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Abstract
Macrocycles represent a potentially vast extension of drug chemical space still largely untapped by synthetic compounds. 
Sampling of flexible rings is incorporated in the ICM-dock protocol. We tested the ability of ICM-dock to reproduce macro-
cyclic ligand–protein receptor complexes, first in a large retrospective benchmark (246 complexes), and next, in context of 
the D3R Grand Challenge 4 (GC4), where we modeled bound complexes and predicted activities for a series of macrocyclic 
BACE inhibitors. Sub-angstrom accuracy was achieved in ligand pose prediction both in cross-docking (D3R Challenge 
Stage 1A) and cognate (Stage 1B) setup. Stage 1B submission was top ranked by mean and average RMSDs, even though 
no ligand knowledge was used in our simulations on this Stage. Furthermore, we demonstrate successful receptor conforma-
tional selection in Stage 1A, aided by the enhanced ‘4D’ multiple receptor conformation docking protocol with optimized 
scoring offsets. In the activity 3D QSAR modeling, predictivity of the BACE pKd model was modest, while for the second 
target (Cathepsin-S), leading performance was achieved. Difference in activity prediction performance between the targets 
is likely explained by the amount of available and relevant training data.
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Abbreviations
PDB	� Protein data bank
APF	� Atomic property field

Introduction

D3R Grand Challenges

Computer aided drug design (CADD) methods are devel-
oping rapidly and CADD application in practical drug dis-
covery and optimization projects is becoming routine. Yet 
it is often difficult to judge objectively how well modeling 

methods really perform: retrospective tests are inevitably 
biased as the algorithm development is influenced by the 
context of available 3D structures and activity data, and the 
design as well as composition of retrospective benchmarks 
only remotely reflect many real-life application scenarios. 
Published examples of practical applications suffer from 
publication bias [11, 19]—success stories are much more 
likely to be published, while failures mostly get known 
through word of mouth and eventually the common “mod-
eling doesn’t work” general attitude. Drug design data 
resource (D3R) Grand Challenges provide the CADD devel-
oper community with an opportunity to test and compare 
methods head-to-head in context of a blinded evaluation ver-
sus yet unpublished data [13]. We participated in the bound 
pose prediction and the activity prediction challenges which 
test the two core tasks in CADD.

Macrocycle docking

D3R Grand Challenge 4 included prediction of the binding 
poses and activity for a series of macrocyclic inhibitors 
of Beta-Secretase 1 (otherwise known as beta-amyloid 
converting enzyme, BACE), presenting us with a pos-
sibility to test our methods in modeling of macrocycle 
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ligand-receptor interactions. Unique utility of the mac-
rocyclic compounds as drugs has long been appreci-
ated in the medicinal chemistry, thanks to the numerous 
examples of macrocyclic natural products possessing 
exceptional potency, specificity and ability to modulate 
targets that are poorly druggable with typical ‘drug-like’ 
synthetic compounds (e.g. rapamycin [39], cyclosporin 
[29]). Cyclization can stabilize the molecule both chemi-
cally and conformationally. Chemical stability results in 
better bioavailability, and permeation was also shown to 
improve upon cyclization at least for certain classes of 
compounds [17]. From the standpoint of the ligand-recep-
tor interaction thermodynamics, cyclic constraints restrict 
conformational space, sharply reducing entropic penalty 
and thus enhancing potency. At the same time, alternative 
conformations that might result in an off-target activity 
are eliminated. Larger, yet relatively rigid and still bio-
available macrocyclic ligands can efficiently interact with 
their targets over relatively flat extended interfaces where 
regular small-molecule ligands fail to achieve sufficient 
affinity. Many of the natural product macrocycles are for-
midably complex in terms of synthesis but the advances in 
synthetic chemistry recently led to increased exploration 
of the macrocyclic chemical space [41]. Recent approvals 
of a series of NS3-4A protease inhibitors for hepatitis C 
treatment (grazoprevir, simeprevir, paritaprevir and vani-
previr) [28] and a cancer drug lorlatinib [5] are the mile-
stones paving way for broad application of fully synthetic 
macrocyclic drugs. Correspondingly, there is a growing 
demand for accurate modeling macrocyclic molecules to 
facilitate structure-based discovery and design of these 
ligands.

