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Abstract
Small molecules with multi-target activity, also termed promiscuous compounds, are increasingly considered for phar-
maceutical applications. The use of promiscuous chemical entities represents a departure from the compound specificity 
paradigm, one of the pillars of modern drug discovery. The popularity of promiscuous compounds is due to the concept of 
polypharmacology; another more recent drug discovery paradigm. It refers to insights that the efficacy of drugs often depends 
on interactions with multiple targets. Views concerning the extent to which small molecules might form well-defined inter-
actions with multiple targets often differ, but comprehensive experimental investigations of promiscuity are currently rare. 
On the other hand, large volumes of active compounds and experimental measurements are becoming available and enable 
data-driven analyses of compound selectivity versus promiscuity. In this perspective, we discuss computational methods 
and data structures designed for promiscuity analysis. In addition, findings from large-scale exploration of activity profiles 
of inhibitors covering the human kinome are summarized. Although many kinase inhibitors are expected to be promiscuous, 
they are frequently found to be selective, which provides opportunities for target-directed drug discovery (rather than polyp-
harmacology). We also discuss that machine learning yields evidence for the existence of structure–promiscuity relationships.

Keywords Small molecules · Multi-target activity · Promiscuity · Polypharmacology · Activity data · Structure–
promiscuity relationships · Data structures · Machine learning · Promiscuity cliffs · Networks · Compound pathways · 
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Facets of promiscuity and approaches for its 
assessment

The ability of small molecules to specifically interact with 
multiple targets is referred to as promiscuity [1, 2]. Unlike 
non-specific binding events that originate from compound 
aggregation or assay interference [3–7], genuine multi-target 
activity is often desirable and forms the basis of polyphar-
macology [8–10]. The polypharmacology paradigm states 
that bioactive compounds frequently interact with multiple 
targets in vivo and thereby elicit their therapeutic effects. 
Accordingly, polypharmacology has become a major dis-
covery strategy in a number of therapeutic areas such as 

cardiovascular, metabolic, or oncological diseases where the 
typically multi-factorial nature of disorders and development 
of drug resistance affect therapeutic success [9, 11].

Experimental and complementary computational 
approaches have been introduced for compound promiscu-
ity analysis. For example, microarray and target profiling 
experiments are a major source of multi-target activity data, 
as exemplified by kinase inhibitor profiling studies [12–14]. 
However, comprehensive cell-based or in vivo profiling anal-
yses in model organisms are currently rare [15]. On the other 
hand, systematic computational analysis of rapidly growing 
amounts of compound activity data from medicinal chem-
istry and biological screening sources makes it possible to 
explore promiscuity in a data-driven manner on a large scale 
[16–18]. Given currently available activity data volumes, 
such analyses are expected to yield statistically sound trends, 
despite data incompleteness [2, 16, 17]. Furthermore, other 
computational approaches complementing compound data 
analysis have been developed to assess or predict compound 
promiscuity. For example, various statistical models based 
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on ligand similarity were derived to predict new targets for 
known active compounds [19–22]. In addition, machine 
learning models were developed to distinguish between 
highly, weakly, or non-promiscuous molecules [23, 24]. 
Furthermore, known promiscuous compounds were used 
to establish previously unknown chemical links between 
distantly related or unrelated target proteins [25]. However, 
confirming new compound-based target relationships on 
the basis of experimental activity data is often hindered by 
uncertainty of assay readouts and potential artifacts. Accord-
ingly, various computational filters have been developed to 
detect potential false-positive assay results [26, 27]. Such 
rule-based computational filters are often viewed contro-
versially in the field. However, they provide helpful alerts 
raising awareness of potential artifacts that need to be con-
sidered carefully.

Compound promiscuity has also been investigated at the 
protein structure level where binding site similarity was 
determined and used to rationalize multi-target engagement 
of ligands [28]. Furthermore, the choice of appropriate pro-
tein conformations for the design of polypharmacological 
ligands is considered pivotal to success. Therefore, potential 
advantages and limitations of different structure selection 
methods were evaluated to foster multi-target drug devel-
opment [29]. Moreover, systematic analysis of X-ray data 
identified ligands bound to multiple target proteins from 
different families, hence providing templates for polyphar-
macology-oriented ligand design [30]. Another analysis 
revealed that promiscuous compounds contained in multiple 
X-ray structures often formed different interaction hotspots 
in binding sites of unrelated proteins, but displayed overall 
similar binding modes [31]. A recent perspective details cur-
rent structure-based approaches for compound promiscuity 
analysis [32].

