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Abstract
In this paper, we compute, by means of a non equilibrium alchemical technique, the water-octanol partition coefficients 
(LogP) for a series of drug-like compounds in the context of the SAMPL6 challenge initiative. Our blind predictions are based 
on three of the most popular non-polarizable force fields, CGenFF, GAFF2, and OPLS-AA and are critically compared to 
other MD-based predictions produced using free energy perturbation or thermodynamic integration approaches with stratifica-
tion. The proposed non-equilibrium method emerges has a reliable tool for LogP prediction, systematically being among the 
top performing submissions in all force field classes for at least two among the various indicators such as the Pearson or the 
Kendall correlation coefficients or the mean unsigned error. Contrarily to the widespread equilibrium approaches, that yielded 
apparently very disparate results in the SAMPL6 challenge, all our independent prediction sets, irrespective of the adopted 
force field and of the adopted estimate (unidirectional or bidirectional) are, mutually, from moderately to strongly correlated.

Keywords  SAMPL6 · LogP · Solvation free energy · Non-equilibrium · Crooks theorem · Fast switching · Fast growth · 
Hamiltonian replica exchange · HREX · Solute tempering · Torsional tempering

Introduction

The second round of the SAMPL6 challenge was aimed at 
predicting the 1-octanol-water partition coefficient, LogP, 
for the neutral forms of the eleven compounds shown in 
Fig. 1. The experimentally measured LogP coefficients 
are reported in Ref. [1]. These molecules, are based on the 
quinazoline, imidazole or pyridine heteroaromatic moieties, 
and are characterized by the presence of chemical groups 
that are ubiquitous in drug-like compounds, such as amide, 
amine, halogen, oxo, hydroxy and carboxy moieties. LogP’s 

are important physical quantities in drug discovery, since 
they provide, in principle, valuable indications on the dis-
tribution of a molecule between a hydrophobic (e.g. lipid 
bilayer) and a cytosolic, aqueous environment [2].

In the context of the “physical” approaches in SAMPL6 
challenge, the LogP is computed by evaluating indepen-
dently the solvation free energy in water and 1-octanol of 
the neutral species in standard conditions:

The best ranking among the 47 submissions using physi-
cal methods were all based on high level quantum chemical 
(QM) calculations with implicit solvent parametrizations. 
QM approaches were among the top performing submis-
sions also for the preceding SAMPL5 challenge on water/
cyclohexane distribution coefficients [3]. QM “winners” 
in the recent LogP and past LogD challenges actually won 
a Pyrrhic victory. These good performances were largely 
expected as the approach based on high-level QM calcula-
tion using implicit solvation models with adjustable param-
eters specifically trained on experimental data-set fits well 
with the fact the solute is surrounded by a homogeneous 
environment. By the same token, inexpensive atom-based 

(1)LogP = Log
[solute]oct

[solute]wat
= −

�Goct − �Gwat

RT ln 10
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or fragment-based empirical methods like the xLogP3 [4], 
ClogP/AlogP [5] or miLogP [6], using thousands of com-
pound for the training sets, all yields very good root mean 
square error (RMSE) and Pearson correlation coefficient (R) 
for the series of compounds of Fig. 1.

However, the ambitious scope of SAMPL challenges for 
physical properties is eventually that of testing the predic-
tive power of computational methodologies in perspective 
drug design projects, that is to evaluate “solvation energies” 
when the solute/ligand is embedded in a highly heterogene-
ous environment, modulated in a complicated way by the 
fluctuating protein scaffold where micro-solvation phenom-
ena, related to the atomistic nature of the “solvent”, can 
play a crucial role. As the host-guest SAMPL6 blind chal-
lenges have shown [7, 8], even these kinds of simple ligand-
receptor systems seem to be out of the reach of QM-based 
approaches with implicit solvation schemes. In the two latest 
host-guest SAMPL challenges [7, 8], QM-based submissions 
for binding free energies of small guest molecules hosted 
in octa-acids or cucurbit[n]uril-type molecular containers 
were in fact consistently outperformed by those obtained 
using classical molecular Dynamics (MD) techniques with 
explicit solvent.

MD-based methods with explicit solvent appear on the 
overall to yield consistent performances in SAMPL chal-
lenges, whether they are applied to the distribution or parti-
tion coefficients or to the more challenging tests of host-
guest binding free energies. The accuracy in MD schemes 
is related to the bias or systematic error due to the adopted 
atomistic interaction potential or force field. The precision, 
that is the reproducibility of the datum, is affected by the 
inherent variance of the implemented MD methodologies. 
While the latter can be in principle minimized by investing 

more and more computational resources (i.e. improving the 
statistical convergence of the simulations), the sources of the 
force field error are disparate and complex and can involve 
any combination of the bonded and non bonded solute-solute 
solute-solvent and solvent-solvent parametrizations. In this 
regard, SAMPL6 challenges are extremely useful since they 
provide an ideal collaborative platform on which force fields 
performances can be rigorously assessed and new avenues 
for their improvements can be discovered.