Presence of macrocycles represents a challenge for 
docking algorithms because the ligand conformational 
sampling, if any is included in the pose generation itself, 
is commonly geared towards performing simple bond tor-
sion rotations rather than complex, coordinated motions 
of a macrocycle ring. To overcome this shortcoming, a 
number of protocols were proposed that couple a stand-
ard ligand docking algorithm with an external vigorous 
sampling stage (reviewed in [3]). Conformers generated 
by the external sampler are then individually docked to 
the target receptor, with the macrocyle now kept rigid. 
Another approach is to supplement the docking algorithm 
with a library of ring ‘templates’ [12], derived from exten-
sive external sampling [30] and/or experimentally solved 
structures.

In ICM-Dock, sampling of flexible rings is directly incor-
porated into the docking procedure. However, we have not 
previously tested specifically the ability of our method to 
dock macrocycles. Therefore, to verify the accuracy of the 
algorithm and establish best practices of handling such sys-
tems, we compiled a large benchmark of experimentally 

solved macrocycle/protein complexes and performed basic 
cognate redocking tests.

Multiple receptor conformation and ligand‑biased 
docking

Practical prospective applications of docking and blind tests 
such as D3R GC involve cross-docking, i.e. using conforma-
tions of the receptor that are not cognate to ligand(s) being 
docked (unlike retrospective benchmarking typically focused 
on cognate ligand/receptor structure pairs). Depending on 
the extent of receptor flexibility, cross-docking may require 
generation and/or selection of the receptor conformation that 
fits the ligand of interest. While unguided receptor sampling 
so far remains, in most cases, impractical, Multiple Receptor 
Conformation (MRC, or ensemble) docking has emerged 
as a viable alternative [37]. ICM-dock allows incorporation 
of receptor ensembles derived, for example, from multiple 
PDB structures, directly into docking procedure via ‘4D’ 
receptor grids [8]. Thus, receptor conformation optimally 
fitting the ligand of interest can be automatically selected 
during sampling.

Even optimal pairing of ligand pose to a non-cognate 
receptor conformation may not eliminate fit imperfections 
that impact scoring and overall ability of the procedure to 
identify near-native solutions. Knowledge derived from the 
experimentally determined bound ligand poses is another 
source of accuracy improvements, and various forms of 
docking templates have been in use [18, 31, 40]. In context 
of D3R GC2, we proposed a ligand-biased ensemble recep-
tor docking (LigBEnD) hybrid ligand/receptor structure-
based docking protocol. In this approach, each ligand was 
docked to each of the available protein structures with the 
co-crystallized ligand’s Atomic Property Field (APF) [33] 
bias [21]. In GC3, we combined the LigBEnD method with 
the 4D grid docking approach and introduced optimal recep-
tor conformational ensemble selection [22]. For the present 
challenge, GC4, we further improved ‘4D’ sampling and 
LigBEnD protocol by introducing scoring/energy offsets 
that optimize selection of receptor conformers. We investi-
gated whether the procedure selects receptor conformations 
close to the cognate structures. Finally APF 3D QSAR [33] 
models of ligand activity for the two GC4 targets were also 
developed and evaluated.