Despite the role of polypharmacology for the efficacy of 
many drugs, it currently remains unclear to which extent bio-
active compounds are promiscuous. Analyses of currently 
available compound activity data do not support assump-
tions that drugs and other bioactive compounds might gen-
erally be promiscuous [17, 18]. Clearly, target selectivity 
of active compounds as a drug discovery goal cannot be 
disregarded. For promiscuity of drugs, expectation values 
have been put forward. On the basis of drug-target network 
analysis using different data sets and drug classes, it was 
estimated early on that drugs might interact on average with 
three to 13 targets, depending on the data sources that were 
used [33, 34]. Data incompleteness inevitably affects prom-
iscuity assessment as long as drugs have not been tested 
against all possible protein targets [33], which will most 
likely remain an elusive goal. However, the consideration 
of test frequencies of compounds provides valuable insights. 
Screening compounds that were extensively tested in hun-
dreds of assays were found to interact on average with two to 

three targets and also contained many consistently inactive 
molecules [17]. In addition, inhibitors of the human kinome, 
which are often expected to be promiscuous, as further dis-
cussed below, also displayed only limited global promiscuity 
[18]. Hence, more work will be required to systematically 
quantify promiscuity among bioactive compounds and fur-
ther explore relationships between multi-target activity and 
target selectivity or specificity. Exploring such relationships 
continues to be critically important for many therapeutic 
applications.

For activity data-driven assessment of compound prom-
iscuity, different chemoinformatic data structures have been 
introduced. In the following, key concepts leading to the 
derivation of these data structures are highlighted, their 
importance in analyzing structure–promiscuity relationships 
is discussed, and exemplary applications to inhibitors of the 
human kinome are presented.

Data structures for computational 
promiscuity analysis

In analogy to activity cliffs, which were defined as pairs of 
structurally similar active compounds with large potency dif-
ferences [35, 36], promiscuity cliffs (PCs) have been defined 
as pairs of structurally analogous compounds with a large 
difference in the number of targets they are active against 
[37]. Furthermore, the promiscuity degree (PD) is defined 
as the number of targets a compound is active against [37]. 
Figure 1a shows exemplary PCs. By definition, PCs reveal 
small structural modifications of compounds that are associ-
ated with large differences in promiscuity. Thus, PCs enable 
the exploration of structure–promiscuity relationships and 
the derivation of new target hypotheses for structural ana-
logues. Defining PCs requires the consideration of a com-
pound similarity and a promiscuity difference (ΔPD) crite-
rion. As a similarity criterion, the formation of a matched 
molecular pair (MMP) [38] is preferred [37]. An MMP is a 
pair of compounds that are only distinguished by a chemical 
modification at a single site [38]. The ΔPD criterion can be 
variably set, depending on the desired magnitude of PCs and 
specific requirements of applications.

Occurrence of PCs has been confirmed on the basis of 
experimental data by analyzing extensively assayed screen-
ing compounds [39]. High-confidence PCs were determined 
by taking assay frequency and overlap information for com-
pounds into account [39]. PCs were frequently formed by 
compounds tested in hundreds of shared assays. Moreover, 
through large-scale analysis of activity data, thousands of 
PCs were identified in active compounds from biological 
screening or medicinal chemistry [39, 40].

PCs can be systematically assessed and visualized in PC 
networks (PCNs). In a PCN, nodes represent compounds and 
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Fig. 1  Data structures for promiscuity analysis. a Exemplary promis-
cuity cliffs (PCs) are shown that are formed by compounds from bio-
logical screening (top; tested in 358 and 339 assays, respectively) and 
medicinal chemistry (bottom). b A section of a PC network is shown 
in which nodes represent compounds and edges pairwise PC relation-
ships. Nodes are color-coded by promiscuity degrees (PD values). A 
large and heterogeneous PC cluster is highlighted. c A sequence of 