In this paper, we will present and discuss the results of a 
MD-based approach using non equilibrium switching (NES) 
for the solvation energies and the LogP coefficients for the 
series of compounds of Fig. 1. The methodology computes 
the LogP according to Eq. 1, relying on the enhanced sam-
pling of the end-states (fully coupled and fully decoupled 
solute in water and in 1-octanol) with Hamiltonian Replica 
Exchange (HREX) and in the subsequent production of hun-
dreds of concurrent and independent non-equilibrium (NE) 
trajectories where the solute is alchemically driven from the 
starting canonical ensemble of one end-state to the corre-
sponding nonequilibrium ensemble of the arrival end-state 
in matter of few hundreds of picoseconds [9, 10]. The sol-
vation free energies in water and in 1-octanol are recovered 
from the NE work distributions using the Jarzynski and the 
Crooks fluctuation theorems [11, 12].

Calculations were done using three popular general force 
fields for drug-like molecules, namely GAFF2 [13, 14], 
CGenFF [15] and OPLS-AA [16, 17]. For each force field, 
two blind predictions were uploaded: (i) a “challenge” and 
computationally expensive submission, done with a precise 
[18, 19] bidirectional approach based on the Bennett Accept-
ance Ratio [20] (BAR) estimator; (ii) a less precise and faster 
submission, obtained with the fast-growth unidirectional 

Fig. 1   SM-type compounds in the SAMPL6 LogP challenge



373Journal of Computer-Aided Molecular Design (2020) 34:371–384	

1 3

method exploiting the Crooks theorem for normal work dis-
tributions [21–24]. We will try to put our contribution to the 
SAMPL6 initiative into the context of the other MD-based 
submissions. These were done, in the vast majority of cases, 
adopting the CGenFF, OPLS-AA or GAFF force fields, or 
refined variants of them, with equilibrium methodologies 
relying on the alchemical stratification [25, 26] and exploit-
ing the thermodynamic integration [27] (TI) or the Free 
energy perturbation methods [28] (FEP).

The paper is organized as follows. In Section "Alchemi-
cal transformations: theoretical background", we succinctly 
introduce the equilibrium and nonequilibrium approaches in 
the context of the MD-based physical methods. In Section 
"Materials and methods in NES submissions", we provide 
the detailed methodological information concerning the 
NES submissions, including force field parametrization, 
atomistic description of the water and 1-octanol solvent, 
simulation parameters for the HREX stage and for the sub-
sequent NE computational task. In Section "Overview on 
MD-based SAMPL6 submissions" a global assessment of 
the MD-based submissions in LogP/SAMPL6 is presented, 
highlighting common patterns and discrepancies, as well as 
force field-related critical issues. In section "NES results", 
the results obtained using NES methodologies, in the two 
variants fast switching growth/annihilation method (NES-2) 
and fast switching growth method (NES-1) and for each of 
the three general force fields, are critically discussed and 
compared to the related equilibrium FEP or TI blind predic-
tions. Conclusions and perspectives are sketched out in the 
last section.

Alchemical transformations: theoretical 
background

Virtually all MD-based submissions in the challenge were 
done by evaluating the solvation free energies in Eq. 1 by 
way of the so-called alchemical approach whereby the sol-
ute-solvent interaction is gradually turned off or on, using a 
decoupling/recoupling inter-molecular alchemical parameter 
� such that: V� = Vsolv + Vsolute + �Vsolute-solvent . At � = 1 the 
molecule is fully solvated; at � = 0 the molecule is totally 
decoupled from the solvent acting as if it were in the gas-
phase. Such methodology can be implemented in the context 
of equilibrium simulations using the stratification strategy 
or multistage sampling, or, in the context of nonequilibrium 
thermodynamics, producing many concurrent and independ-
ent fast switching trajectories. To make the paper self con-
tained, here we briefly out-sketch the theoretical background 
of the two approaches, referring the reader, for a more com-
plete treatment of this subject, to excellent recent reviews 
[19, 26, 29].

In the equilibrium techniques, the system is simulated 
at constant pressure and temperature in an appropriate 
number n of intermediate states corresponding to values 
of the � coupling parameter between 0 and 1. The Gibbs 
solvation free energy is recovered in an inexpensive post-
processing stage by summing up contributions obtained 
by applying the FEP Zwanzig formula [28] for each of the 
contiguous � states, i.e.

where � is the reciprocal of the thermodynamic temperature 
and ⟨⋅⟩�i denotes the isothermal-isobaric average taken with 
potential energy V�i

 . Precision can be increased at a very lim-
ited cost by storing during the simulations both the �i+1 and 
the �i−1 value of the potential energy so that the free energy 
can be recovered as a sum of BAR contributions [19, 26, 29, 
30]. Alternatively, and equivalently, the �-derivatives of the 
potential energies can be stored in the stratification, recover-
ing the solvation free energy via numerical thermodynamic 
integration [27]:

It is important to stress that in FEP or TI approaches the 
simulation must be well converged on each of the n alchemi-
cal � strata, with a canonical sampling of the relevant solute 
and solvent conformational space. The convergence rate for 
a given stratum is an unknown function of the correspond-
ing � coupling parameter and can vary substantially in the 
range [0,1]. Typically, barriers between conformational state 
becomes higher at low coupling (i.e. when � → 0 ) due to 
the lack of the screening effect of the solvent on the intra-
molecular electrostatic interactions [31], making harder the 
convergence of the simulation with weakly coupled solutes. 
Also, in setting up the FEP or TI simulations, due care must 
be taken in “choosing the alchemical protocol so that the 
total uncertainty for the transformation is the one which has 
an equal contribution to the uncertainty across every point 
along the alchemical path” [32], or equivalently so that the 
overlap between contiguous potential energy distributions is 
significant and approximately constant in the whole range 
[0,1], a task that would require the prior knowledge of the 
dependence of �G on � [26].