Methods

Flexible ring/macrocycle sampling in ICM‑dock

ICM Docking algorithm (vide infra) uses internal coordi-
nates representation to sample the conformational space of 
the ligand efficiently [2, 35]. Representation of the acyclic 
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molecules by ICM’s internal coordinate tree is straightfor-
ward—starting from any atom, the tree ‘grows’ along bonds 
and the position of each atom is determined in relation to 
the previously grown part of the tree by a triplet of internal 
coordinates—bond length, bond angle and torsion angle 
(or ‘phase’ angles at the branching points) (Fig. 1). Bond 
lengths, bond angles and ‘phase’ angles, generally, are kept 
constant (‘fixed’) when torsional sampling is performed, 
resulting in automatic preservation of the (near) ideal cova-
lent bonding geometries. As a consequence, torsion space 
modeling normally does not require bond bending and 
stretching energy terms (it should be noted that in the ICM 
framework, when desired, all internal variables can be freed 
and appropriate terms added for full Cartesian space-like 
relaxation). However, the presence of rings in the molecular 
topology results in the internal coordinate trees where some 
of the bonds (one per ring) do not correspond to any tree 
edge. Therefore, for these bonds (which we term as ‘extra’ 
bonds), covalent geometry is not determined any longer by 
the locally corresponding internal variables but, rather, by 
a longer series of variables along the tree path surrounding 
the ring. If the ring can be considered rigid (e.g. a phenyl), 
the treatment is straightforward: for all tree edges/bonds 
belonging to the ring, not only bond lengths and angles but 
also torsions are considered constant/fixed. Thus, the entire 
ring becomes a rigid body and its orientation can be sam-
pled highly efficiently, with all its atoms subject to the same 

common rotation/translation operators. However, when the 
ring system is substantially flexible (as is generally the case 
for macrocycles and even for the smaller saturated rings), 
maintaining proper ring closure at ‘extra’ bond by simply 
keeping all ring internal variables fixed is not possible if 
the ring flexing is to be modeled concurrently with all other 
conformational sampling (although one could, in principle, 
switch between a few discrete pre-defined ring conforma-
tions). The solution we use to allow continuous ring flex-
ing, is to maintain ring closure dynamically by imposing a 
complete set of covalent geometry terms/restraints around 
the ‘extra’ bond. Because ICM-dock is based on the Monte-
Carlo sampler coupled with gradient energy minimization 
after each random step, ring disruptions that arise due to 
the random perturbations are quickly ‘repaired’ by the gra-
dient minimizer, guided by the forces created by covalent 
restraints.

Benchmark of macrocyclic ligand/receptor 
complexes

The benchmark set of experimentally resolved macrocy-
cle/protein complexes was generated by processing the file 
components.cif from RCSB/PDB [7] (the set was originally 
derived from 2016 version of PDB). Chemical structures of 
ligands were extracted and largest ring sizes calculated using 
chemoinformatics functions in ICM (Molsoft, San Diego). 
Ligands with at least 9-member rings were retained as mac-
rocycles. While some stricter definitions require at least 12 
ring members, we felt that flexible 9–11 member rings are 
also of interest for algorithm testing purposes,in any case 
such compounds formed only a small subset (8 ligands). 
Resulting set of all PDB X-ray structures of macrocycle 
ligands was filtered first to remove lower resolution struc-
tures (> 2.5 Å). Next, redundant lower-resolution structures 
for each ligand/receptor pair were removed whenever mul-
tiple structures were available. Most structures were visu-
ally inspected and verified against available electron den-
sity maps. We removed structures with the following issues: 
large parts of the ligand did not correspond to electron den-
sity; large portions of the ligand had geometries inconsistent 
with the chemical structure, e.g. multiple sp2 atoms modeled 
with pyramidal geometries; ligands with macrocycles known 
to be essentially rigid, e.g. heme; a series of complexes with 
cyclic dinucleotide signaling molecules (e.g. c-di-GMP) 
that form ligand-ligand dimers. 3D structures of ligands in 
PDB entries were converted to flat 2D drawings using ICM 
cheminformatics functions. Chemical structures were spot-
checked against the literature, errors in stereo-chemistry 
and bond typing were corrected. List of PDB entries, cor-
responding ligand IDs and Smiles strings for each ligand 
are provided as Supplementary Data. Distributions of mac-
rocycle ring sizes, molecular weights, cLogP and flexible 

Fig. 1   ICM molecular internal coordinates tree. Internal coordinates 
bi, αi, Φi are ‘natural’ in that they directly correspond to local cova-
lent geometry parameters, i.e. bond lengths, bond angles and bond 
rotors/torsions. However, tree representation of cyclic structures con-
tains ‘extra’ bonds, for which covalent geometry is not directly deter-
mined by any specific bi, αi, Φi but rather by all variables along the 
path around the ring
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torsion counts (including flexible rings) in the final bench-
mark are shown in Supplementary Fig. 1. The set includes 
10 covalent complexes, which were treated according to the 
standard ICM-dock covalent modeling procedure: appro-
priate reaction definitions were taken from ICM reaction 
library, ligand 2D drawings modified as needed to restore 
pre-covalent forms, and selection of the covalently modified 
residue was provided in the docking setup. Where needed to 
create complete binding sites, biological multimeric assem-
blies were rebuilt. Strongly protein-bound water molecules 
(≥ 3 hydrogen bonds to the receptor) were retained.

