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Abstract
Development of novel in silico methods for questing novel PgP inhibitors is crucial for the reversal of multi-drug resist-
ance in cancer therapy. Here, we report machine learning based binary classification schemes to identify the PgP inhibitors 
from non-inhibitors using molecular solvation theory with excellent accuracy and precision. The excess chemical potential 
and partial molar volume in various solvents are calculated for PgP± (PgP inhibitors and non-inhibitors) compounds with 
the statistical–mechanical based three-dimensional reference interaction site model with the Kovalenko–Hirata closure 
approximation (3D-RISM-KH molecular theory of solvation). The statistical importance analysis of descriptors identified 
the 3D-RISM-KH based descriptors as top molecular descriptors for classification. Among the constructed classification 
models, the support vector machine predicted the test set of Pgp± compounds with highest accuracy and precision of ~ 97% 
for test set. The validation of models confirms the robustness of state-of-the-art molecular solvation theory based descriptors 
in identification of the Pgp± compounds.

Keywords  P-glycoprotein (PgP) · PgP inhibitors · Multidrug resistance (MDR) · 3D-RISM-KH · Solvation free energy · 
Excess chemical potential · Partial molar volume (PMV)

Introduction

Multidrug resistance (MDR) is a cellular drug resistance 
developed in cancer cells that involves reduced drug accu-
mulation in intracellular space. The most common cellu-
lar response associated with MDR is the overexpression of 
membrane transporter proteins belonging to ATP-binding 
cassette superfamily. Among these transporter proteins, 

P-glycoprotein (PgP) is overexpressed in many cancer cell-
line models [1]. PgP is also known as an ATP-binding cas-
sette sub-family B member 1 or multidrug resistance protein 
1 (MDR1) [2, 3]. The PgP is widely distributed in the hepat-
ocytes of bile duct, apical membranes of intestinal mucosal 
cells, renal proximal tubular cells of kidney, and capillary 
endothelial cells of the brain and testis. This transmembrane 
glyco-protein of 1280 amino acids is important for intestinal 
absorption, drug metabolism, and blood brain barrier (BBB) 
penetration, and is expressed by MDR1 gene [4]. The PgP 
consists of two transmembrane domains, each containing six 
transmembrane α-helices which make drug binding domains 
to transports the drugs. Two ATP binding domains located 
on the cytoplasmic side of membrane are crucial for the 
transport of toxins by hydrolysis of ATP [3].

PgP shows broad ligand specificity, and translocates its 
ligands out of the cell against the concentration gradient 
using the energy derived by ATP hydrolysis. Overexpression 
of PgP lowers intracellular concentrations of drugs to sub-
therapeutic levels by increased ATP dependent efflux leading 
to MDR. The progress in understanding of the MDR have 
made the inhibition of PgP a viable and attractive therapeutic 
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approach to overcome MDR [5–7]. In the past decades, sev-
eral inhibitors designed to target the PgP inhibition failed in 
clinical trials [8]. The known inhibitors of PgP are broadly 
classified into four generations. The first and second genera-
tions of inhibitors showed uncertain pharmacokinetics [9] 
and interaction with oxidizing enzyme [10, 11], respectively. 
The third-generation of inhibitors improved significantly 
but were unsuccessful in clinical trials due to their toxic-
ity [12, 13]. The fourth-generation of inhibitors are natural 
products, show less toxicity and low molecular weight, and 
can potentially lead to a next generation of PgP inhibitors 
[14, 15]. The quest for novel PgP inhibitors for the reversal 
of MDR in cancer patients is currently of research interest. 
This require development of new QSAR models with novel 
descriptors to identify the PgP inhibitors with the highest 
accuracy and precision.

Several in-silico QSAR (quantitative structure–activity 
relationship) methodologies are known in the literature for 
identifying the drug molecules for PgP inhibition. Most 
of these methods were able to identify the PgP inhibitors 
using pharmacophore description models with the help of 
advanced machine learning algorithms. These models were 
broadly classified as binary classification models [16–26], 
correlation models [27–30], and pharmacophore based 
models [22, 23, 26, 31–35]. The SAR (structure–activity 
relationships) based methods confirm that lipophilicity (log 
P) [36–38], molecular weight [15, 17, 39], aromaticity [20, 
22, 40], and hydrogen bond acceptor [20, 22, 35, 41] were 
important molecular properties for the identification of such 
inhibitors. These studies further support that lower log P as 
well as molecular weight are crucial physicochemical factors 
for ideal PgP inhibitors. The QSAR modeling studies on a 
small set of PgP inhibitors support that ideal compounds 
should possess log P greater than 2.92, high EHOMO (energy 
of highest occupied molecular orbital), and at least one ter-
tiary basic nitrogen atom [36]. Chen et. al. developed QSAR 
classification models using fingerprints and molecular prop-
erty descriptors for a diverse set of 973 PgP inhibitors with 
an accuracy of 81% [17]. These authors reported solubility, 
log D, and molecular weight as important descriptors for 
classification of inhibitors from non-inhibitors. Schyman et. 
al. have used variable-nearest neighbor (v-NN) method and 
predicted the PgP inhibitors for a diverse and large set of 
2,276 compounds with an accuracy of 87% [25].