In the nonequilibrium approach, equilibrium sampling 
in the isothermal isobaric ensemble is required only for 
the end-states, which can be effectively implemented 
using specialized and highly efficient HREX enhanced 
sampling schemes [33]. Starting from a representative 
HREX-sample of n phase-space points (from few tens to 
few hundreds) of a given end-state, the system is rapidly 
driven to the other end-state by continuously varying the 

(2)�Gsolv = −�−1
�

i

ln⟨e−�(V�i
−V�i+1

)⟩�i

(3)�Gsolv =
�

i

⟨�V�∕��⟩�i��
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� alchemical parameter in a swarm of corresponding n 
concurrent and independent NE trajectories, typically last-
ing from a time � of few tens to few hundreds of picosec-
onds and eventually producing an alchemical NE work 
computed as W = ∫ 𝜏

0

𝜕U

𝜕𝜆
𝜆̇dt . The fast switching stage can 

be straightforwardly implemented on a single embarrass-
ingly parallel job on modern HPC platforms, allowing the 
computation of the NE work distribution in a matter of 
wall-time minutes.

The NES process can be conducted in the two senses, 
with the 0 ≤ � ≤ 1 and 1 ≤ � ≤ 0 processes conventionally 
indicated [26] as the forward growth and the reverse anni-
hilation of the solute, respectively. The growth and annihi-
lation NES simulations produce two independent unidirec-
tional estimates of the solvation free energy, namely

The above unidirectional estimates based on the Jarzynski 
exponential average, while asymptotically exact, are none-
theless affected by a bias error that decreases with the num-
ber of work values, n, and with the dissipation [34], defined 
as the difference between the mean NE work and the under-
lying free energy. Provided that the fast growth and annihila-
tion transformations are conducted with inverted time sched-
ules, the two estimates of Eqs. 4 and 5 can be combined in a 
bidirectional, statistically efficient and unbiased [18] BAR 
estimator where �G is given by the root of the equation

If the the, e.g., growth work distribution PG(W) is found to 
be normal then, as a trivial consequence of the Crooks theo-
rem [35], the annihilation distribution, PA(−W) , done with 
inverted time schedule, must be normal too with the same 
variance, �A = �G . The two forward and reverse distribu-
tions are symmetrical with respect to the crossing point at 
W = �G . For normal distribution(s), the free energy can be 
hence recovered with the unbiased unidirectional estimators:

(4)�G = − �−1 ln

(
1

n

n∑

i=1

e−�Wi(G)

)

(5)�G =�−1 ln

(
1

n

n∑

i=1

e−�Wi(A)

)

(6)
n∑

i=1

1

1 + e�(Wi(G)−�G)
−

n∑

i=1

1

1 + e�(Wi(A)+�G)
= 0

(7)�G =⟨WG⟩ −
1

2
��2

(8)�G = − ⟨WA⟩ +
1

2
��2

where ⟨WG∕A⟩ are the mean values of the growth work and 
of the annihilation work with inverted sign. The quantity 
1

2
��2

G
=

1

2
��2

A
= Wdiss is the dissipated work in the transfor-

mations, which must be identical in either directions. Pro-
vided that the sampling of the starting end-states has been 
adequate, the precision (e.g. the 95% confidence interval) 
of the two independent NES Gaussian estimates in Eqs. 7 
and 8 increases or decrease with the square root of n and 
depends only on the sample variance �2 [23, 24, 26, 36]. The 
normality of the distributions can be instantly checked [24] 
using standard procedures such as the Kolmogorv-Smirnov, 
the Wilk-Shapiro, the Jarque-Bera or the Anderson-Darling 
tests [37].

Materials and methods in NES submissions

System preparation

In order to assess the performance of the “official” versions 
of the most popular force fields (FF), we submitted multiple 
NES predictions adopting: the CgenFF parameter sets as 
obtained from the web interface “paramchem” [38, 39]; the 
GAFF2 topological and parameter files as obtained form the 
web interface “PrimaDORAC” [14]; the OPLS-AA param-
eter sets as obtained from the web interface “LigParGen” 
[17]. The GAFF2 atomic charges are computed by Prima-
DORAC at the AM1/BCC level. For the OPLS-AA charges, 
the LigParGen option “1.14*CM1A-LBCC” was used. The 
charges in the CGenFF are assigned by analogy [39] by the 
paramchem web toolkit. All calculation were done with the 
program ORAC [40]. For each of the three FF’s, the param-
eter files were converted “as is” to the ORAC format with 
no further adjustment. The ORAC suite, inlcuding source 
code and documentation, can be freely downloaded from 
the website www.chim.unifi.it/orac.

For all submissions, solvation free energies were evalu-
ated by dissolving the solutes in 1240 water molecules or 
125 molecules of octanol in a cubic MD box. Hence in all 
cases we used “dry” 1-octanol as a solvent. The parametri-
zation of the explicit water solvent in hydration free energy 
calculations is done using the recently developed OPC3 [41] 
three-point site model. For 1-octanol as a solvent, in the 
force field specific submissions, the parametrizations pro-
vided by the paramchem (CgenFF), PrimaDORAC (GAFF2) 
and LigParGen (OPLS-AA) web toolkits were adopted. The 
use of the common OPC3 model in all our NES submission 
is motivated by the fact that OPC3 reproduces with accuracy 
both the static dielectric constant and the density of water 
at standard conditions. Besides, as shown in Ref. [51], we 
showed that, while the effect of the selected force field for 
the solute molecule is important for the LogP prediction, 
the choice of the force field for the solvent water molecule is 
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much less critical, with bearly detectable differences in the 
hydration energies when switching water models.