D3R target receptor conformations selection 
and processing for docking

All protein structures used came from the individual tar-
get’s corresponding Pocketome [20] entry. Pocketome is a 
large pocket-centric collection of protein–ligand complexes 
compiled from the PDB, each Pocketome entry is organized 
around a particular ligand pocket (i.e. PDB structures of the 
same protein may be present in different Pocketome entries 
if, for instance, ortho- and allo-steric pockets exist) from 
PDB entries of a single Uniprot entity (i.e. polypeptide gene 
product). Pockets are optimally pre-aligned/superimposed, 
making Pocketome entries a convenient starting point for 
ensemble docking. For BACE, only PDBs with co-crys-
tallized ligands related to the compounds in GC4 set were 
retained: 2F3E, 2F3F, 3DUY, 3DV1, 3DV5, 3K5C, 3K5D, 
3K5G, 4DPF, 4DPI, 4GMI, 4K8S, 4KE0, 4KE1. Similarly, 
for Cathepsin S, we only considered complexes of ligands 
related to the chemotypes in the challenge, leaving 24 pocket 
conformations from 13 PDBs: 3IEJ, 5QBU, 5QBX, 5QC1, 
5QC3, 5QC4, 5QC5, 5QC6, 5QC8, 5QCA, 5QCD, 5QCE, 
5QCJ (most of these entries contain two structurally non-
identical copies of the protein in the crystallographic unit).

For each target, all proteins and their co-crystallized 
ligands were converted into an ICM object (i.e. prepared 
for use in ICM environment) using the standard ICM pro-
cedure [1]: The protein atoms were assigned to the correct 
atom types and charge based on a modified ECEPP/3 force 
field [26], the ligand atom types and charges were assigned 
based on the Merck molecular force field (MMFF94) [16]. 
Missing hydrogen atoms and zero-occupancy protein heavy 
atoms were added. Side chains with added atoms and polar 
hydrogen atoms, or side chains with multiple tautomeric or 
crystallographically ambiguous rotational conformations 
such as glutamine, asparagine, histidine, were sampled and 
optimized in the presence of the co-crystallized ligands. 
Mono-protonated state of the aspartic acid dyad is believed 
to be the most relevant for binding of most ligands [32], 
therefore for each BACE structure two alternative protona-
tion states were considered, with one of the two catalytic 

aspartic acids residues Asp93 and Asp289 protonated (full 
Uniport entry sequence numbering).

To select minimal non-redundant set of receptor confor-
mations for multiple receptor conformation (MRC) docking 
we applied our iterative approach based on ‘compatibility 
matrix’ [22]: receptor structures were added to the ensem-
ble until compatibility with all experimentally resolved 
ligands was reached. For Cathepsin S, all co-crystallized 
ligands were compatible with one or both of the two pocket 
structures, 5QBU chain B and 5QC6 chain B, and these 
two structures were used for docking. For BACE, 7 PDBs 
were selected: 2F3E, 2F3F, 3K5C, 3K5D, 4DPF, 4DPI 
and 4GMI,each of these structures were represented in the 
ensemble by two entries corresponding to the alternative 
protonation states of two aspartates in the active site.

For docking Challenge 1b, organizers released cognate 
receptor structures. These included protein-bound and crys-
tallographic water molecules. Per ICM-dock best practices, 
we attempted to detect tightly bound structural water. A sin-
gle such water molecule was identified within the binding 
sites of 12 out of 20 receptor structures provided. This water 
molecule adjacent to Asn 294 is also seen in multiple PDB 
structures and was retained, although its impact on the dock-
ing accuracy proved minor overall (see “Results”).

