assessed. A blind challenge (the SAMPL6 Part 
II log P blind prediction challenge) was run from Novem-
ber 1, 2018 to March 22, 2019 in which participants were 
given molecular structures and experimental details and 
asked to predict octanol–water partition coefficients before 
the data was unblinded on March 25, 2019. All primary and 
processed data was made available at https​://githu​b.com/
Moble​yLab/SAMPL​6 immediately following the close of 
the competition.

Partition coefficients and principles of their 
measurement

The partition coefficient describes the equilibrium partition-
ing of a molecule in a single, defined, charge state between 
two liquid phases in contact. Unless stated otherwise, in 
common usage partition coefficient (P or P0) refers to the 
partitioning of the neutral state of a molecule. In particular, 
the octanol–water partition coefficient of neutral species 
(frequently written as K

ow
 or P) is defined as

This quantity is often written in its log10 form, which we 
denote here as log P,

However, ionic species can also partition between 
phases [30–32]. The partition coefficients of ionic species 
is calculated using the same equation, e.g. P+1 refers to the 
partition equilibrium of +1 charge state of a molecule. Based 
on the experimental measurement method this value may 
be defined for a single tautomer or may involve multiple 
tautomers.

(1)P ≡ Kow ≡
[neutral solute]oct

[neutral solute]wat
.

(2)logP = log10 Kow = log10
[neutral solute]oct

[neutral solute]wat

1  SAMPL6 was originally announced as featuring a log D prediction 
challenge, but there were difficulties in the collection of experimental 
data. The original plan was to measure log P0, log P−1, and log P+1 
and calculate log D values at the experimental pH using these values. 
However, we were able to measure the partition coefficients of neutral 
species (log P0) much more reliably than ionic species with potentio-
metric log P method of Sirius T3, as elaborated further below.

http://samplchallenges.github.io
http://samplchallenges.github.io
https://github.com/MobleyLab/SAMPL6
https://github.com/MobleyLab/SAMPL6
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A closely related concept is that of the distribution coef-
ficient ( D

ow
 , often written in log10 form as log D) which 

should not be confused with log P. log D is the logarithm 
of the sum of all species (both neutral and ionized) concen-
trations in the organic phase divided by the sum of neutral 
and ionic species concentrations in aqueous phase. Both 
octanol–water log P and log D values are frequently used 
as lipophilicity estimates [22]. However, while log D is pH-
dependent, log P is independent of the pH of the aqueous 
phase. As log P is defined as the partition coefficient of neu-
tral species, it would include all neutral tautomer popula-
tions if a compound can tautomerize.

The gold standard of partition coefficient measurement 
experimentation is the shake-flask method, according to the 
Organization for Economic Cooperation and Development 
(OECD) [33]. Methods developed as experimental refine-
ments on the shake-flask method are high-throughput micro-
scale shake flask [34, 35] and slow stirring methods [36]. 
Other direct methods for log P or log D determination 
include dialysis chamber-based methods [37], micellar elec-
trokinetic capillary chromatography [38, 39], and counter-
current chromatography  [39]. An indirect experimental 
method that is widely used—despite being less reliable—is 
log P estimation based on reversed-phase high-performance 
liquid chromatography (HPLC) retention times [40–44]. The 
measurement principle for all of these methods is the meas-
urement of log D—the equilibrium distribution coefficient 
for both neutral and ionized species—in a pH-dependent 
manner. As a result, in order to measure log P with these 
methods it is necessary to conduct the log D measurements 
at a pH where the analyte is completely un-ionized. At a 
pH where the analyte is at a neutral state, log P is equal to 
log D; however, accurately predicting or measuring the equi-
librium ionization constant ( pKa ) of a substance is a prereq-
uisite. Here in this study, however, we pursued an alternate 
approach for experimental determination of log P, which is 
potentiometric measurements.

Potentiometric measurement of log P with the Sirius 
T3

The potentiometric log P measurement method determines 
log P values directly using potentiometric titrations in an 
immiscible biphasic system [45, 46]. The shift of apparent 
pKa values when the aqueous phase is in contact with the 
octanol phase is used to estimate log P values. Experimental 
log P values presented in this study were collected using this 
potentiometric method, and they refer to the partition coef-
ficient of the neutral species.

(3)logPion = log10
[ionic solute]oct

[ionic solute]wat

The potentiometric log P measurement method used by 
the Sirius T3 instrument (Pion) [46–51] is based on determi-
nation of the partition profile directly from acid-base titra-
tions in a dual-phase water-partition solvent system consist-
ing of two liquid phases in contact (Fig. 1). In this method, 
multiple potentiometric acid-base titrations are performed in 
the aqueous phase at various equilibrium volumetric ratios 
of octanol and water to observe the ionization and partition-
ing equilibrium behavior of the analyte. As the relative vol-
ume ratio of octanol to water changes, a shift in apparent pKa 
( poKa ) is observed due to partitioning of neutral and ionic 
species—which have distinct octanol–water partitioning 

Fig. 1   Potentiometric log P measurements are based on a model of 
ionization and partitioning equilibria [50]. Measurements of the pK

a
 

and apparent pK
a
 ( p

o
K
a
 ) at three octanol–water volumetric ratios 

(log R) are performed to estimate the partition coefficients of neutral 
and ionized species, log P0 and log P−1, respectively. An ionization 
and partitioning equilibria model, along with estimated potentiomet-
ric titration curves, are shown for a monoprotic acid in this figure
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equilibria—into the octanol-rich phase. Equations describ-
ing this coupled partitioning and ionization equilibria are 
then solved to determine the log P of the neutral and ionic 
species. To use this method, aqueous pKa value(s) must be 
known, and analytes must be fully water soluble at the high-
est concentration they reach during the titrations throughout 
the entire range of pH titration selected for the potentio-
metric log P measurement protocol. The largest pH range 
selected for titration can be pH 2–12 and the minimum range 
should include ±2 pH units around the pKa and poKa.