The present study focuses on development of the machine 
learning based binary classification schemes to identify the 
PgP inhibitors from non-inhibitors using 3D-RISM-KH 
based solvation free energy descriptors. This work is aimed 
as a proof of concept that molecular solvation theory can be 
successfully used to identify PgP inhibitors. We have used 
the 3D-RISM-KH molecular solvation theory to calculate 
the solvation free energy and solvation free energy based 
descriptors for PgP± compounds. The 3D-RISM-KH theory 

is a first principle statistical mechanics based solvation 
model that uses rigorous descriptions of direct correlation 
functions to calculate thermochemical properties of pure liq-
uids and solutions in the form of excess and total chemical 
potentials, partial molar volume, solvent distribution func-
tion around solute, etc. The applicability of these descriptors 
have been tested by developing the classification schemes 
to identify the PgP± compounds. The machine learning 
methodologies have primarily estimated the importance 
of 3D-RISM-KH based descriptors in predicting the PgP± 
compounds, and these have been further used to develop 
the models with the classification schemes to identify the 
PgP± compounds.

Computational methods

Database preparation

The database of the PgP inhibitor and non-inhibitor (PgP±) 
compounds were taken from the published work of Brocca-
telli et al. [20]. Their extensive literature search from more 
than 60 references yielded a large data set of 1274 PgP± 
compounds. The details of data curation, experimental meth-
ods, and IC50 values used to classify PgP± compounds are 
given in the data collection section and supporting material 
published by Broccatelli et al. [20]. The duplication of PgP± 
compounds was not observed in the data set. The SMILES 
strings of all PgP± compounds are imported to the Molecu-
lar Operating Environment (MOE2018) drug discovery 
software platform [42] with the help of database prepara-
tion module. The addition of hydrogens and generation of 
3D-Cartesian coordinates for PgP± compounds were car-
ried out in the MOE. For all the calculations, we have used 
the neutral form of the species. The PgP± compounds were 
subjected to gas phase geometry optimization at the semi-
empirical AM1 level using the Gaussian16 software package 
[43, 44]. The molecular descriptors of all the molecules were 
generated using the MOE2018 drug discovery software.

3D‑RISM‑KH based descriptors generation

The 3D-RISM-KH based excess chemical potential and 
partial molar volume (used as descriptors in prediction) 
were calculated for the PgP± compounds using our in-
house 3D-RISM-KH code. A working version of this code 
(executed as rism1d and rism3d.snglpnt) is implemented 
in the AMBERTOOLS suite of programs [45]. We used 
five solvents, viz. chloroform, cyclohexane, n-hexadecane, 
n-octanol, and water for 1D-RISM susceptibility calcula-
tions for pure liquids. The parameters for these solvents 
were validated against experimental solvation free energy 
datasets, as reported by us previously [46, 47]. We have 
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employed UFF [48] parameters with AM1 charges for all 
the solutes. The 3D-RISM-KH calculations for solute mol-
ecules were performed using a uniform cubic 3D-grid of 
128 × 128 × 128 points in the box of size 64 × 64 × 64 Å3 to 
represent a solute with a few solvation layers with conver-
gence accuracy set to 10−5 in the modified direct inversion 
in the iterative subspace (MDIIS) solver [49]. The detailed 
workflow chart describes the calculations of 3D-RISM-KH 
based descriptors given in the ESM (Fig. S1).

Machine learning and statistical modeling

The machine learning predictive models for PgP± com-
pounds were developed with descriptors. The full list of 
descriptors for the entire dataset are provided in the ESM. 
The statistical importance analysis of descriptors, machine 
learning calculations and performance indices of models 
were performed using the Rstudio version 3.4.4 [50]. The 
R packages were used to perform the calculations briefly 
described in the S1 of ESM [51–57]. The definitions of 
machine learning methodologies and performance indices 
are given in the ESM (Tables S4–S7 and S2 in the ESM). 
The analysis of statistical importance of descriptors was per-
formed with the GBM (gradient boosting machines) and RF 
(random Forest) methods to identify the crucial descriptors 
to use in predictive models. The database of PgP± com-
pounds is divided into a training (75% of compounds) and a 
test set (25% of compounds) by randomly assigning the mol-
ecules. The GBM, GLM (Generalized linear models), SVM 
(support vector machines), and weighted-kNN (weighted 
κ-nearest neighbor) machine learning schemes were used 
to identify PgP± compounds. The performance indices 
(accuracy, precision, sensitivity, specificity, and F1-score) 
were calculated with R package by generating the confusion 
matrix for each classification run.