All simulations were done in the NPT isothermal-iso-
baric ensemble under periodic boundary conditions, yield-
ing a mean side-length around 32–33 Å in both water and 
1-octanol in all cases. The external pressure was set to 1 
atm using a Parrinello-Rahman Lagrangian [42] with iso-
tropic stress tensor. The temperature was held constant at 
298 K using three Nosé Hoover-thermostats coupled to the 
translational degrees of freedom of the systems and to the 
rotational/internal motions of the solute and of the solvent. 
The equations of motion were integrated using a multiple 
time-step r-RESPA scheme [43] with a potential subdivi-
sion specifically tuned for bio-molecular systems in the NPT 
ensemble [42, 44]. The long range cut-off for Lennard-Jones 
interactions was set to 13 Å. Long range electrostatic were 
treated using the Smooth Particle Mesh Ewald method [45], 
with an � parameter of 0.38 Å −1 , a grid spacing in the direct 
lattice of about 1 Å  and a fourth order B-spline interpolation 
for the gridded charge array.

In Table 1, we show the computed density, � , and static 
dielectric constant, � , of pure 1-octanol using the three 
FF’s compared to the experimental values [46]. The aver-
age density and dielectric constant were calculated on 125 
molecules of 1-octanol in the NPT ensemble at T = 298 K 
and P = 1 atm, running for 12 ns. The three force fields yield 
essentially the same � and � values and are in acceptable 
agreement with the experimental counterpart.

The density and dielectric constant of OPC3 water in 
standard condition are 0.996 ± 0.01 g/cm3 and 78 ± 4, 
respectively [41]. The corresponding experimental values 
are 0.997 g/cm3 and 79 [46]

end‑states HREX simulations

The Hamiltonian Replica exchange simulations in (w/o) 
solution and gas-phase for each of the 11 solute molecules 
are done using torsional tempering. Torsional tempering, a 
specialized solute tempering [47] scheme described in detail 
in Ref. [33], allows to surgically enhance the sampling on 
the relevant degrees of freedom of the system keeping the 
replica number to a minimum. For the compounds of Fig. 1, 
the scaling involves all the torsional potentials (including 
1–4 non bonded interactions) around the rotable bonds 

connecting the planar rigid units, using a minimum scaling 
factor of c = 0.1 , corresponding to a “torsional tempera-
ture” of 3000 K. Only the scaling factors are communicated 
among replicas, minimizing inter-processor communica-
tions. The torsional GE space is covered using only four 
replicas, with the scale factors [33] given by cm = c(m−1)∕3 . 
Each system at the end-states � = 0 and � = 1 was simu-
lated using HREX for 8 ns in the target state (hence 32 ns in 
total for each solute molecule), saving 420 phase space point 
every 20 ps for the later NES stage. Further technical details 
on the HREX simulations (round trip times, torsional energy 
overlap, GE state distributions of the walkers) are provided 
in Ref. [31] for specific examples.

NES stage

In the NES stage, for each compound of Fig. 1, in a single 
parallel job, 420 annihilation trajectories were started in the 
isothermal-isobaric ensemble in standard conditions, reading 
the initial phase points, harvested in the preceding HREX 
at full coupling � = 1 . In each of these NE annihilation tra-
jectories, the solute was decoupled up to � = 0 in 150 ps in 
water and 300 ps in 1-octanol. The annihilation times are 
chosen such that the mean dissipated work is approximately 
the same in the two solvents. The detail of decoupling pro-
tocol involves the linear discharging of the solute in the first 
30 ps (water) and 60 ps (1-octanol), followed by the Lennard-
Jones decoupling in the remaining 120 ps (water) and 240 ps 
(1-octanol). For the Lennard-Jones decoupling, we used a 
soft-core Beutler potential [48] regularization as � → 0 . Such 
NES protocol was chosen on the basis of past experience on 
NES solvation free energy calculation for molecules of com-
parable size [10, 49–51]. For each of the 11 compounds, 4 
work histograms were produced, i.e. PG(W),PA(−W) in water 
and in 1-octanol. All 44 work histograms for the three FF’s, 
produced in the NES stage, are reported in Figures S1–S3 of 
the Supporting Information (SI).

The fast-growth NES stage was started combining 420 
HREX phase space points of the solute in the gas-phase 
with equilibrated and decorrelated snapshots of the pure 
solvent, that is, inserting the solute as a ghost molecule in a 
random position and with random orientation in the equili-
brated solvent configurations. The fast growth NES protocol 
corresponds to the inverted time schedule of the annihila-
tion stage, i.e. in water and in 1-octanol the solute-solvent 
Lennard-Jones potential with soft-core regularization is first 
switched on in 120 and 240 ps, followed by the recharging 
process up to 150 and 300 ps, respectively.

LogP estimates

For each of the three FF, we submitted two blind predic-
tions. The “challenge” prediction (NES-2) is done using both 

Table 1   Computed static dielectric constant and density (g/cm3 ) 
of pure 1-octanol in standard conditions using various force fields. 
Experimental values are taken from Ref. [46]

CgenFF GAFF2 OPLS-AA Exp.

