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Abstract
Within the framework of the 6th physical property blind challenge (SAMPL6) the authors have participated in predicting the 
octanol–water partition coefficients (logP) for several small drug like molecules. Those logP values where experimentally 
known by the organizers but only revealed after the submissions of the predictions. Two different sets of predictions were 
submitted by the authors, both based on the COSMOtherm implementation of COSMO-RS theory. COSMOtherm predic-
tions using the FINE parametrization level (hmz0n) obtained the highest accuracy among all submissions as measured by the 
root mean squared error. COSMOquick predictions using a fast algorithm to estimate σ-profiles and an a posterio machine 
learning correction on top of the COSMOtherm results (3vqbi) scored 3rd out of 91 submissions. Both results underline the 
high quality of COSMO-RS derived molecular free energies in solution.

Keywords  COSMO-RS · logP · Octanol–water partition coefficients · Liquid phase thermodynamics · COSMOtherm · 
COSMOquick · Machine learning

Introduction

The octanol–water partition coefficient (its common loga-
rithm often abbreviated as logKow, logPow or just logP) 
of a molecule is a physico-chemical property of particular 
relevance. It serves as a general descriptor for the hydro-
philic versus the lipophilic character of a compound and 
is used for example in the context of the estimation of a 
drug’s distribution between hydrophilic and lipophilic com-
partments within the human body. Apart from pharmacol-
ogy, its usefulness extends also to many other areas such as 
environmental science, agrochemistry and toxicology. Since 
the pioneering work of Hansch in the field of partition coef-
ficients and quantitative structure property relations (QSPR) 
[1], numerous methods have been developed to predict those 
quantities, based on different model assumptions, with dif-
ferent accuracies but also differing domains of applicability 

regarding the involved molecular functional groups [2]. 
This points to a more general problem: the ambiguity in 
the choice of evaluation data poses a serious issue for the 
fair assessment of any physico-chemical property method. 
Therefore, blind prediction challenges with experimental 
data unavailable to all participants provide the rare oppor-
tunity to benchmark a number of methods against each other 
and to learn and improve approaches based on the insights 
of this endeavour. This is addressed by the SAMPL series 
of blind challenges currently hosted by the Drug Design 
Data Resource initiative (D3R) [3] and taking place first in 
2008 [4].

Among the more recent ones, the SAMPL5 challenge [5] 
was targeted at the logarithmic distribution coefficient of 
drug-like compounds between water and alkane, i.e. the par-
titioning between the essentially most different liquid phases 
occurring in nature. This partition coefficient is mainly rel-
evant for life science in the context of the estimation of the 
permeability of molecules through cell membranes, which 
in their center are essentially pure alkane like. The COSMO-
RS method provided the most accurate predictions in that 
challenge [6].

The SAMPL6 challenge considers the somehow related 
logarithmic octanol–water partition coefficient. In contrast 
to pure alkane, octanol does provide some polarity and is 
more representative of typical fatty compartments in human 
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bodies and animals. The challenge was separated into two 
parts to better reflect the two main aspects of the distribution 
of a molecule between water and octanol. The first part of 
the competition finished in early 2018 and dealt with dis-
sociation of the compounds in the aqueous phase and hence 
the prediction of pKa-values [7, 8]. Please note, that the 
pKa predictions having the lowest RMSE were based on 
COSMO-RS computed free energies of solvation [9]. The 
second part of the SAMPL6 challenge, which is the topic 
of this work, was solely focused on the prediction of logP 
values, i.e. the partition of the unionized species between 
water and octanol.

Experimentally, neutral-compound logarithmic partition 
coefficients (logP) were collected by the organizers using 
potentiometric logP (pH-metric) measurements [10–12]. 
Technically, the measured pKa values from the first part of 
the challenge enter the evaluation of the experiment in order 
to correct for the effects of acidic or basic groups. Due to 
experimental issues e.g. related to too low solubilities only 
11 out of the original 20 drug-like molecules could be meas-
ured and remained for prediction (Fig. 1).

Finally, two sets of logP predictions were submitted by 
the authors. Among a total number of 91 submissions, COS-
MOtherm using the FINE parameterization scored the lowest 
root mean squared error (RMSE) and mean absolute deviation 
(MAE). COSMOquick based predictions using an empirical 
correction term based on machine learning (ML) on top of lower 
level COSMOtherm calculations (estimated σ-profiles at the 
TZVP level) came in third according to the competition metric.