Results and discussion

The current study aims at developing the binary classifica-
tion models to identify the PgP inhibitors from non-inhib-
itors with precision and accuracy using the 3D-RISM-KH 
molecular solvation theory. The 3D-RISM-KH molecular 
solvation theory-based solvation parameter, the excess 
chemical potential in solvents as descriptors were calculated 
for PgP± compounds. The machine learning based binary 
classification schemes are developed with 3D-RISM-KH 
based descriptors along with other descriptors and used for 
classification of PgP± compounds. To achieve the objec-
tives, we prepared the database of PgP± compounds and 
generated the descriptors for PgP± compounds as described 
in the computational methods. The analysis of statistical 
importance of descriptors was performed on descriptors 

(total 354) with the GBM (gradient boosting machines) 
method, and identified 23 descriptors as important ones for 
preliminary model building activities. The list of descrip-
tors is given in Fig. 1 and Table S1 in the ESM. The pool 
of these descriptors consists of ten 3D-RISM-KH based 
descriptors and thirteen 2D-descriptors. Among all the 23 
descriptors, the 3D-RISM-KH based descriptors contributed 
relative importance of 48.1% in total (Fig. 1). The top 5 
crucial descriptors contributed 62% of relative importance, 
and the remaining 18 crucial descriptors contributed 38%.

The 23 descriptors obtained from the initial GBM calcu-
lations were subjected to further analysis of the descriptors 
importance using the GBM and RF methods, with the aim to 
reduce number of descriptors in the prediction model while 
keeping the accuracy intact. The descriptor list is given 
in Fig. 1b, c and in the ESM (Tables S2, S3). The GBM 
identified excess chemical potential in water and in octanol, 
number of aromatic atom, sum of atomic polarization, and 
topological polar surface area (TopoPSA) as crucial descrip-
tors. The 3D-RISM-KH based descriptors excess chemical 
potential in water shows a highest relative importance of 
38.8%. The RF method identified excess chemical poten-
tial in water and in octanol, number of aromatic atom, and 
sum of atomic polarization as crucial descriptors. The top 
descriptor, excess chemical potential in water shows a high-
est relative importance of 38.8% and 41.2% in the GBM 
and RF methods, respectively. The analysis of the crucial 
descriptor revealed that four descriptors found common 
with three classification methods. These are excess chemi-
cal potential in water and in octanol, number of aromatic 
atoms, and sum of atomic polarization. These findings are in 
line with the previous literature pointing out to lipophilicity 
and molecular weight as important descriptors for such a 
classification [15, 31–41].

We developed three descriptors models based on relative 
importance of descriptors from the statistical importance 
analysis: (i) model-23d (maximum descriptor model) (ii) 
model-5d, and (iii) model-4d (minimum descriptor model). 
Model-23d, model-5d, and model-4d were developed with 
23, 5, and 4 descriptors, respectively, as suggested in the 
naming scheme of these models. The choice of descriptors 
for model-4d was guided by the RF method, and for model-
23d and model-5d by the GBM method. The models were 
used to classify PgP± compounds with machine learning 
schemes as described in the computational methods section. 
The performance indices of different classification schemes 
using three models for the test set of compounds are given 
in Fig. 2 and Tables S4–S7 in the ESM.

The classification schemes identify the test set com-
pounds as PgP-inhibitor (yes/1) or PgP-non-inhibitor (no/0), 
based on the models applied. The accuracy of the GBM, 
GLM, SVM, and Weighted kNN classification methods 
with model-23d is in the range of 84.0–86.5%, 48.1–71.4%, 