� 0.815 ± 0.03 0.809 ± 0.03 0.812 ± 0.03 0.83
� 4.9 ± 0.5 4.1 ± 0.3 4.9 ± 0.3 10.3
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the growth and annihilation NE work values, exploiting the 
BAR bidirectional estimate, Eq. 6. The error was computed 
using bootstrap with resampling and corresponds to 1.96 
times the square root of the �G variance (i.e. � = 0.05 , 95% 
confidence interval). In the second “fast” prediction (NES-
1), the LogP was determined using only the fast-growth 
unidirectional estimates for the solvation free energies. The 
forward work distribution, PG(W) , was checked for normal-
ity according to the Anderson Darling (AD) test defined via 
the quantity A2 =

∑n

i=1

2i−1

n
[ln(�(wi) + ln(1 −�(wn+1−i)] , 

where � is the Gaussian cumulative distribution function 
with sample mean and variance and wi are the work values 
sorted in ascending order. The critical value of A2 at the level 
� = 0.05 is 0.752 [52]. If A ≤ 0.752 , the work distributions 
were assumed to be normal and the solvation free energies 
were computed using the unbiased unidirectional Gaussian 
estimate, Eq. 7. In case of AD failure, the unidirectional 
Jarzynski estimate, Eq 4, was used. As for the first blind 
prediction, also for the forward (growth) unidirectional esti-
mates the error on the solvation free energies are evaluated 
using bootstrap with resampling. Raw results for all six blind 
predictions are reported in the SI (Tables S1–S6).

Efficiency considerations

The “challenge” BAR-based blind prediction, on a per sol-
ute molecule basis, required a total of 424 ns for a system 
of approximately 3000 atoms (64 ns for the HREX stage 
and 360 ns for the forward and reverse NES stages). The 
fast-growth blind prediction, on a per solute basis, required 
a total of 180 ns (with a negligible cost of the HREX on 
the isolated molecule) for a system of approximately 3000 
atoms. All computations were done with the OpenMP/MPI 
hybrid version of the ORAC program [40] on the 24K cores 
CRESCO6 ENEA cluster equipped with Intel Skylake 48 
cores CPU 2.4 GHz. The “challenge” prediction were com-
puted submitting four batch parallel job scripts, each pro-
cessing sequentially all 11 compounds, namely two HREX 
simulations (water and 1-octanol) at full coupling and two 
subsequent NES (water and 1-octanol) and were completed 
in two wall clock days. The fast-growth predictions were 
obtained by submitting just one batch parallel job script 
(computing sequentially the fast-growth in water and in 
1-octanol for all compounds) and was completed in few wall 
clock hours. Examples of these batch submission scripts are 
reported in the SI.

Overview on MD‑based SAMPL6 
submissions

31 MD-based submission were uploaded in the SAMPL6/
LogP challenge. Of these, 30 were performed using the 
alchemical approach; 24 submissions used the FEP or TI 
equilibrium technique, and 6 the NES method. No other 
group, except for ourselves, used the NES method for LogP 
calculations.

In 8 submissions (6 FEP, 2 NES) the CgenFF was used. 
In some cases, refined versions of the same force field were 
used processing the paramchem parameters with the “lsfit-
par” refinement program [53] ; In 9 submissions (6 FEP, 
1 TI, 2 NES), the GAFF1 or GAFF2 force field was used 
with atomic charges computed at the AM1/BCC level or 
at higher QM level. In 6 submission (3 TI, 1 FEP, 2 NES) 
the OPLS-AA LigParGen parameter sets were used in all 
cases. The latter six submissions used the very same Lig-
ParGen generated force field setup for the solute molecule 
and hence provide a subset for comparing the performances 
of equilibrium and non equilibrium methodologies. In one 
case (submission nh6c0, one of the best performing MD-
based blind predictions), the FF original GAFF1 parameters 
were manually adjusted. The remaining MD-based submis-
sions used polarizable force fields. Water was described 
using the OPC3 model (only in the 6 NES submission), the 
TIP3P model [54] (4 submissions), the TIP4P model [54] 
(4 submissions) and the SPCE model [55] (2 submissions). 
In remaining MD-based instances the water model was not 
specified. In all submissions using classical non polarized 
FF’s, the 1-octanol was modeled using the reference force 
field. Dry and wet 1-octanol was used in 15 and in 8 submis-
sion, respectively. The FEP or TI protocols used a number 
of � windows from a minimum of 12 to a maximum of 20, 
and each � state was simulated from few ns in water up to 
20 ns for 1-octanol. Details of all MD-based submissions 

Table 2   Overall performances (in bold font) for MD-based alchemi-
cal approach for the the GAFF, CGenFF and OPLS-AA parametriza-
tion

R, MUE, � and “slope” indicate to the Pearson’s correlation coeffi-
cient, the mean unsigned error, the Kendall rank coefficient and the 
slope of the regression line. In parenthesis the results of the “chal-
lenge” (BAR) NES submissions are reported

CgenFF OPLS-AA GAFF(1/2) POLAR

R 0.17 (0.56) 0.54 (0.79) 0.64 (0.79) −  0.04
MUE 1.25 (0.98) 1.85 (1.06) 1.85 (2.07) 1.97
� 0.14 (0.49) 0.39 (0.45) 0.41 (0.53) −  0.05
Slope 0.38 (1.0) 0.98 (1.33) 1.34 (1.38) − 0.10
N
sub

 8 6 9 6
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using non polarizable force fields are reported in Table S7 
of the SI.