When an ionizable substance is titrated in a two-phase 
system, the apparent pKa—here, denoted poKa—observed in 
the titration shifts due to differential partitioning of neutral 
and ionized species into the nonaqueous phase. The poKa 
value is the apparent pKa in the presence of partition solvent 
octanol. Its shift is dependent on the volumetric ratio of the 
water and octanol phases. The poKa value increases with 
increasing partition solvent volume for monoprotic acids 
and decreases with monoprotic bases. The shift in poKa is 
directly proportional to the log P of the compound and the 
ratio of octanol to water. For a monoprotic acid or base, the 
partition coefficient of neutral (P0) and ionic species (P−1, 
P+1) relates to pKa and poKa as [50],

Here, R is the volume ratio of nonaqueous phase ( Vnonaq ) to 
aqueous phase ( Vaq),

Methods

Compound selection and procurement

For the SAMPL6 Part II log P challenge, we attempted to 
collect log P measurements for the entire set of 24 kinase 
inhibitor fragment-like compounds selected for the SAMPL6 
pKa Challenge  [29, 52]. Details of compound selection 
criteria for the SAMPL6 pKa set—driven in large part by 
cheminformatics filtering for experimental tractability and 
rapid, inexpensive compound procurement—can be found in 
the SAMPL6 pKa experimental data collection paper [29]. 

(4)
���������� ���� ∶ P

O =
10(po

Ka−pKa) − 1

R
;

P
−1 =

10−(po
Ka−pKa) − 1

R

(5)
���������� ���� ∶ P

O =
10−(po

Ka−pKa) − 1

R
;

P
+1 =

10(po
Ka−pKa) − 1

R

(6)R ≡
Vnonaq

Vaq

Compounds with publicly available experimental log P 
measurements were excluded by checking the following 
sources: DrugBank [53], ChemSpider [54], NCI Open Data-
base August 2006 release [55], Enhanced NCI Database 
Browser [56], and PubChem [57]. However, not all mol-
ecules selected for SAMPL6 were suitable for log P meas-
urements using the Sirius T3, due to various reasons such as 
low solubility, apparent pKa value shifting out of experimen-
tal range, or log P values out of experimental range limited 
by the sample vial. These limitations are explained in more 
detail in the “Discussion” section. Only 11 small molecules 
proved to be suitable for potentiometric log P measurements.

Molecule IDs assigned to these compounds for the 
SAMPL6 pKa challenge were preserved in the SAMPL6 
Part II log P Challenge. A list of SAMPL6 log P Challenge 
small molecules, SMILES, and molecule IDs can be found 
in Table 1. Counterions, where present in solid formulations 
(see “Potentiometric log P measurements” section below), 
were included in SMILES for the sake of completeness, 
although no significant effect is expected from the presence 
of chloride counterions as experiments were conducted 
using KCl to maintain constant ionic strength. Procurement 
details for all compounds in the SAMPL6 log P Challenge 
compounds are presented in Table S1.

Potentiometric log P measurements

Experimental octanol–water log P values of neutral spe-
cies were collected using potentiometric log P (pH-metric 
log P) measurements [50] at 25.0±0.5 ◦ C and constant ionic 
strength (0.15 M KCl). Aqueous pKa values are required for 
log P determination with the Sirius T3, and were previously 
determined for all compounds in this set [29] using UV-
metric pKa measurements [58, 59] with the same instrument.

Three independent replicates were performed for each 
log P measurement using 1-octanol and water biphasic sys-
tems at 25.0 ◦ C, starting with solid material. General guid-
ance of according to the instrument manual suggests optimal 
analyte mass should be in the range of 1–10 mg. “Sample 
weight” is the terminology used to describe analyte mass in 
Sirius T3 manuals, software, and reports. Due to solubility 
limitations of the SAMPL6 compounds, we tried to use ana-
lyte masses less than 3 mg. There was not much flexibility 
to adjust aqueous phase volume, since this is limited by the 
minimum volume required for the pH probe (1.4–1.5 mL) 
and the volume that must be spared for the octanol phase in 
the sample vial. Therefore, we adjusted analyte mass instead 
of aqueous phase volume when reducing sample concentra-
tion was necessary to achieve solubility.

For molecules with low solubility, target analyte mass 
was reduced, but not below a minimum of 1 mg. Samples 
were prepared by weighing 1–3 mg of analyte in solid pow-
der form into Sirius T3 analysis vials using a Sartorius 



409Journal of Computer-Aided Molecular Design (2020) 34:405–420	

1 3

Analytical Balance (Model: ME235P) equipped with an anti-
static ionizer. It was difficult to transfer powder compounds 
to achieve target masses in 1–3 mg range exactly. Instead, 
we opted to weigh out approximate target mass (± 40% of 
the target mass was considered acceptable) and record the 
resulting sample mass. For instance, when aiming for 1 mg 
of compound, if 1.29 mg of compound was transferred to the 
balance, that was recorded as analyte mass and 1.29 mg was 
provided in to the Sirius T3 software for analysis. Reporting 
accurate analyte mass was important since analyte mass and 
purity are part of the Sirius T3 refinement model, although 
the analysis software doesn’t accept analyte purity as an 
input. Analyte purity (“sample concentration factor” accord-
ing to Sirius T3) is estimated from the refinement model fit 
to experimental data given the reported analyte mass by the 
user. The remaining steps in sample preparation were per-
formed by the automated titrator: addition of ionic-strength 
adjusted (ISA) water (typically 1.5 mL) and partition solvent 
(ISA water-saturated octanol), mixing, sonication, and titra-
tion with acid (0.5 M KCl) and base (0.5 M KOH) solutions 
targeting steps of 0.2 pH units. ISA water is 0.15 M KCl 
solution which was used to keep ionic strength constant dur-
ing the experiment. ISA water was prepared by dissolving 
KCl salt in distilled water.