compounds forming a PC pathway is displayed that is traced in the 
highlighted cluster shown below. For each pathway compound, the 
PD value is reported. d A prominent promiscuity hub of the pathway 
is shown together with off-pathway compounds with which it forms 
PCs. In the cluster below, the corresponding subgraph from which the 
PCs originate is highlighted
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edges pairwise PC relationships (i.e., the pairwise forma-
tion of PCs by compounds) [39–41] (Fig. 1b). In addition, 
PCNs reveal the formation of PC clusters (disjoint network 
components) of varying size and topology (Fig. 1b). From 
these clusters, PC pathways (PCPs) can be isolated. PCP 
is defined as a sequence of PCs that consists of alternat-
ing highly and weakly promiscuous (or non-promiscuous) 
compounds [41]. An exemplary PCP is shown in Fig. 1c. 
Given their composition, PCPs are rich in structure–prom-
iscuity relationship information. A characteristic feature of 
many PCPs is the presence of promiscuity hubs (PHs). Fol-
lowing network terminology, a hub refers to a densely con-
nected node in a network. Hence, a PH is defined as a highly 
promiscuous PCP compound that forms many PCs with 
weakly or non-promiscuous compounds outside the path-
way [41]. Accordingly, PHs suggest many target hypotheses 
for weakly or non-promiscuous structural analogues whose 
low PD values might be due to data sparseness. Figure 1d 
shows an example of a highly promiscuous hub and its PCN 
environment.

The PC, PCN, PCP, and PH data structures provide a 
basis for detailed computational promiscuity analysis. 
Increasing size and complexity of PC clusters quickly lim-
its interactive analysis of PCPs. Therefore, a computational 
approach to systematically identify, extract, and prior-
itize informative PCPs from PC clusters has been recently 
reported [42]. The methodology relied on the detection of 
the shortest path between any two nodes from a PC cluster. 
For the identification of shortest paths, a breadth-first search 
strategy akin to Dijkstra’s algorithm was applied [43]. PCPs 

were systematically identified for all pairs of promiscuous 
non-terminal nodes (i.e., nodes forming at least two PC rela-
tionships). For detected PCPs, three parameters were calcu-
lated including the pathway length (number of nodes), total 
number of PCs, and cumulative ΔPD value of all pathway 
edges. Redundant pathways were eliminated after identify-
ing multiple pathways consisting of the same set of pro-
miscuous nodes. Then, PCPs were prioritized based upon 
fusion of individual pathway rankings for the three param-
eters. This search method enabled fully automated analysis 
of PC clusters, PCPs, and PHs on the basis of PC network 
representations and was applied to systematically analyze 
promiscuity patterns among human kinase inhibitors [42].

Promiscuity analysis of kinase inhibitors

Inhibitors of the human kinome were subjected to system-
atic promiscuity analysis. Exploring these compounds on 
a large scale was of particular interest since clinical kinase 
inhibitors used in oncology typically have high promiscu-
ity. Accordingly, these promiscuous kinase inhibitors have 
become a paradigm for polypharmacological compounds 
[44]. By extrapolating from these compounds, it is often 
assumed that ATP site directed kinase inhibitors might gen-
erally be promiscuous, as further discussed below.

For promiscuity analysis, kinase inhibitors and their 
activity data were systematically collected from several 
public compound repositories, curated, and combined. 
These efforts yielded more than 112,000 inhibitors with 

Fig. 1  (continued)
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well-defined activity measurements [41]. For all curated 
inhibitors, kinase-based PD values were determined. Taken 
together, these inhibitors were found to be active against a 
total of 426 human kinases, hence providing 82% coverage 
of the kinome. The analysis of this unprecedentedly large 
data set revealed that nearly 40% of human kinase inhibitors 
had multi-kinase activity, but that only 4% were known to 
be active against five or more kinases. More than 60% of the 
inhibitors were only annotated with a single kinase activity. 
Therefore, global promiscuity among kinase inhibitors was 
not higher than observed for other compound classes, with 
mean and median PD values of 2.1 and 1.0, respectively [2, 
41]. Overall, kinase inhibitor promiscuity was thus much 
lower than determined for the subset of clinical kinase inhib-
itors used in cancer treatment [41].