968	 Journal of Computer-Aided Molecular Design (2019) 33:965–971

1 3

Fig. 1   Relative importance 
of descriptors in the mod-
els obtained from statistical 
importance analysis descriptors 
with the GBM and RF methods. 
Upper panel: Model-23d was 
developed with 23 crucial 
descriptors obtained by statisti-
cal importance analysis of 354 
descriptors. Lower panel: 
Model-5d (right) and model-4d 
(left) were developed with 5 and 
4 crucial descriptors obtained 
by further statistical importance 
analysis of 23 crucial descrip-
tors, respectively. Statistical 
importance of each descriptor 
(in percentage) given on X-axis
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Fig. 2   Performance indices 
(Tables S4–S7 and S2 in the 
ESM) of different machine 
learning schemes used for clas-
sification of PgP± compounds. 
a model-23d (average accuracy 
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Table S4 in the ESM), b model-
5d, c model-4d, d best accuracy 
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95.6–96.9% and 85.2–87.4%, respectively.1 The SVM shows 
the best accuracy of ~ 97% among the four classification 
schemes with model-23d. The GLM method shows a low 
accuracy in identify the PgP± compounds using model-
23d. The GBM and weighted-kNN methods show better 
accuracy than the GLM method. Similar trends in accuracy 
were observed in model-5d and model-4d with four clas-
sification schemes. The accuracy of the GBM, GLM, SVM, 
and Weighted kNN classification methods with model-5d 
is 82.4%, 68.9%, 90.3% and 86.4%, respectively. The accu-
racy of the GBM, GLM, SVM, and Weighted kNN clas-
sification methods with model-4d is 81.4%, 48.4%, 87.1% 
and 84.6%, respectively. The SVM method shows the best 
accuracy, whereas the GLM method shows a low accuracy 
with model-5d and model-4d. The GBM and weighted-kNN 
methods performed better than the GLM method with all 
the descriptor based models. Among all the different clas-
sification schemes used with the three models, the SVM 
identified the PgP± compounds with the best accuracy in 
the range of 87.1 to 96.9%. The stability of the statistical 
models was tested by randomly removing data points from 
the test set (50–100 points) and recalculating the statistical 
performance indices of the new test sets with a reduced num-
ber of data points. The best accuracy in identifying the PgP± 
compounds were achieved with the model-23d and SVM 
method. This model has a higher number of descriptors than 
the other two models. Model-23d was built with 10 of the 
3D-RISM-KH based descriptors and 13 of the 2D-descrip-
tors. We compared the performance of the current models 
with the literature known models. The literature references 
with their models are summarized in Table 1.

Conclusions

In conclusion, we have applied our 3D-RISM-KH solva-
tion theory based predictors to construct a PgP inhibitor 
model, using binary (1/0) values of PgP± compounds. 

This is the first report providing a proof of concept that 
3D-RISM-KH solvation theory-based descriptors can be 
used successfully to predict the PgP± compounds in a binary 
fashion. Amongst different models tested here, the maxi-
mum descriptor model with the SVM classification scheme 
showed excellent performance.

In the current study, the 2D descriptors show a significant 
contribution along with the 3D-RISM-KH based descriptors 
in predicting for the PgP± compounds. The previous reports 
also used lipophilicity (log P) [36–38], molecular weight 
[15, 17, 39], aromaticity [20, 40, 41], and hydrogen bond 
acceptor [20, 35, 41] as important 2D descriptors to distin-
guish inhibitors from non-inhibitors. These are not sufficient 
to reach a high accuracy in predicting the PgP± compounds. 
The current study specifies that the accounting of 3D-RISM-
KH based descriptors along with 2D descriptors in the mod-
els show a higher accuracy in predicting the PgP± com-
pounds. The presence of excess chemical potential in water 
and octanol in the model-23d point to the importance of the 
lipophilicity of molecules, being an important feature for 
such classification. For a molecule to involve in molecular 
recognitions in several cellular levels, it has to pass through 
a series of solvation-desolvation processes. The 3D-RISM-
KH based solvation descriptors clearly capture this physical 
feature of the process. Octanol and cyclohexane are typical 
mimics of non-polar environment, something a drug mol-
ecule experiences on being absorbed from the plasma. The 
presence of the solvation free energy-based descriptors in 
our top descriptor list is also in agreement with the previ-
ous literature reports [17, 36–38]. The 3D-RISM-KH based 
solvation free energy descriptors were also used as crucial 
descriptors for prediction of blood–brain barrier (BBB) and 
skin permeability [46, 58].

The SVM-PgP± prediction model shows better accuracy 
in comparison with the literature reported predictive mod-
els. The maximum descriptor model may identify the PgP 
inhibitor compounds with high accuracy and precision. The 
models act as a tool for early phases of drug discovery to 
identify the PgP± compounds. The 3D-RISM-KH based 
descriptors may act as better descriptors for the prediction 
models to classify the inhibitors of other transporter proteins 
involved in the MDR.

1  The performance range is based on five different runs with a dif-
ferent number of test data points, as some of the machine learning 
methods are known to be size-dependent.
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