ISA water-saturated octanol was prepared by mixing 
500 mL 1-octanol (Fisher Chemical, cat no A402-500, lot no 
168525) with 26.3 mL ISA water (targeting 5% ISA water-
octanol mixture by volume) and letting the mixture phases 
separate before attaching it to the automated titrator. Titra-
tions were performed under argon flow on the liquid surface 
to minimize carbon dioxide absorption from the air.

In some cases, to help with kinetic solubility issues of 
the analytes, solid samples were predosed manually with 
80–100 μL ISA water-saturated octanol prior to the addi-
tion of ISA water and partition solvent—these are noted in 
Table 1. Predosed volumes were provided to the analysis 
software as an input and were accounted for in the total 
octanol volume calculation. Whenever mean molecular 
charge vs pH plots showed experimental data points that 
deviated from the expected sigmoidal curve shape (oscilla-
tory shape or steeper descent), we suspected solubility prob-
lems and attempted to prevent them by predosing octanol, 
which can only help the cases in which the solubility issue 
is a kinetic and not an equilibrium solubility issue. The only 
way to alleviate an equilibrium solubility issue entirely is to 
lower the analyte concentration by starting the experiment 
with a smaller analyte mass.

For each replicate log P measurement, three sequential 
automated acid-base titrations were performed in the same 
vial at three different volume ratios of octanol and water, 
using 0.5 M KOH and HCl solutions as titrants while mon-
itoring pH with a pH electrode (Ag/AgCl double-junc-
tion reference electrode). Additional volumes of octanol 

were dispensed before each titration to achieve target 
octanol–water ratios. The sequence of three octanol–water 
ratios were determined using predicted log  R profiles 
(apparent pKa shift vs log10 of the volumetric ratios of 
partition solvents, as shown in Fig. 2c, d) or experimen-
tal log R profile if a previous iteration of the experiment 
is available during protocol optimization, with the goal 
of selecting three volumes that will maximize the | pKa - 
poKa | values between each titration. Experiments were 
designed so that maximum separation of poKa values can 
be achieved while the total liquid volume in the analysis 
vial did not exceed 3 mL by the end of the third titration.

Two Sirius T3 software programs were used to execute 
measurement protocols (Sirius T3 Control v1.1.3.0) and 
analyze experiments (Sirius  T3 Refine v1.1.3.0). The 
Sirius T3 Refine software has the capability of fitting 
partitioning and ionization equilibrium models to poten-
tiometric data collected from a biphasic system to esti-
mate log P values. The starting point for the model fit is 
simulated titration curves constructed using aqueous pKa 
values (using prior pKa measurements, here taken from 
[29]), predicted log P values, input analyte mass, and vol-
umes of aqueous and organic phases dispensed to prepare 
the sample. Collected experimental measurements (pH vs 
dispensed volume of acid and base solutions) were used 
to refine the model parameters (log P of neutral species, 
log P of ionic species, analyte concentration factor, car-
bonate content, acidity error) to determine the log P val-
ues of neutral species and ions [48]. Potentiometric log P 
measurements have the potential to determine the partition 
coefficients of the ionic species (log P1) in addition to 
log P of the neutral species (log P0). It was, however, very 
challenging to design experiments to capture log P values 
of the ionic species due to volumetric limitations of the 
glass analysis vial and measurable pH range. Therefore, 
while optimizing experimental protocols, we prioritized 
the accuracy for only log P of the neutral species. Experi-
mental protocols were optimized iteratively by adjusting 
octanol–water ratios, analyte concentration, and pH inter-
val of the titration.

A partitioning and ionization equilibrium model [48] 
was fit to potentiometric measurements to estimate log P 
values of the neutral species and also the charged species, 
as implemented in Sirius T3 Refine Software. Experiments 
were optimized to determine log P of neutral species with 
good precision. log P estimates of charged species had high 
variance between replicate experiments performed in this 
study and were judged to be unreliable. Optimizing experi-
ments further to be able to capture log P values of ionic 
species accurately would require larger log R values, which 
was limited by sample vial volume. Therefore, we decided 
not to pursue experimental data collection for ionic partition 
coefficients further.
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Reporting uncertainty of log P measurements

Experimental uncertainties of log P measurements were 
reported as the standard error of the mean (SEM) of three 
or four replicates. The standard error of the mean (SEM) 
was estimated as
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where � denotes the unbiased sample estimator for the true 
standard deviation and � denotes the sample mean. x

i
 are 

observations and N is the number of observations.
The SEM calculated from independent replicate experi-

ments as above was found to be larger than non-linear fit 
error reported by the Sirius T3 Refine Software from poten-
tiometric log P model fit of a single experiment, thus lead-
ing us to believe that running replicate measurements and 
reporting mean and SEM of log P measurements better 
captured all sources of experimental uncertainty. We cau-
tion, however, that the statistical error estimated from three 
replicates is only determined to an order of magnitude [60].

Quality control of analytes

Purities of all SAMPL6 pKa Challenge compounds—a sub-
set of which formed the log P set used here—were deter-
mined by LC-MS and reported elsewhere [29]. The same 
lots of compounds were used for pKa and log P measure-
ments. LC-MS assessment showed that the 11 compounds 

(7)

SEM =
�

√

N

; �

=

�

�

�

�
1

N − 1

N
�

i=1

(x
i
− �)2 ; � =

1

N

N
�

i=1

x
i

reported in this study have a minimum of 96.5% purity and 
matching molecular weight to supplier reported values 
(Table S1).