However, structurally analogous kinase inhibitors fre-
quently displayed significant PD differences, leading to the 
formation of nearly 16,000 PCs (ΔPD ≥ 5) [41]. Represent-
ative examples of large-magnitude PCs formed by human 
kinase inhibitors are provided in Fig. 2a, b. In a global PCN 
representation for the human kinome, more than 600 distinct 
PC clusters of greatly varying composition emerged. Com-
putational analysis of PC clusters yielded 8900 unique PCPs, 
ranging in length from three to 17 inhibitors [42]. Moreover, 
520 kinase inhibitors qualified as PHs (with at least 10 PCs 
per hub). These PHs formed a total of 12,131 PCs (76% 
of all PCs) that involved nearly 7300 weakly or non-pro-
miscuous analogues (with PD values of 1–4) [45]. Overall, 
large numbers of PCs, PCPs, and PHs were isolated from the 
comprehensive kinase inhibitor collection. Greatly varying 
PD values were observed and many inhibitors with single-
kinase activity were detected using PC-based data structures. 
These findings also raised the question how kinase inhibitor 
promiscuity and selectivity might compare, as discussed in 
the following.

Promiscuity versus selectivity of kinase 
inhibitors

Inhibitors of the human kinome are currently among the 
most intensely studied compounds in drug discovery 
[46–48]. The majority of current kinase inhibitors binds to 
the largely conserved adenosine triphosphate (ATP) cofac-
tor binding site or, alternatively, less conserved regions 
proximal to this site [49–52]. Accordingly, the inhibitors 
are anticipated to display different degrees of promiscu-
ity depending on their binding sites, which has also been 
analyzed on the basis of activity data [53, 54]. Promiscuity 
or selectivity of these inhibitors determines their potential 
for different therapeutic applications [44, 47, 55], which 
continues to be an intensely debated topic [55]. The active 
site-directed type I, I½, and II inhibitors display different 

binding modes that are characterized by different “in” and 
“out” combinations of the tripeptide DFG motif in the 
activation loop and the αC-helix in the active site region 
[52]. On the other hand, type III and IV inhibitors bind to 
different regions, which are often distant from the active 
site, and are allosteric in nature. Therefore, these inhibitors 
are typically more selective than other types [56]. Allos-
teric inhibitors are mostly discovered serendipitously and 
only a limited number of such inhibitors has been reported 
thus far [56]. The majority of current kinase inhibitors are 
type I inhibitors [51].

Experimental studies of active site-directed inhibitors 
have revealed different degrees of selectivity or promiscu-
ity. Type I inhibitors directly bind to the conserved ATP 
site and are ATP-competitive. Thus, they are expected to be 
more promiscuous than type II inhibitors that target a less 
conserved hydrophobic pocket adjacent to the ATP bind-
ing site. However, both promiscuous and selective type I 
and II inhibitors were identified in profiling assays [12–15]. 
Furthermore, systematic computational analysis of activity 
data available for type I and II inhibitors including clini-
cal candidates yielded similar results [53, 54]. Hence, there 
was no detectable selectivity advantage of type II over type 
I inhibitors, contrary to expectations. Two clinical kinase 
inhibitors with different promiscuity are shown in Fig. 3a 
[54]. Extensively assayed kinase inhibitors from biological 
screens were found to include specific inhibitors and others 
displaying different degrees of promiscuity at varying data 
confidence levels [18]. Corresponding observations were 
made for designated kinase probes from chemical biology. 
Chemical probes should ideally be target-specific, but kinase 
probes exhibited a wide range of activities and included both 
highly selective and highly promiscuous inhibitors [57]. 
Figure 3b shows exemplary kinase inhibitors designated as 
chemical probes with extremely different promiscuity [57].

Taken together, these findings indicate that binding site 
conservation alone is not a major promiscuity determinant 
and that other effects such as binding kinetics and compound 
residence times are likely to contribute to promiscuity or 
selectivity of kinase inhibitors. Clearly, kinase inhibitors are 
not categorically promiscuous, but display a wide spectrum 
of activity profiles, which provide many opportunities for 
drug discovery as well as for future research.