COSMO-RS theory
The Conductor like Screening Model for Realistic Sol-

vation (COSMO-RS) was developed by Klamt in 1995 

basically to overcome the deficiencies of classical implicit 
solvation models [13]. Intermolecular interactions in 
COSMO-RS are defined via surface segments derived from 
the screening charge on the surface of an isolated molecule 
placed within a virtual conductor. An implicit solvation 
COSMO [14] calculation using density functional is carried 
out in order to obtain the σ-surface and the resulting data is 
finally saved in a COSMO file for further use. Technically, 
those COSMO files can be stored in a database that allows 
to use pre-computed σ-surfaces for common molecules such 
as drugs, solvents and polymers.

Instead of an ensemble of interacting molecules as con-
sidered in a classical molecular mechanics simulation, 
COSMO-RS describes intermolecular interactions from 
an ensemble of pair-wise interacting surface segments. An 
important simplifying assumption being made is that all 
segment wise interactions in the liquid state are possible, 
which leads to a dramatic improvement in the overall effi-
ciency of the thermodynamic sampling. COSMO-RS takes 
into account most relevant intermolecular interactions, such 
as Van der Waals interactions, hydrogen bonding and also 
short-ranged electrostatic interactions. Except from the Van 
der Waals interaction, which are based on element specific 
contributions, all interactions arise from the pairwise con-
tacts of the surface segments.

The segments of the σ-surface may be projected into a 
histogram of equally binned charges densities, the σ-profile 
of a compound.

Just by visual inspection of the σ-profile it is possible 
to derive some qualitative information about the solvation 
characteristics. The profiles displayed in Fig. 2 show the dif-
ference in the polar, i.e. hydrogen bond donating and accept-
ing regions between the relatively hydrophilic compound 

Fig. 1   Molecular structures of the 11 protein kinase inhibitor fragments used for the logP prediction challenge



387Journal of Computer-Aided Molecular Design (2020) 34:385–392	

1 3

SM11 and the more lipophilic SM02. According to its 
σ-profile, compound SM11 (Fig. 2, dashed line) shows sig-
nificantly more polar surface area within the regions having 
σ < − 0.01 e/Å, σ > 0.01 e/Å, respectively, whereas SM02 
(solid line) presents a stronger peak at the hydrophobic 
region (σ ~ 0.0 e/Å).

Finally, quantitative chemical potentials are derived from 
rigorous statistical thermodynamics using the surface seg-
ment based molecular interactions finally providing access 
to all kind of different physico-chemical properties in solu-
tion. For more details of the approach and the definitions of 
the energetic interactions we refer to a concise review by 
Klamt [15].

Computational methods

The logP dataset of the challenge consists of 11 small to 
medium sized protein kinase inhibitor fragments which com-
bine several functional groups having at least one basic or 
acidic site. The logP data extends about 2 log units from 
roughly 2 (SM14) to 4 (SM02).

Due to the fact, that pure logP values of the neutral spe-
cies were extracted from the experiment, no dissociation or 
association effects related to acidic or basic sites had to be 
taken into account during the modelling.

All density functional theory calculations were car-
ried out with the BP86 functional [16, 17], using a TZVP 
[18] basis set for geometry optimisation  (BP-TZVP-
COSMO), and where specified, a def2-TZVPD basis set 
[19] single point calculation on top of the TZVP optimized 

geometry  (FINE-COSMO), always using the COSMO 
solvation [14] scheme. A systematic tautomer search for 
the eleven compounds was carried out using the COS-
MOquick software [20] by systematic (de)protonation 
of the σ-surface hotspots at the semi-empirical AM1/
COSMO level [21] and subsequent BP-TZVP-COSMO 
based COSMOtherm calculations. However, no signifi-
cantly populated tautomeric forms were detected for the 
compounds under consideration, neither in water nor in 
octanol. Two compounds, SM09 and SM12, which origi-
nally were defined as salts, were modelled as neutral non-
salt molecules.

For all compounds independent sets of relevant confor-
mations were computed with the COSMOconf 4.3 work-
flow [22]. The quantum chemistry calculations of COSMO 
surfaces were done on the FINE-COSMO level based 
upon BP-TZVP-COSMO optimized geometries to match 
the parameterization used in COSMOtherm. The quantum 
chemical calculations were done with the TURBOMOLE 
7.3 quantum chemistry software [23].

The distribution coefficient logP between the pure sol-
vent phases water and octanol was computed for all solutes 
using the COSMO-RS method as implemented in COS-
MOtherm, according to the following general procedure 
(in the context of the challenge this submission is refer-
enced as hmz0n).