When questions were raised about the accuracy of log P 
measurements for SM13 by a participant of SAMPL6 log P 
Challenge, we had additional quality control experiments 
performed to confirm the compound identity of SM13. 
LC-MS and NMR data were fully consistent with the struc-
ture of SM13 as originally provided (Figure S1, S2). High-
Resolution Mass Spectrometry (HRMS) data was acquired 
using an Agilent 6560 Q-ToF by +ESI. NMR data were 
acquired for the sample dissolved in pyridine-d5. 1H, DQF-
COSY, and ROESY spectra were acquired using a 600 MHz 
Bruker AVANCE III HD spectrometer equipped with a liq-
uid nitrogen-cooled broadband Prodigy probe. Chemical 
shifts were assigned to validate the structure of SM13.

Results

In this study, we attempted to use the potentiometric log P 
measurement method of the Sirius T3 to measure log P 
values for 24 compounds of the SAMPL6 pKa Challenge 
set. For 13 of the selected compounds, experimental con-
straints set by solubility, lipophilicity, pKa properties of the 
analytes, and experiment analysis volume limitations of the 
Sirius T3 instrument resulted in an inability to achieve reli-
able log P measurements suitable for the blind challenge 
(Table S4). For example, SM24 has a basic pKa of 2.60 and 
we could not optimize log P measurement protocol because 
in the presence of octanol phase apparent pKa was shifting 
beyond the measurable pH range of the Sirius T3. On the 
other hand SM03 log P could not measured with potentio-
mentric method due to its low aqueous solubility. Only 11 
of 24 compounds from the SAMPL6 pKa Challenge set were 
found to be suitable for potentiometric log P measurements 
with the Sirius T3. The resulting challenge dataset presented 
here has a log P range of 1.95–4.09. Six of these represent 
the 4-amino quinazoline scaffold (SM02, SM04, SM07, 
SM09, SM12, SM13). There are two benzimidazoles (SM14, 
SM15), one pyrazolo[3,4-d]pyrimidine (SM11), one pyri-
dine (SM16), and one 2-oxoquinoline (SM08) (Fig. 3). The 
mean and SEM of replicate log P measurements, SAMPL6 
compound IDs (SMXX), and SMILES identifiers of these 
compounds are presented in Table 1. In all cases, the SEM 
of the log P measurements ranged between 0.01–0.07 log10 
units.

Results of independent replicate measurements are pre-
sented in Table S2. Preparation of each replicate sample 
started from weighing dry powder of the same analyte lot. 
The log P estimates from potentiometric titrations were 
evaluated using the partitioning and ionization equilibrium 
model as implemented in the Sirius T3 Refine software, 

Fig. 2   Illustrative potentiometric log  P measurements of phenol 
(monoprotic, acid, log P 1.49) and SM16 (diprotic, amphoteric, log P 
2.62) with the Sirius T3. Triangles represent experimental data points 
collected during the octanol-ISA water titrations and solid lines rep-
resent the ionization and partitioning model fit to the data. a, b Com-
puted mean molecular charge vs pH. Mean molecular charge is calcu-
lated based on experimental pK

a
 values and types (acid or base type) 

of the analyte. The black line is the model titration curve in aqueous 
media and based on the aqueous pK

a
 . Blue, red, and green triangles 

represent three sequential titrations with increasing log  R (increas-
ing octanol) that show shifted p

o
K
a
 values. The inflection point of 

titration curves indicates the pK
a
 or p

o
K
a
 , though these values are 

obtained by a global fit. For titration of acidic species, partitioning 
into the octanol phase increases the observed p

o
K
a
 . In the titration of 

the basic pK
a
 of SM16, increasing log R causes a decrease in p

o
K
a
 . 

The pH range of the experiment was determined such that only the 
titration of basic pK

a
 was captured (molecular charge between +1 and 

0). c, d log R profiles show a shift in p
o
K
a
 with respect to increasing 

relative octanol volume. These plots aid in the design of the experi-
ment and selection of optimal octanol volumes that aim to maximize 
separation between p

o
K
a
 values for better model fit within experi-

mental limitations (pH and analysis vial volume). e, f Buffer index 
profiles show buffering capacity observed in three titrations with 
increasing log R (blue to green). The black line is the intrinsic buffer-
ing capacity of water. For an accurate potentiometric measurement, 
buffering capacity signal of the analyte must be above the buffering 
capacity of water. As octanol volume increases, the concentration of 
the analyte in aqueous phase, and thus buffering capacity, decreases. 
g, h Predicted relative populations of ionization states in octanol and 
water phases as a function of pH, based on the equilibrium model fit 
to experimental data.

◂
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which produces log P estimates for both neutral and ionic 
species. We observed that log P values of neutral species 
were highly reproducible, while variance of log P of ion-
ized species between replicate experiments was high. It was 
also not possible to measure log P values of the ionized 
species reliably as doing so would require sampling higher 

log R values. Since it was probihitively difficult to optimize 
experimental protocols to capture partitioning of ionic spe-
cies accurately, we optimized the experiments to prioritize 
accurate measurement of neutral species log P (log P0) and 
constructed the blind computational prediction challenge 
based on log P0 values.

Fig. 3   Molecules included in the SAMPL6 Part II log  P challenge 
set. Reliable experimental potentiometric log  P measurements were 
collected for the 11 molecules depicted here. Reported uncertainties 
are expressed as the standard error of the mean (SEM) of replicate 

measurements. Molecules are depicted using OpenEye OEDepict 
Tool [61]. Canonical isomeric SMILES strings of all compounds are 
given in Table 1, and replicate log P measurements can be found in 
Table S2

Table 1   Experimental log P measurements for the SAMPL6 Part II log P challenge 

Potentiometric log P measurements were performed with the Sirius T3 in ISA water. Triplicate measurements were performed at 25.0 ± 0.5 ◦ C 
and in the presence of 150 mM KCl to control ionic strength. log P values are reported as mean ± SEM of at least three independent replicates. 
log P values of independent replicate measurements are presented in Table S2. A computer readable form of this table can be found in the SI 
documents bundle (logP_experimental_values.csv)
1 Number of replicates
2 Sample predosed with 80 μL octanol to address kinetic solubility issues
3 Sample predosed with 100 μL octanol to address kinetic solubility issues