In the Table 2 and in Fig. 2 we show the overall per-
formances of the alchemical methods as a function of the 
adopted FF (whether refined or not). Except for the submis-
sions using polarizable force fields (not reported in Fig. 2) 
showing consistently (and surprisingly) poor results, the 
performances for the three fixed-charges FF’s reported 
in Table 2 are somewhat contradictory depending on the 
selected quality indicator. CgenFF appears to be the best 
performing FF for the MUE, but has the lowest Pearson and 
Kendall coefficients. Surprisingly, among the less accu-
rate CgenFF submissions, some (see Table S7 in the SI for 
details) were done using a refined force field due to a positive 
“penalty score” obtained from the paramchem toolkit. This 
is somewhat puzzling given that, apparently, the “refined” 
CGenFF submissions were done using exactly the same 
FEP protocol of the best performing standard (paramchem) 
CGenFF predictions.

At variance with CgenFF, GAFF yields larger MUE’s, 
consistently overestimating the LogP for virtually all 
uploaded submissions (see Fig. 2, central panel). On the 
other hand, GAFF outperforms CGenFF for both the Pear-
son and the Kendall rank coefficients with no striking deg-
radation or increase of performances when the AM1-BCC 
charges are replaced by high level QM atomic charges (see 
Table SI7 in the SI for details). The OPLS-AA FF lies some-
what in between the CgenFF and GAFF FF’s. The system-
atic overestimation of the LogP’s, although still evident (see 
Fig. 2), is less pronounced with respect to GAFF, as meas-
ured by a somewhat smaller overall MUE. All six OPLS 
submissions, on the other hand, exhibit a good overall cor-
relation and ranking coefficients. The LogP overestimation 
in GAFF and OPLS-AA is likely due to the fact that the Len-
nard-Jones and electrostatic balance in the parametrization 
has been in general trained over hydration free energies of 
small molecules [13, 16]. Thus, the electrostatic contribution 
to the solvation energy could be somewhat overestimated 
using water trained atomic charges in the apolar 1-octanol 
solvent, eventually producing systematically higher LogP 
values.

On the overall, as Table S7 in the SI shows, the use of 
wet 1-octanol did not appear to improve appreciably the 
performances. Both FF and reported methodological errors 
(ranging from 0.1 to 2 LogP units) are seemingly larger 
than the differences obtained in specific cases for wet or 
dry 1-octanol. For example, for OPLS-AA, the best per-
forming submission was obtained using dry octanol, as 
for CGenFF. For GAFF, the submission bearing the lowest 
MUE and highest R and Kendall coefficients, done using 
wet 1-octanol, is only marginally better than other submis-
sions obtained using dry 1-octanol. This is so since in wet 
1-octanol, in spite of the high molar water fraction of 0.27, 

Fig. 2   Experimental-calculated LogP correlation plots for MD-based submis-
sion for CGenFF, GAFF and OPLS-AA force fields. NES-2 and NES-1 indi-
cate the bidirectional and unidirectional NES submissions, respectively
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one molecule of water per four molecules of 1-octanol trans-
lates in a water/octanol volume fraction of only ≃ 0.03 with 
a limited impact (a slight decrease) on the static dielectric 
constant [56].

Further details of the MD-based submissions are shown 
in Fig. 3, where we report the statistics of all MD-based pre-
diction sets (classified according to the FF) in the SAMPL6 
challenge for each of the compounds of Fig. 1. The experi-
mental values, the NES-2 and NES-1 submissions are indi-
cated as green circles, red filled triangles and a red stripes 
squares, respectively. For CGenFF, NES predictions exhibit 
the largest deviation for SM02, as most of the other submis-
sions. For all other compounds, NES is consistently among 
the best performing methods. In case of GAFF, as previously 
states, all prediction sets appear to overestimate the LogP. 
NES submissions are found in most cases in correspondence 
of the maximum of the overall SAMPL6 GAFF distribution. 
For OPLS-AA, overestimation of LogP is still evident, and, 

again, NES submissions are systematically found among the 
best performing alchemical methods.

NES results

The performances of the BAR-based bidirectional NES 
“challenge” submissions, NES-2, shown in parenthesis in 
Table 2 and as the black circles in the Fig. 2, are consist-
ently among the highest ranking for each of the FF’s. Only 
for the CGenFF submission (see Table S7 in the SI), the 
unidirectional estimate NES-1 turned out to be only margin-
ally better than the bidirectional estimate NES-2, very likely 
reflecting just a lucky “shot on goal”.

At variance with FEP or TI submissions, all NES submis-
sions are from moderately to strongly mutually correlated, 
irrespective of the adopted force field or of the kind of esti-
mate, unidirectional or bidirectional. In Table 3, we show 

Fig. 3   Detailed NES statistics of MD-based submissions in SAMPL6 challenge for all compounds, classified according to the adopted FF. Green 
circles: experimental data. Red triangles: NES-2 (bidirectional) submission. Red stripes squares: NES-1. (unidirectional) submission
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the correlation matrix obtained with NES for the three force 
fields. In the upper and lower triangles we report R and � 
correlation coefficients obtained with NES-2 and NES-1, 
respectively.