For all compounds, relevant conformations in the liquid 
phase were used as previously generated by COSMOconf. 
Partition coefficients logP were calculated from the differ-
ences of the infinite dilution chemical potentials μ of the sol-
ute × in the solvents octanol (phase 1) and water (phase 2):

Fig. 2   The σ-profiles of the two 
SAMPL6 compounds having 
the lowest (SM11) and the high-
est (SM02) predicted octanol–
water partition coefficient. Only 
the profiles of the lowest energy 
conformers are shown
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Molar volumes V were used to convert from the mole 
fraction basis to a molar concentration-based framework. 
For all compounds various conformational states were 
taken into account by calculation of the total chemical 
potentials from the logarithm of the conformational par-
tition function. The solvent octanol was treated as wet 
octanol, i.e. assumed to have a water mole fraction content 
of 27.4% [24]. All COSMOtherm calculations were done 
with the BP_TZVPD_FINE_19 parameterization [13, 25, 
26].

Prior to the release of the experimental measurements, 
accuracies of the COSMOtherm predictions were estimated 
according to the following assumptions: the accuracy of the 
COSMOtherm BP_TZVPD_FINE_19 parameterization for 
the prediction of logarithmic partition coefficients is 0.35 
log units (RMSD). For 262 non-polar solvent/water partition 
coefficients appearing in our parameterization and validation 
sets with exp. data taken from the Biobyte database [27] the 
RMSD is 0.4 log units. Taking into account that the com-
pounds in these datasets are in average smaller by a factor 2 
than the compounds considered in the SAMPL6 challenge, 
and assuming uncorrelated errors, the estimated accuracy 
of the prediction of logP octanol–water is in the order of 
0.5 log units. In retrospective, this estimation seems to be 
slightly too conservative with regard to the final accuracy 
of the predictions with an RMSE of 0.38 logP units which 
coincides well with the original 0.35 log units accuracy of 
the parameterization.

A second set of predictions based on an alternative 
approach omitting explicit quantum chemical calcula-
tions was submitted (reference 3vqbi). For all compounds 
approximated σ-surfaces were generated directly from the 
given SMILES strings using a database of about 200.000 
pre-computed molecules at the BP-TZVP-COSMO level 
with the COSMOquick 1.7 software and the COSMOfrag 
algorithm [20, 28]. Hence, no additional costly quantum-
chemical calculations was required.

The distribution coefficient logP between the pure solvent 
phases water and wet 1-octanol was computed for all solutes 
using the COSMO-RS method as implemented in COSMO-
therm, in a similar fashion as for submission hmz0n.

Partition coefficients logP for all solutes were calculated 
from the infinite dilution chemical potential differences within 
the solvents water and octanol. All COSMOtherm calculations 
were done with the BP_TZVP_18 parameterization [13, 25, 
26]. This parameterization is using a somewhat smaller basis 
set for the DFT energies and COSMO cavity calculations than 
the higher level BP_TZVPD_FINE_19. As by inspection of 
the atomic similarities the quality of estimated σ-profile of 
structure SM08 was rather low, the pure COSMO file at the 
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TZVP level was used instead of the approximation for this 
compound.

Finally, an empirical correction was added via machine 
learning using a decision tree ensemble (Stochastic Gradient 
Boosting [29] via the XGBoost library [30]). The correction 
term was trained on a curated experimental dataset of about 
11,000 logP values taken from the physprop database [31] 
based on ten different descriptors. As target vector the differ-
ence between the predicted COSMOtherm and experimen-
tal data points was used. The following set of COSMOquick 
based descriptors has been selected for the construction of the 
decision trees, with some focus on the meaningfulness of the 
descriptors: N_amino (the number of secondary or tertiary 
aliphatic amino groups in the compound), mu_gas (chemi-
cal potential in the gas), M3 (third sigma moment as derived 
from the sigma-profile), h_hb (hydrogen bond part of the 
enthalpy), rotatable_bonds (number of rotatable bonds), conju-
gated_bonds (number of conjugated bonds), Macc4 (4th order 
hydrogen bond acceptor sigma moment), mu_water (chemical 
potential in water), internal_hbonds (number of potential inter-
nal hydrogen bonds) and alkylatoms (number of carbon atoms 
belonging to alkylgroups). Parameters have been optimized 
using an “early stopping” technique during fivefold cross-
validation. Early stopping allows to find the optimal number 
of boosting iterations by simultaneously monitoring a valida-
tion set during training/cross-validation. This logP prediction 
procedure is a slight modification of the one published with the 
last release (COSMOquick v1.7), which uses a standard Ran-
dom Forest instead of gradient boosting for model building, 
however the outcome for the logP challenge is rather similar.