Molecule ID N1 log P (mean ± SEM) Assay type Isomeric SMILES

SM02 3 4.09 ± 0.03 Potentiometric octanol log P c1ccc2c(c1)c(ncn2)Nc3cccc(c3)C(F)(F)F
SM04 3 3.98 ± 0.03 Potentiometric octanol log P c1ccc2c(c1)c(ncn2)NCc3ccc(cc3)Cl
SM07 3 3.21 ± 0.04 Potentiometric octanol log P c1ccc(cc1)CNc2c3ccccc3ncn2
SM08 3 3.10 ± 0.03 Potentiometric octanol log P2 Cc1ccc2c(c1)c(c(c(=O)[nH]2)CC(=O)O)c3ccccc3
SM09 3 3.03 ± 0.07 Potentiometric octanol log P COc1cccc(c1)Nc2c3ccccc3ncn2.Cl
SM11 4 2.10 ± 0.04 Potentiometric octanol log P c1ccc(cc1)n2c3c(cn2)c(ncn3)N
SM12 4 3.83 ± 0.03 Potentiometric octanol log P c1ccc2c(c1)c(ncn2)Nc3cccc(c3)Cl.Cl
SM13 3 2.92 ± 0.04 Potentiometric octanol log P3 Cc1cccc(c1)Nc2c3cc(c(cc3ncn2)OC)OC
SM14 4 1.95 ± 0.03 Potentiometric octanol log P c1ccc(cc1)n2cnc3c2ccc(c3)N
SM15 3 3.07 ± 0.03 Potentiometric octanol log P c1ccc2c(c1)ncn2c3ccc(cc3)O
SM16 3 2.62 ± 0.01 Potentiometric octanol log P3 c1cc(c(c(c1)Cl)C(=O)Nc2ccncc2)Cl
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Discussion

Dynamic range of log P measurements 
and solubility limitations

We attempted to measure the log P for all 24 SAMPL6 pKa 
Challenge compounds, but the Sirius T3 potentiometric 
log P measurement method was able to provide reliable 
measurements for only a subset of 11 molecules which 
were included in the blind challenge. We only included 
molecules that yielded reliable, precise log P measure-
ments in the computational blind challenge.

A number of factors restricted the ability to perform 
reliable log P measurements and led to elimination of 
some compounds from the initial set of 24: low water 
solubility within the pH range of the titration, the limited 
volume capacity of the glass sample vial which limits the 
maximum achievable octanol:water ratio, the octanol-
dependent poKa values shifting outside the measurable pH 
range of 2–12 (especially high acidic pKa s and low basic 
pKas). If an analyte does not suffer from the issues men-
tioned above, dynamic range of this log P measurement 
method is limited by smallest (related to dispensing accu-
racy and evaporation rate) and largest octanol volumes 
(related to analysis vial volume) that can be dispensed.

Optimizing experimental protocols for each 
compound

For the set of compounds in SAMPL6 Challenge, we 
observed that the Sirius T3 potentiometric log P meas-
urement experiments were in practice very low throughput 
because of the necessary iterative protocol optimization 
for each compound. The parameters determining a poten-
tiometric log P experiment are: mass of analyte, initial 
volume of ISA water, three target volumes of octanol for 
sequential titrations with increasing log R, and pH range of 
the pH titration. Factors that were considered in this opti-
mization and limitations of choice are discussed below.

Optimizing the sequence of octanol–water volumetric 
ratios and range of pH titration

To obtain reliable and precise log  P estimates from 
experimental data, it is recommended to fit the ioniza-
tion and partitioning equilibrium model to at least three 
potentiometric titrations with well separated poKa values 
(Fig. 2a, b). log P values can also be estimated from two 
potentiometric titrations, but not as accurately. poKa values 
of sequential titrations need to be at least 0.3 pKa units 
separated from one another and from the aqueous pKa . 

To achieve this, selecting an optimal set of octanol–water 
volumetric ratios is key.

It is logical to target the largest difference in octanol vol-
umes, but the minimum volume of aqueous phase that pro-
vides enough depth for the pH probe (1.4 mL) and maximum 
analysis vial volume (3 mL) result in only 1.6 mL of avail-
able volume for the octanol phase, limiting the maximum 
octanol:water volume ratio R to ∼ 1.1 . Typically, one would 
pick octanol volumes for each of three sequential titrations 
that maximize the difference in poKa by maximizing the 
difference in log R values as much as possible considering 
the other experimental constraints. Simulated log R profiles 
based on predicted log P and experimental pKa values pro-
vide guidance in the selection of octanol volumes (Fig. 2c, 
d). These plots show how much | pKa-poKa | difference can be 
gained with respect to a change in log R, based on the titra-
tion and ionization propensity of each molecule, but they are 
only as useful as the accuracy of log P prediction. For that 
reason, potentiometric log P measurements needs to be opti-
mized with an iterative process where the first experimental 
protocol is designed using predicted log P and experimental 
pKa of the analyte. Based on the poKa shifts and quality of 
titration curves observed, a second experiment is designed 
to improve poKa shifts by adjusting the octanol volumes after 
consulting the log R profile and using the estimated log P 
from the previous experiment as a guide. Sometimes 3 or 4 
iterations were necessary to reach an optimal protocol that 
results in a good fit between predicted and experimental 
titration curves and produces reproducible log P estimates. 
An example protocol optimization for SM02 guided by log R 
values is shown in Fig. 4.