As it can be seen from Table 3, for the three NES-2 sub-
missions the mutual correlation R between FF’s goes from a 
minimum of 0.34 (CgenFF-OPLS-AA and CgenFF-GAFF2) 
to a maximum of 0.94 (OPLS-AA-GAFF2). The mutual 
Kendall rank coefficient � behaves similarly. Mutual cor-
relations do not vary significantly among the three NES-1 
unidirectional estimates, showing similar R and � indices 
among the various FF’s.

The NES-2 and NES-1 correlation, already evident from 
Fig. 3, can be further assessed in the Fig. 4, where we com-
pare the bidirectional “challenge” NES-2 and unidirectional 
fast-growth NES-1 predictions for all 11 compounds, and for 
each FF. In the Figure we also report the error on the LogP 
with the two estimates. As it can be seen from the Figure, the 
optimal NES-2 and the “fast” NES-1 estimates are strongly 
correlated in all three cases. In case of CGenFF and GAFF, 
NES-2 and NES-1 LogP are strikingly similar, yielding a 
Pearson coefficient of 0.98 and 0.93. Correlation (R = 0.78) 
is only moderately degraded for

OPLS-AA. This fact can be easily explained inspecting 
Tables S4–S6 in Figures S1–S3 in the SI. The OPLS-AA 
work distributions failed the AD test in 10 cases in water 
or 1-octanol compared to the three cases of CgenFF (SM08 
SM11 SM15) and the two cases of GAFF2 (SM08 SM16). 
Hence for the OPLS-AA FF, the less accurate and precise 
Jarzynski estimate, Eq. 4, was used for the majority of the 
compounds, at variance with GAFF2 and CgenFF were the 
unbiased Gaussian estimate, Eq. 7, was mostly used.

As expected, the confidence intervals (reported as bar 
plots in the Fig. 4) are larger for the unidirectional LogP esti-
mates with respect to the bidirectional BAR computed LogP. 
NES-2 uses in fact, twice as much work values with respect 
to NES-1. It is of note that the largest deviations between 
the NES-2 and NES-1 LogP estimates are seen in general 
in correspondence of large NES-1 errors, as in SM08 for 
CGenFF and OPLS, and in SM16 for GAFF2. Again, large 
errors are due to nature of the unidirectional estimates in 
the solvation free energies, obtained from the forward work 
histograms as assessed by the Anderson Darling normality 
test (see Tables S4–S6 in the SI): if either �Goct or �Gwat or 

both have been evaluated using the Jarzynski exponential 
averages Eqs. 4 in lieu of the Gaussian unbiased estimate 
Eq. 7, then the confidence interval increases decisively and 
the LogP becomes less accurate. We must stress that the 
computational cost of NES-1 calculation of the LogP for 
one compound of the series is entirely due to the NES stage 
as the cost of the HREX sampling for a single molecule is 
negligible. NES-1 is hence a matter of few tens of wall-clock 
minutes on a Tier1 HPC system as the CRESCO6 cluster 
provided by ENEA [57]. In our case, the unidirectional water 
and 1-octanol solvation energies were computed (see tech-
nical details in the SI) running on about 3500 cores (about 
1/8 of the CRESCO6 cluster) in less than a hour (15 min for 
water and 30 min for 1-octanol), yielding an average 95% 
confidence interval not exceeding one LogP unit. Accepting 
a confidence interval of 80% (i.e. running just 100 trajecto-
ries instead of 420), a dedicated CRESCO6 Tier-1 cluster 
can compute about 1000 NES-1 LogP coefficients per day.

We conclude this section by examining in detail the 
behavior of the FF’s for the compounds of the SAMPL6 
challenge in terms of the electrostatic and Lennard-Jones 
contributions to the solvation free energy in water and in 
1-octanol. The electrostatic contribution (QQ) was obtained 
from the reverse annihilation, evaluating the work distribu-
tion at the end of the discharging process (i.e. � = 30 ps 
and � = 60 ps for water and 1-octanol, respectively). We 
used the unidirectional estimate (Gaussian of Jarzinski 
depending on the AD test) on the QQ work distributions. 
The Lennard-Jones contribution (LJ) was computed from the 
growth process evaluating the work at � = 120 and � = 240 
in water and 1-octanol, respectively. In this case all LJ work 
distributions, with no exception, were found normal and the 
Gaussian estimates was hence used in all cases. The results 
of this analysis are summarized in Fig. 5 where the values of 
the �GQQ and �GLJ contributions are reported for each of the 
compounds of Fig. 1. As expected, in water (see Fig. 5, top 
panel) the major contribution to the solvation energy is con-
sistently due to the �GQQ free energy. In 1-octanol (Fig. 5, 
bottom panel), the situation is reversed. For this solvent, 
the �GLJ contribution is significantly larger than �GQQ for 
almost all compounds, with the notable exception of SM08, 
which was the only compound bearing a carboxylate group 
and where both CgenFF and GAFF2 predict a �GQQ that is 
of the order of or larger than the �GLJ.

Table 3   NES correlation 
matrix; Upper triangle NES-2 
correlation; Lower triangle 
NES-1 correlation

CgenFF GAFF2 OPLS-AA Exp.