Docking setup

For the macrocycle benchmark, 3D box was defined with 
margins of 5 Å around the co-crystallized ligand. For the 
CG4 ligand docking, the ligand-binding pocket was defined 
by protein residues within 5  Å of the co-crystallized 
ligand(s), and the box was defined around these residues (no 
additional margin). Standard ICM-dock grid potential maps 
within the box were calculated with a 0.5 Å grid spacing [27, 
35]. Ensembles of receptor conformations were represented 
by ‘4D’ grids [8]. Each receptor conformation was associ-
ated with its corresponding receptor energy offset so that the 
final docking energy of each ligand was adjusted by receptor 
conformation energy offset.

Atomic property fields

APF is a representation of the 3D ligand by a set of seven 
fields representing spacial distributions of the physicochemi-
cal properties of its atoms [33]. These seven fields represent 
classic pharmacophore features as well as additional descrip-
tors that together provide nuanced characterization of each 
atom type: hydrogen bond donor, hydrogen bond acceptor, 
sp2 hybridization, lipophilicity, size, formal charge, and 
electronegativity. The field of the molecule is normally gen-
erated as a total of Gaussian fields from each ligand atom 
and pre-calculated on grids. If another molecule is placed 
in the APF field, a score or pseudo-energy can be calculated 
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as a sum of the dot products of atom/field property vectors. 
The score between any two poses of (identical or different) 
ligand(s) gives a topology-independent measure of chemi-
cal 3D similarity without the need of any specific atom-to-
atom or bond-to-bond correspondence. Applications of the 
approach and its performance in ligand alignment, QSAR 
modeling, ligand based virtual screening and binding site 
comparison have been reported [14, 15, 33, 34].

Docking score offsets

During ‘4D’ ICM docking runs, the Monte-Carlo steps 
switch the sets of receptor interaction grids (and, when 
applicable, ligand-biasing APF potentials) corresponding to 
different receptor conformations. To correct for systematic 
errors in docking energies associated with different recep-
tor conformations, we introduced a vector of energy offsets 
assigned to each receptor conformation. Optimal offsets 
to the ligand docking energy were determined as follows: 
All N co-crystallized ligands were docked to each of the 
M receptor conformations, generating matrices (MxN) of 
ligand RMSD, receptor Cα RMSD, and docking energies. 
The ligand RMSD was calculated using the docked pose 
versus the native pose of the ligand, whereas the receptor 
Cα RMSD was calculated between the receptor conformer 
selected in docking and the receptor structure cognate for 
the ligand. A vector of receptor docking energy offsets 
(with dimension M) was then added to the docking ener-
gies. Boltzmann weighted ligand RMSD (<RMSDlig > ) and 
receptor Cα RMSD (<RMSDrec > ) averages were calculated 
at 298 K using the docking energy with receptor offset. 
The receptor docking energy offsets were then optimized 
by Amoeba Simplex algorithm to minimize the objective 
function:

The function was designed to drive offset energy towards 
values that result in low-energy poses closest to native both 
on the ligand and receptor sides. Functional form with 
log() was chosen to attenuate impact of outliers with large 
RMSDs.

Ligand bias atomic property field (APF) grid maps 
preparation

The co-crystallized ligand poses were used, in the form of 
their APF [33] grid maps, to guide and accelerate the dock-
ing process. For Cathepin S, 24 co-crystallized ligands simi-
lar to the D3R challenge set were combined to calculate the 
ligand APF grid maps. For the BACE, 14 co-crystallized 
ligands were used. To prevent over-representation of certain 

N
∑

i=1

Log
(

< RMSDi,lig > +1
)

+ Log(< RMSDi,rec > +1)

chemotypes and heavy bias towards one single docking 
mode, the co-crystallized ligands were clustered using APF 
similarity, the contribution of each cluster of ligands to the 
ligand APF grids was normalized to the number of ligands 
in the cluster. For ‘4D’ docking simulations that sampled 
multiple receptor conformations, APF grids were also in 4D 
format and included, for each receptor conformation, only 
its ‘compatible’ ligands, according to compatibility matrix 
described above.