While maximizing the difference in poKa values from 
each other and from the aqueous pKa is desirable, sometimes 
it is necessary to reduce the octanol volume to limit the shift 
in poKa so that it remains within a measurable range. This 
would be necessary when the aqueous pKa is a weak acid 
( pKa> 9 ) or weak base ( pKa<5), since the presence of the 
octanol phase causes poKa shifts towards higher and lower 
values, respectively, approaching the limit of the measurable 
pH range of the instrument. Measurable pH range is mainly 
limited by the acid and base strength of titration solutions 
against the increasing buffering capacity of water at pH val-
ues below 2 and above 12. It is also important to mention 
that even if the poKa value itself is within the stated measure-
ment range of 2–12, if a large portion of the titration curve 
is beyond limits (i.e., saturation of fractional population on 
both sides of the poKa ), then the experimental titration curve 
may not be fit to the model titration curve exactly and poKa 
cannot be determined as precisely. When the dynamic part of 
the titration curve ( poKa ± 2) shifts outside of the measure-
able pH range, it reduces the confidence in poKa estimates 
of the fit. Therefore, poKa values should ideally be at least ± 
1 unit, and preferably ± 2 units away from the limits of pH 
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measurement with this instrument, which can be extended to 
pH 1 and 13 at most. For this reason, it is easier to optimize 
log P experiments for monoprotic molecules which have 
acidic pKa s between 3–10 and basic pKa s between 4–11. 
Some molecules in the SAMPL6 set which were not suitable 
for potentiometric log P measurements because of this crite-
ria were: SM01, SM17, SM18, SM19, and SM24 (Table S4).

Sample preparation considerations and determination 
of appropriate starting concentration

Sample preparation starts with the weighing of solid pow-
der material to analysis vials. How much analyte to use 
is another important decision that requires optimization. 
General guidance according to the Sirius T3 manual is to 
use 1–10 mg, and the aqueous phase volume is typically 
adjusted to the minimum volume (1.4–1.5 mL). The buff-
ering capacity and compound solubility are the two fac-
tors that guide lower and higher limits of suitable analyte 

concentration. The Sirius T3 produces buffer index vs pH 
plots (Fig. 2e, d) which provide guidance on how much 
analyte is needed for sufficient potentiometric signal. 
To guide the first experiment, these plots can be simu-
lated based on analyte mass, experimental pKa , predicted 
log P, and selected octanol volumes. In further iterations 
of experiments, the buffer index profiles of the previous 
experiment guides the decisions about how to optimize 
the protocol. On the other hand, aqueous solubility limits 
the maximum concentration of the analyte in the aque-
ous phase. Moreover, since the experimental methodology 
depends on measuring the poKa shift during pH titrations 
as species partition into the nonaqueous phase, the analyte 
must stay in solution over the titrated pH range for the 
entire experiment, as the presence of an insoluble phase 
represents another reservoir for compound partitioning 
that would invalidate the coupled ionization-and-parti-
tioning model used to compute the log P. The pH titra-
tion range is adjusted to capture a sufficient region below 

Fig. 4   Potentiometric log  P protocol optimization of SM02 based 
on log R. Experimental results of initial trial (a) and optimized pro-
tocol (b) are shown for SM02. log  R profile before optimization (a 
lower panel) shows insufficient apparent pK

a
 shift due to poor choice 

of octanol–water volume ratios. This experiment led to log  P and 
log P+1 estimates of 4.32 and 1.38. For a good measurement, trian-
gles that indicate | pK

a
-p

o
K
a
 | of each titration in log  R profiles must 

fall on the slope region of the log  R profile instead of the plateau 
region. Adjusting log R by decreasing octanol volumes in each titra-
tion led to a better experiment with distinct titration curves and well 
separated p

o
K
a
 values (b). log P and log P+1 were measured as 4.10 

and 1.32 with the optimized protocol. Once we achieved optimization 
of potentiometric log  P protocol, triplicate measurements were col-
lected using the same protocol
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and above the poKa to ensure ionization states with lower 
solubility are also visited (neutral and zwitterionic states).

For these compounds resembling fragments of kinase 
inhibitors –the compounds considered in the SAMPL6 pKa 
Challenge [29] and this study– this solubility criterion turned 
out to be very challenging to meet. A large portion of com-
pounds in the SAMPL6 pKa Challenge set were found to be 
insufficiently soluble for potentiometric log P experiments at 
some region of the pH range that needs to be titrated during 
the experiment, more likely the pH region where the neutral 
population of analytes are prominent. These compounds for 
which potentiometric log P measurement could not be opti-
mized due to solubility limitations are listed in Table S4. 
For other compounds, we had to try reducing the analyte 
sample quantity from 3 mg to 1 mg of compound to find the 
optimum balance between ensuring the compound remained 
fully soluble and ensuring sufficiently high buffering capac-
ity signal. The rate of change of pH vs. volume of acid or 
base titrated in analyte solution must differ from the rate of 
pH change in just water. This quantity is expressed as a buff-
ering index in buffer index profiles generated by Sirius T3 
(Fig. 2e, f), where a black solid line describes the theoretical 
buffering capacity of water and colored triangles describe 
the experimental buffering capacity of the analyte. For high 
quality measurements, reaching at least 0.001 buffer index at 
the maximum point of the titration (at pH that equals poKa ) 
is recommended.

In our case, the exact solubility of compounds was not 
known prior to log P measurements. We had to evaluate 
precipitation issues based on the distortion of mean molecu-
lar charge vs pH profiles (Fig. 2e, d) from ideal shape by 
adjusting starting analyte masses until the distortions disap-
pear. Distortions manifest as very steep drops or oscillations 
in relative ionization state populations with respect to pH. 
An example is shown in Fig 5A Sample Ionization Graph. 
The turbidity indicator of Sirius T3 can not be utilized for 
solubility detection during log P experiments since the pres-
ence of octanol causes turbidity in the aqueous phase due 
to vigorous stirring during titrations. Predosing 80–100 μL 
octanol before addition of ISA water, as well as sonication 
and stirring after titrant addition, were also helpful for over-
coming kinetic solubility problems. An example protocol 
optimization for SM08 to overcome solubility problems is 
shown in Fig 5.