R � R � R � R �

CgenFF 1 1 0.34 0.31 0.34 0.38 0.55 0.49
GAFF2 0.45 0.29 1 1 0.94 0.85 0.79 0.53
OPLS-AA 0.67 0.53 0.57 0.42 1 1 0.79 0.46
Exp. 0.57 0.42 0.62 0.44 0.73 0.53 1 1
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In spite of the evident correlation, the balance of the QQ 
and LJ contributions in three FF’s exhibits significant dif-
ferences. OPLS-AA and GAFF2 yield very similar LJ con-
tributions for virtually all cases and in both solvents. OPLS-
AA, however, has a larger QQ contribution with respect to 
GAFF2 in both water and, to a somewhat less extent, in 
1-octanol. Probably, the QQ contribution in 1-octanol is 
overestimated leading to the observed overestimation of the 
LogP coefficient in both OPLS-AA and GAFF2.

CgenFF, on the other hand, is characterized by smaller 
LJ contributions in many cases with respect to the other 
two FFs’ in both solvent. The CgenFF QQ contributions to 
the hydration free energy lie in between (except for SM02, 
SM14,SM15) with respect to those obtained using the 
OPLS-AA and the GAFF2 force fields. These subtle differ-
ences make apparently CGenFF more balanced with respect 
to OPLS-AA and GAFF2, yielding in many cases LogP with 
significantly smaller MUE’s. We finally note that for the 
clorurated compounds (SM04, SM12, SM16) the extra site 
representing the chlorine �-hole [58] in CGenFF (and not 
used in OPLS-AA and GAFF2) do seem to have an appreci-
able impact on the corresponding MUE’s. CGenFF LogP for 
SM02, SM12 and SM16 are better than the corresponding 
OPLS-AA and GAFF2 values.

Conclusions

In this paper, we have given an overview on the MD-based 
blind predictions in SAMPL6 LogP challenge using the most 
popular non polarizable force fields, CGenFF, GAFF2 and 
OPLS-AA, in combination with the alchemical approach. 
Force fields produce in general moderately consistent 
predictions. No force field can be considered as optimal, 
although CGenFF, in its standard (paramchem) implemen-
tations, appear to be more balanced and predictive with 
respect to GAFF1 or GAFF2 and OPLS-AA, yielding in 
general smaller RMSE’s. On the other hand, OPLS-AA and 
GAFF2 show on the overall better Pearson and Kendall coef-
ficients, both exhibiting a systematic overestimation of the 
LogP, possibly due to the overestimation of the electrostatic 
contribution to the solvation free energy in 1-octanol. Such 
systematic error could be possible rectified by rescaling the 
atomic charges of the solute in 1-octanol and/or the atomic 
charges of the 1-octanol molecules in the solvent. Results 
using polarizable force fields were surprisingly poor, show-
ing that these force field still need adjustment in the balance 
between fixed atom-atom Lennard-Jones interaction and the 
Coulomb contributions due to the fluctuating atomic charges 
or dipoles.

NES emerges has a reliable tool for LogP prediction, 
systematically being among the top performing submis-
sions in all force field classes for at least two among the 

Fig. 4   LogP coefficients computed using NES-2 and NES-1 
approaches
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Fig. 5   Electrostatic and Lennard-Jones contributions (see text for details) to the solvation in water (top panel) and in 1-octanol (bottom panel) 
for the series of SAMPL6 compounds
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various indicators (R, � or RMSE). Contrarily to FEP or TI 
equilibrium approaches, which yield apparently very dispa-
rate results, all independent NES prediction sets, irrespec-
tive of the adopted force field and of the adopted estimate 
(unidirectional or bidirectional) are, mutually, from mod-
erately to strongly correlated (from 0.35 to 0.95). Remark-
ably, accuracy is only moderately degraded in the unidirec-
tional (growth) NES-1 submissions, that are on other hand, 
extremely convenient from a computational standpoint: a 
single LogP can be computed in a matter of minutes on a 
Tier-1 HPC system such as the CRESCO6 ENEA cluster 
equipped with Intel Skylake 48 cores CPU 2.4 GHz. NES, at 
constant wall time cost provides a methodology that bypass 
the problem of the sampling issue in MD-based equilibrium 
approach. Poor convergence or inadequate solute conforma-
tional sampling along the alchemical coordinate could in fact 
be the primary cause for the observed disparity of FEP or 
TI submissions even when using the same simulation setup 
and force field. Strikingly, the same disparity in equilibrium 
alchemical applications, even when using similar simula-
tion protocols, is observed for the statistical uncertainties 
(imprecision) of the LogP.

At variance with stratification methods that are based 
on equilibrium sampling on each of the strata, in the NES 
approach equilibrium is required only at the end-states. The 
phase-space sampling of the end-states can be acquired as 
accurately as possible by using highly parallel and efficient 
enhanced sampling techniques affording a fast and accurate 
canonical sampling of all relevant collective coordinates. In 
the subsequent NES stage, fast NE trajectories connect the 
equilibrium phase-space points of one end-state to the cor-
responding non equilibrium set of the other end state. Pro-
vided that the equilibrium sampling of the starting end-state 
has been adequate, the confidence interval in NES rigor-
ously depends on the variance of a single work distribution, 
obtained crossing at fast speed the whole alchemical coordi-
nate, and on the number of NE trajectories (or equivalently, 
on the HREX collected phase-space points). The confidence 
level in NES industrial projects can be controlled using only 
two parameters, that is (i) the number of NE trajectories and 
(ii) the length of the NE trajectories that control the final 
dissipation and variance.
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