Evidence for structure–promiscuity 
relationships through machine learning

Recently, machine learning has been applied to predict 
activity profiles of kinase inhibitors and their potential for 
polypharmacology [58, 59]. Furthermore, an online platform 
has been introduced for kinome-wide virtual compound 
screening using multi-task deep neural networks to guide 
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Fig. 2  Promiscuity cliffs formed 
by human kinase inhibitors. In 
a, b, exemplary PCs formed by 
inhibitors of the human kinome 
are shown. Structural modifi-
cations are colored blue. For 
each inhibitor, its PD value is 
reported and a phylogenetic tree 
representation of the kinome 
is shown where its targets are 
represented as purple circles
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multi-kinase drug design [60]. In addition to such applica-
tions, machine learning has been employed to investigate 
promiscuity from a more principal point of view, as dis-
cussed in the following.

Observations such as the low global promiscuity of kinase 
inhibitors or the frequent occurrence of PCs and PHs rein-
force the question to which extent data incompleteness might 
affect promiscuity assessment. Naturally, data incomplete-
ness also influences the analysis of kinase inhibitors as long 
as not all available inhibitors have been tested against all 518 
kinases comprising the human kinome.

For bioactive compounds, it often remains difficult to 
rationalize why structural analogues often display large dif-
ferences in promiscuity, as exemplified by the many PCs, 
PCPs, and PHs we have identified among kinase inhibi-
tors. Importantly, if PD differences are a consequence of 

structural features or patterns, i.e., if true structure–promis-
cuity relationships exist, such structural patterns should be 
detectable using machine learning, even if they are difficult 
to uncover on the basis of expert analysis. Hence, if observed 
differences in compound promiscuity result from structural 
characteristics, it should be possible to build machine learn-
ing models to distinguish between promiscuous and non-pro-
miscuous compounds. By contrast, if observed promiscuity 
differences would be strongly influenced by data incomplete-
ness or experimental inconsistencies, no structure–promis-
cuity relationships would exist that could be detected via 
machine learning on the basis of molecular structure. In this 
case, machine learning models would inevitably fail.

Fig. 3  Promiscuity of clinical 
kinase inhibitors and chemical 
probes. a Examples of clinical 
kinase inhibitors are shown 
that are annotated with a single 
kinase (capmatinib) or multiple 
kinases (lapatinib). b Two 
kinase inhibitors designated 
as chemical probes are shown, 
NVS-PAK1-1 and ruxolitinib, 
which display a very large 
difference in promiscuity. 
Kinase annotations are derived 
from publicly available high-
confidence activity data. For 
each inhibitor, the PD value is 
reported in a circle
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To evaluate this conjecture, it was investigated whether 
or not predictive models could be derived to systematically 
distinguish between highly promiscuous and weakly or non-
promiscuous screening compounds and, in addition, between 
promiscuous and non-promiscuous kinase inhibitors [24]. To 
assemble training and test sets for machine learning, struc-
tural analogues with different promiscuity were selected 
from PCs or randomly selected following alternative strate-
gies. Using PCs as a source of training and test compounds 
further challenged the predictions because, in this case, pro-
miscuous and non-promiscuous compounds included close 
structural analogs.

Different machine learning approaches were applied to 
build classification models on the basis of structural finger-
prints. These methods included random forest (RF) [61], 
support vector machine (SVM) [62], deep neural network 
(DNN) [63], and graph convolutional network (GCN) [64] 
algorithms. As a control, nearest neighbor (1-NN) relation-
ships between training and test compounds were analyzed 
on the basis of fingerprint Tanimoto similarity. In this case, 
the class label of the most similar training compound was 
assigned to each test compound.

For both screening compounds and kinase inhibitors 
selected from PCs, models obtained with all machine learn-
ing methods were found to be predictive, with an overall 
accuracy approaching or exceeding 70%. For randomly 
selected compounds, prediction accuracy was higher than 
70%, approaching 80% in a number of instances. Hence, 
there was a clear and consistent tendency to distinguish 
between promiscuous and non-promiscuous compounds on 
the basis of machine learning. Differences between alterna-
tive methods were only small and there was no detectable 
advantage of deep learning compared to RF and SVM. Sur-
prisingly, the simple 1-NN classifier consistently approached 
the performance level of machine learning. These findings 
indicated that machine learning calculations were dominated 
by nearest neighbor effects and provided further evidence for 
the presence of structural patterns that distinguished promis-
cuous from non-promiscuous compounds [24].