If possible, measuring solubility of compounds prior to 
potentiometric log P measurements can provide helpful 
information for more efficient log P measurement protocol 
optimization. However, since solubility is pH-dependent, 
the lowest solubility of the compound during the entire pH 
2–12 range would be the information necessary to guide the 
experimental design. An experiment for a compound with 
400 g/mol molecular weight using the minimum analysis 
made of 1 mg and 1.5 mL of aqueous phase corresponds to 

1.67 mM. To be suitable for potentiometric log P measure-
ments with the Sirius T3, at least 1.67 mM aqueous solubil-
ity is necessary throughout the pH range of the analysis.

One way to increase the dynamic range of potentiometric 
log P measurement with the Sirius T3 is to increase the range 
of log R that can be sampled by performing three different 
poKa measurements in three different analysis vials instead 
of three sequential titrations in one vial. But since log R is 
dependent on the cumulative octanol volume in sequential 
titrations, the advantage of the single titration approach is 
not significant. The single titration approach can only allow 
a small additional volume for octanol phase which would be 
used to dispense multiple acid and base stock solution vol-
umes ( ∼0.2 mL). We did not elect to investigate this design 
because we did not want to introduce another source of 
error: the variance in sample mass between measurements. 
Since the initial sample mass is an input parameter to the 
experimental model, using three different sample masses 
would introduce effects coming from the inaccuracy of the 
analytical balance to log P estimates.

Another way to prepare analyte samples for Sirius T3 
measurements is to start from DMSO stock solutions instead 
of dry powder stocks. However, potentiometric measure-
ments require 1–10 mg/mL analyte concentration in order 
to reach sufficient buffering capacity. The required concen-
tration of the DMSO stock solution would be quite high, 
and sometimes impossible due to solubility limits in DMSO. 
Typical DMSO stock solution concentrations are 10 mM. 
For an analyte with 400 g/mol molecular weight, the con-
centration of 10 mM DMSO stock solution corresponds 
to 4 mg/mL. In order to achieve the minimum required 1 
mg/mL analyte solution for the Sirius T3 experiment, the 
aqueous phase would have to consist of 25% DMSO which 
would cause significant cosolvent effects. On the other hand, 
achieving lower cosolvent presence, such as 2.5% DMSO, 
would require DMSO stock solutions of 100 mM at which 
concentration the analyte may not be soluble. Presence of 
cosolvent at even low amounts is undesirable due to the 
potential the effect on the log P measurements. Therefore, 
it is not recommended to perform these experiments starting 
from DMSO stock solutions.

Reliable determination of log P values of ionized 
species was not possible

Although it is possible to use Sirius T3 potentiometric 
log P measurements to determine the partition coefficients 
of ionic species as well, in practice, we were not able to 
achieve log P1 estimates with low variance between exper-
iments. The partitioning of ionic species into the organic 
phase is typically much lower than that of the neutral spe-
cies, and to capture this accurately by measuring suffi-
ciently large poKa shifts, it would be necessary to use much 
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larger octanol to water volumetric ratios R. The Sirius T3 
glass analyte vials can hold up to 3 mL, which limits the 
maximum achievable octanol to water volumetric ratio. 
Since at least 1.4 mL must be devoted to the aqueous phase 
for the pH probe, this leaves only 1.6 mL for the octanol 
phase, producing a maximum achievable R ∼ 1.1 . Another 

limitation was the measureable pH range. Since log P 
measurements rely on determining well-separated poKa 
values at different log R values to get a good model fit, 
the octanol to water volumetric ratio needs to be selected 
such that poKa values are well separated but not out of the 
measurable pH range (2–12).

Fig. 5   Potentiometric log P protocol optimization for SM08 to allevi-
ate aqueous solubility problems. Experimental results of initial proto-
col (a) and the optimized protocol (b) are shown for SM08. Both first 
(blue) and second (red) titrations in Sample Ionization Graph before 
optimization (a lower panel) show deviation from expected sigmoi-
dal shape which is an indication of an insoluble analyte. This experi-
ment with solubility issues led to log P and log P+1 estimates of 3.97 
and 1.86. To eliminate precipitation, we could not lower analyte mass 
below 1 mg. Instead we were able to optimize the experimental pro-
tocol by increasing the predosed octanol volume and increasing addi-
tional octanol volumes added in each titration. Predosing octanol 

helps only with kinetic solubility issues. Larger octanol volumes can 
help to improve the experiment when thermodynamic solubility is 
the limitation, by allowing larger amounts of analyte partitioning into 
the octanol phase and reducing the analyte concentration in aqueous 
phase. Additional octanol volumes were selected such that they would 
also improve log R profile of the measurement. With optimized proto-
col (b) we achieved sample ionization profiles without any precipita-
tion effects. log P and log P+1 were measured as 3.16 and 0.23. Once 
we achieved optimization of potentiometric log P protocol, triplicate 
measurements were collected using the same protocol
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To capture the partitioning of ionic species to the octanol 
layer reliably, experiments need to be set up with larger log R 
ratios which is problematic if this causes poKa to shift out-
side of the measureable pH range. Therefore, we designed 
the experiments to capture only the partition coefficient of 
the neutral species (log P0) accurately. The SAMPL6 log P 
Prediction Challenge was constructed only on prediction of 
neutral species.

The lack of reliable determination of partition coefficient 
values of the ionic species (log P+1 or log P−1) may be a 
source of systematic error in the estimate of log P of the 
neutral species (log P0). For hydrophobic compounds with 
negligible partitioning of the ionic species into the octanol-
rich phase (log P+1, log P−1≤ 2), log P0 estimates would still 
be accurate even if ion partitioning is not captured well. For 
compounds that may have higher levels of ionic partition-
ing, to minimize the impact of inaccurate log P+1 or log P−1 
experimental estimates on log P0 measurements, we used 
ACD/Labs predicted log P+1 and log P−1 values as the start-
ing point for the refinement of the ionization and partitioning 
equilibrium model parameters (performed with Sirius T3 
Refine Software).