Most important descriptors as shown in Fig. 3 are the 
number of aliphatic amino groups, the number of conjugated 
bonds, the chemical potential in water and the number of 
potential internal hydrogen bonds.

The final predicted logP values are computed as the sim-
ple sum of the COSMOtherm prediction and the decision tree 
ensemble based correction:

The cross-validation accuracy during training, was about 
0.5 log units, whereas the accuracy on a structurally similar 
test set, as compared to the SAMPL6 structures, which was 
excluded from training, was significantly lower. As a conserva-
tive estimate the accuracy of the prediction was assumed to be 
of a similar size as for the cross-validation. As compared with 
the final RMSE of 0.41 this seemed to be a slight overestima-
tion of the error of the approach.

logP = logP
TZVP

+ Δ logP
ML−corr.
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Results and discussion

In order to evaluate in particular the models based on 
machine learning and to decide which ones finally being 
used for submission, several test datasets were constructed 
using experimental data from the literature. The first test set 
(test set 1) was focused on the experimental setup and used a 
data set of partition coefficients measured by different meth-
ods from Slater et al. [12]. This collection contains about 
40 small acid and basic molecule including a few drugs and 
for most compounds a set of three independent logP values 
measured by HPLC, by potentiometric methods, and as col-
lected data from the literature. This collection was chosen 
because it contains logP values measured with a similar 
approach as for the SAMPL6 challenge and due to its reli-
ability. Nevertheless, two compounds of the set, celiprolol 
and acebutolol were treated as outliers due to their strong 
deviation from the COSMOtherm predictions and removed 
from the set.

Unfortunately, most compounds contained in test set 
1 are structurally unrelated to the challenge compounds, 
hence a second test set was generated using a substructure 
search on the physprop database based on the core functional 
groups (mostly quinazolines) of the challenge compounds. 
After removing five apparent outliers based on the devia-
tion from practically all employed models, a set of 32 com-
pounds remained (test set 2). This structurally related test 
set revealed some advantage of the high level FINE param-
eterization predictions versus the TZVP level predictions 
and hence the decision was made to only submit the former 
to the challenge.

The results for the test sets 1 and 2 are summarized in 
Table 1. Given the fact that the final COSMOtherm pre-
dictions outperformed COSMOquick on the challenge 

compounds, it looks like that the COSMOquick results on 
the test set are somewhat overfitted, even though the test set 
compounds themselves were of course excluded from fit-
ting procedure. The COSMOtherm predictions somewhat 
underperform for the test sets. Indeed, the improvement for 
the specific compounds of this challenge as compared to 
the test set compounds is somewhat typical for COSMO-
therm, which is particular predictive for novel and unseen 
structures where most of specifically fitted methods such 
as QSPRs are prone to fail. Another reason for the differ-
ent performance of COSMOquick for the test set and final 
predictions is the fragmentation process used to generate the 
approximate (meta) COSMO files. The structures of the logP 
challenge are not as well represented by the COSMOquick 
approach as the test set compounds are. In fact, using the 
original COSMO files, i.e. the exact σ-profiles, would have 
resulted in an RMSE = 0.35 for the COSMOquick model. 
Supplemental Table S1 shows the influence of the σ-profile 
estimation on the logP predictions, which is much smaller 
for the test sets than for the SAMPL6 compounds.

After the test set evaluations, two models based on COS-
MOtherm (hmz0n) and on COSMOquick employing an a 

Fig. 3   Variable (permutation) 
importance for the logP correc-
tion term as computed by the 
R randomForest package. The 
importance of a specific vari-
able is defined as the percentage 
increase in the mean squared 
error (incMSE) upon random 
shuffling this very variable and 
subsequent property prediction

Table 1   Evaluation of different logP test sets for the two models used 
to submit the final predictions

As metrics the root mean squared error (RMSE) and Pearson’s cor-
relation coefficient (R2) have been used

Method Test set RMSE R2

COSMOtherm 1 0.43 0.87
COSMOquick 1 0.29 0.92
COSMOtherm 2 0.50 0.88
COSMOquick 2 0.32 0.91
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posteriori ML correction (3vqbi) were used to create the 
final predictions for the challenge. The results of the two 
submissions as compared against the experiment are shown 
in Fig. 4, the metrics (root mean squared error RMSE and 
Pearson correlation coefficient R2) are shown in Table 2. In 
terms of the RMSE both models perform similar with COS-
MOtherm being slightly ahead. Given the somewhat small 
sample size and the narrow exptl. logP range of about 2 
units, the correlation coefficient is a less meaningful quantity 
here. Consequently, only the RMSE was used by the organ-
izers to rank the individual submissions. Among the 91 sub-
missions made by a diversity of methods, COSMOtherm and 
COSMOquick made predictions are ranked at the 1st and 3rd 
position, respectively. Interestingly, the predictions them-
selves seem to be somewhat different and less correlated as 
to be expected, as shown in Fig. 4 and as demonstrated by a 
squared correlation coefficient of R2 = 0.76. 