As a first step to elucidate relevant structural patterns, the 
influence of individual fingerprint features on the predictions 
of promiscuous versus non-promiscuous compounds was 
analyzed using an SVM-based feature weighting and rank-
ing method [65]. For SVM models, features were weighted 
according to their contributions to correct predictions of pro-
miscuous or non-promiscuous kinase inhibitors and ranked 
on the basis of cumulative feature weights. Fingerprint fea-
tures were clearly differentiated by weighting and top-ranked 
features were further analyzed. Four features were identi-
fied that consistently contributed to the correct prediction 
of promiscuous kinase inhibitors and four different features 
that consistently contributed to the prediction of non-pro-
miscuous inhibitors. These consensus features were mapped 

onto exemplary promiscuous and non-promiscuous kinase 
inhibitors, respectively, and found to form distinct coherent 
substructures [24]. These findings further rationalized suc-
cessful predictions at the structural level and revealed the 
first structural patterns that were characteristic of promiscu-
ous compounds.

Concluding remarks

Exploring multi-target activities of small molecules is an 
attractive area of research. At the molecular level, it is 
equally challenging and interesting to understand how a 
compound can form well-defined interactions in different 
binding sites and how interaction patterns of promiscuous 
and target-specific compounds compare. Moreover, given 
the link between promiscuity and polypharmacology, the 
question arises how promiscuous drugs and bioactive com-
pounds really are. The jury is still out but we are gaining 
insights into the distribution of promiscuous compounds 
across therapeutic targets, also taking experimental test 
frequencies into consideration. In the study of promiscuity, 
experimental profiling and computational approaches com-
plement each other, providing opportunities for data-driven 
computational analysis and predictive modeling. Herein, we 
have discussed data structures designed to uncover struc-
ture–promiscuity relationships. In this context, the concept 
of promiscuity cliffs plays a central role, based upon which 
other data structures have evolved. Given the popularity of 
polypharmacology, opinions are often voiced that pharma-
ceutically relevant small molecules might generally have 
multi-target activity. However, such assumptions are cur-
rently unsubstantiated on the basis of available experimental 
data. As long as promiscuity is not systematically explored 
in profiling campaigns at the cellular level or in vivo using 
model organisms, we are required to rely on currently avail-
able data and knowledge extracted from them. Given the 
increasingly large volumes of compounds and activity data 
that are becoming available, computational analysis repre-
sents an attractive approach to detect promiscuity trends. 
Large-scale exploration of compound activity data has 
shown that promiscuity cannot generally be assumed for 
small molecules, despite data incompleteness. However, 
data-driven analysis has also detected many puzzling struc-
ture–promiscuity relationships that merit further investiga-
tion. On the basis of currently available profiling experi-
ments and other activity data, the picture is emerging that 
active compounds cover a wide spectrum of activities, rang-
ing from target-specific or selective to highly promiscuous 
chemical entities. Inhibitors of the human kinome provide 
a representative example, as discussed herein. Although 
the efficacy of small sets of clinical kinase inhibitors used 
in oncology is known to rely on extensive promiscuity, 
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providing a paradigm for polypharmacology, promiscuity 
of kinase inhibitors cannot generally be assumed, not even 
for those targeting the conserved ATP site. Rather, a wealth 
of different activity profiles is observed for kinase inhibi-
tors, consistent with observations made for other compound 
classes. This provides opportunities for drug discovery, for 
example, the development of highly selective kinase inhibi-
tors for long-term treatment of chronic diseases. Moreover, 
these findings also provide opportunities for future research 
to further explore and better understand molecular determi-
nants of multi-target activity on the one hand and of selec-
tivity or specificity on the other. We have also discussed 
that machine learning has successfully been used to generate 
indirect evidence for the existence of valid structure–prom-
iscuity relationships and the presence of structural patterns 
that differentiate promiscuous and non-promiscuous com-
pounds. Therefore, machine learning provides a basis for 
systematic exploration and mapping of distinguishing struc-
tural features, which is a current topic of research in our 
laboratory. Furthermore, exploring structural signatures of 
promiscuity should also aid in predicting compounds with 
desired multi-target activities, which would further advance 
polypharmacology-based drug discovery.
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