Absence of zwitterions allowed accurate log P 
measurements of amphoteric molecules

Multiple publications point out discrepancies between log P 
values determined by the potentiometric method and the 
shake-flask experiments for zwitterionic compounds [62, 
63]. There are multiprotic compounds in the SAMPL6 
dataset (SM14, SM15, and SM16), but we believe these 
measurements were not affected by this problem because 
they are not zwitterionic. Zwitterionic molecules have a 
zwitterion as the dominant neutral state in the pH region 
between the two pKa s (a lower acidic pKa and a higher basic 
pKa ). SM14 has two basic pKa s and is not found as a zwit-
terion at any pH between 2 and 12. SM15 and SM16 are 
amphoteric compounds that possess both acidic and basic 
titratable groups, however, according to spectrophotomet-
ric pKa measurements in the presence of cosolvent their 
acidic pKa values are higher than their basic pKa values. 
This means the major neutral form of these compound is 
the non-charged state, not a zwitterion. Spectrophotometric 
pKa measurements with varying percentage of methanol as 
cosolvent were performed with the Sirius T3 and included 
in supplementary documents. Acidic or basic character of 
macroscopic pKa values was assigned based on the slope of 
Yasuda-Shedlovsky plots.

In addition, quantum mechanics calculations [64] do not 
predict the presence of multiple tautomers of the neutral 
state at significant populations for any of the molecules in 
the SAMPL6 log P challenge set. Possible tautomers, such 
as the zwitterionic state, are predicted to be much higher 

in energy and thus unlikely to play a significant role even 
if we considered a prediction error margin for quantum 
mechanics-based calculations. Therefore, we do not think 
our potentiometric log P measurements are influenced by 
presence of zwitterions or minor tautomeric forms.

Suggestions for future log P data collection

High quality datasets of experimental physicochemical prop-
erty measurements are valuable for testing computational 
predictions. Benchmarking and evaluation efforts like the 
SAMPL challenges benefit from large experimental datasets 
with diverse chemical species. The quality of log P measure-
ments collected with the Sirius T3 potentiometric method 
are satisfactory and comparable to gold standard shake flask 
measurements [45, 49, 51]. The Sirius T3 potentiometric 
log P method requires aqueous pKa s to be measured experi-
mentally ahead of time. The ability to obtain log P measure-
ments of neutral and charged species separately, instead of 
measuring pH dependent log D, is a unique advantage of 
the Sirius T3 approach compared to shake-flask or HPLC-
based methods where ionization effects are involved with 
partitioning behaviour. However, due to previously dis-
cussed limitations and the necessity for extensive protocol 
optimization for each analyte, we are reluctant to suggest 
potentiometric log P measurements with the Sirius T3 as a 
general and high-throughput method for future log P data 
collection unless significant resources and work hours of a 
human expert can be dedicated to protocol optimization and 
data collection.

Informed selection of analytes can help improve the suc-
cess of Sirius T3 experiments. For example, this approach 
is easier to apply to highly soluble compounds (more than 
1 mg/mL solubulity in 0.15 M KCl through the entire range 
of pH titration range at room temperature) with pKa values 
in the midrange (3<acidic pKa<10 and 4<basic pKa<11). 
There is no significant difference in difficulty between the 
measurements of monoprotic vs multiprotic compounds, as 
long as one of the pKa values of the multiprotic compound 
is in the midrange. For determining the log P of neutral spe-
cies, it is sufficient to collect potentiometric titration data 
between the neutral state and the + 1 or − 1 charged states 
by titrating the pH region that captures the relevant poKa 
values. It is not necessary to capture the titration of a second 
pKa (Fig. 2b).

Our opinion is that log D measurements at a buffered pH 
can be much more easily obtained in a higher throughput 
fashion using miniaturized shake-flask measurements, such 
as those used in SAMPL5 log D Challenge experimental 
data collection [21]. To obtain log P values from experi-
ments that were designed to measure log Ds, it is neces-
sary to measure the pKa of compounds (such as with the 
Sirius T3) and conduct log D measurements using a buffered 
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aqueous phase at a pH that will ensure that the analyte is 
completely in the neutral state. According to our experience, 
optimizing pKa measurements with the Sirius T3 is signifi-
cantly easier than optimizing log P measurements, especially 
if a spectrophotometric (UV-metric) pKa method can be used 
instead of potentiometric, which is not an option for log P 
measurements.

Conclusion

This study reports the collection of experimental data for the 
SAMPL6 Part II log P Blind Prediction Challenge. In the 
physicochemical property prediction challenge components 
of SAMPL6, we aimed to separately evaluate performance 
of computational methods for predicting ionization ( pKa ) 
and nonaqeuous partitioning (log P) of small molecules, 
collecting experimental data for these properties on the 
same set of compounds and fielding sequential, independ-
ent prediction challenges. While we attempted to measure 
octanol–water log P for all compounds in the SAMPL6 pKa 
Challenge set—consisting of 24 compounds that resemble 
fragments of kinase inhibitors—experimental limitations of 
the Sirius T3 potentiometric log P method meant that reli-
able log P measurements could only be performed for 11 of 
these compounds. The resulting compound set had meaured 
log P values in the range of 1.95–4.09. This set included six 
molecules with 4-aminoquinazoline scaffolds, and two mol-
ecules with benzimidazole scaffolds. Although the chemical 
diversity and number of compounds was rather limited, blind 
high-quality log P datasets are rare, and still highly valuable 
for evaluating the performance of computational predictions. 
Therefore, the SAMPL6 Part II log P Blind Prediction Chal-
lenge was held between November 1, 2018 and March 22 
,2019 using the log P measurements presented in this paper. 
This dataset can be utilized as part of a benchmark set for the 
assessment of future log P predictions methods.
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