Individual predictions are shown in Table 3. The strong-
est mismatch with the experimental data for COSMOth-
erm is SM13, where the predictions (3.84) is nearly 1 log 
unit above the experiment (2.92). In fact, most of the top 
submissions predict a logP value significantly higher for 
this species, which may rise some speculation concerning 
the accuracy of the experimental value for SM13 (see also 
Supplemental Fig. S1). Impurifications as a cause could 

be ruled out by the organizers based on experimental MS 
and NMR data [32]. Whether this noticeable deviation is 
caused on the experimental side, e.g. via aggregation in 
the aqueous phase or due to the low solubility, or on the 
modelling side, could not be resolved at the time of prepa-
ration of this work.

The largest outlier for the COSMOquick based submis-
sion is for SM15 where the experimental logP value is 
underestimated by about 0.8 log units. This is also the 
compound with the lowest σ-profile quality, i.e. the low-
est overall fingerprint similarity with the COSMOquick 
database fragments. The prediction using a full COSMO 
file (logP = 2.67) is significantly closer to the experiment 
(logP = 3.07).

Fig. 4   Predicted versus experi-
mental logP values for COS-
MOtherm and COSMOquick of 
the SAMPL6 logP challenge. 
A corridor of 0.5 logP units is 
shown representing the con-
servatively estimated accuracy 
of the predictions

Table 2   Final results for COSMOtherm based predictions in the logP 
prediction challenge and the final placements (#Pos)

Method #Pos RSME R2

COSMOtherm (hmz0n) 1/91 0.38 0.77
COSMOquick (3vqbi) 3/91 0.41 0.66

Table 3   Experimental data and logP predictions for each challenge 
compound for both submitted models

Compound logP, expt. logP, COSMO-
therm

logP, 
COSMO-
quick

SM02 4.09 4.42 3.98
SM04 3.98 3.86 3.74
SM07 3.21 3.48 3.19
SM08 3.1 2.85 2.74
SM09 3.03 3.44 3.38
SM11 2.1 2.00 2.64
SM12 3.83 3.82 4.29
SM13 2.92 3.84 3.41
SM14 1.95 2.21 2.24
SM15 3.07 2.77 2.28
SM16 2.62 3.05 2.88
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Conformational effects on logP

One of the main differences between the COSMOtherm and 
the COSMOquick approach is the complete neglect of con-
formational effects in the latter. Therefore, it may be interest-
ing to look at the effect of conformations for the logP predic-
tions. For this purpose COSMO files at the BP-TZVP level 
were generated on top of randomly created structures and 
compared with results for COSMOconf sampled molecules. 
Even though the flexibility of the molecules is rather small 
there is a significant improvement on the overall RMSD for 
the rigorous conformational sampling. The RMSD based on 
random sampling (RMSD = 0.45, Table S2) is also larger 
than for the COSMOquick model (RMSD = 0.41), which 
possibly learned to take some conformational effects into 
account implicitly, as can be assumed from the high fea-
ture importance of the rotatable bonds and internal hbond 
descriptor as shown in Fig. 3.

Conclusions

Within the framework of the SAMPL6 logP blind challenge 
the authors have submitted two COSMO-RS based predic-
tions. The pure COSMOtherm based submission using the 
FINE parameterization (hmz0n) constitutes the most accu-
rate entry having a root mean squared deviation of 0.39 
against the experiment. This prediction was made using the 
standard software package and no specific adaption, fitting 
or modification of the COSMOtherm logP module was made 
for this challenge. Another submission based on an efficient 
protocol that allows to quickly estimates σ-profiles from a 
database followed by a machine learned a posteriori correc-
tion term (COSMOquick) scored 3rd among 91 total sub-
missions with an RMSE = 0.41 (3vqbi). Interestingly, both 
submission show a relatively low correlation with each other 
and hence may be used complementary in doubtful cases. 
Corroborated by the fact that the chemical potentials used 
as basis for the logP predictions were not specifically fitted 
to this compound class, the results of the SAMPL6 demon-
strate the high accuracy of COSMO-RS based free energies 
in solution.
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