Ligand preparation for docking

Formal charges were set using ICM’s internal pKa predic-
tion models at pH 5.5 for Cathepsin S and pH 4.5 for BACE 
(low pH conditions were indicated by organizers). Subse-
quent processing was done within standard ICM-dock pro-
tocol: hydrogen atoms added, atom types and partial charges 
were assigned as per MMFF94 force field [16], 2D structures 
converted to 3D, its rotational bonds sampled and all atoms 
minimized in the Cartesian coordinates in the absence of the 
receptor maps to generate the starting ensembles of ligand 
conformations for docking.

Ligand docking

ICM-dock protocol (in Molsoft ICM) was used throughout 
this study. Ligands were docked into the receptor potentials 
represented on grid maps and, where applicable, co-crystal-
lized Ligand Template APF grid maps. ICM-dock [1] uses 
a multiple start biased probability Monte Carlo (BPMC) 
with local gradient minimization to optimize the ligand’s 
conformation and position within the binding site simultane-
ously [35]. The protocol first samples the free ligand with 
MC steps randomly changing flexible torsion angles (one 
at a time). Resulting low energy ligand conformers are next 
placed into the receptor interaction fields. Multiple MC tra-
jectories are initiated from different initial ligand positions 
and conformations, now subjecting ligand torsions as well 
as its position and orientation to random steps. Special grid-
switching MC steps also sample ensembles of protein con-
formations represented by 4D grid layers [8]. Small number 
(typically 3–10) of the lowest energy poses are retained and 
re-ranked in using ICM-VLS score with explicit receptor.

Ring flexibility

ICM uses internal coordinate representation of the simu-
lated molecule, with bond angles and bond length variables 
kept constant in MC docking runs. Conformational space 
of the ligand is sampled via random changes and gradient 
minimizations of torsion angles. Flexible ring sampling 
mode (default in ICM-dock) includes torsion angles within 
rings such as macrocycles into sampling and gradient 
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minimization (Fig. 1). Correct covalent geometry at ‘vir-
tual’ bonds that are not part of ICM tree is maintained by a 
set of explicit bond bending and bond stretching constraints 
imposed during local gradient minimizations. Resulting 
forces restore ring closure after any disruption caused by 
MC steps altering ring torsions.

Docking ‘effort’ parameter, which defines the length of 
MC simulation and number of energy minimization steps, 
was set to 10. At the end of each independent docking simu-
lation, 10 best conformations were retained according to the 
docking score combining its internal force-field energy, grid 
receptor interaction terms and ligand bias APF grid pseudo-
energy. To ensure convergence, each ligand was docked in 
three independent simulations, generating 10 × 3 = 30 con-
formations. Poses were re-evaluated using ICM’s standard 
physics-based virtual ligand screening (VLS) score [36].

Post‑docking processing and pose selection

ICM VLS docking score was combined with the APF simi-
larity score SAPF of the docked pose to the co-crystallized 
ligands compatible with the corresponding protein confor-
mation [21]. The resulting composite score SComp was used 
to rank poses and select the top scoring pose, without any 
manual intervention.

Training sets for activity prediction

To generate training sets, known ligands for Cathepsin S and 
BACE were extracted from ChEMBL version 24 [6]. Only 
compound records with measured IC50, Ki, or Kd were kept, 
compounds with remarks such as “inactive” or “inconclu-
sive” were removed. The IC50, Ki and Kd values were treated 
interchangeably and converted into ‘pKd’ (i.e. −LogKd); 
while we are aware of potentially significant offsets between 
the different measures of activity, priority was given to 
maintaining the breadth of the data set. If a compound had 
multiple measured activities against a target, all the records 
of that compound were combined, and its top 20 percentile 
activity value was taken. For Cathespin S, ChEMBL data 
was supplemented with 135 compound activities from D3R 
GC3. The total number of ligands used for Cathepsin S was 
430. For BACE, we filtered the training set to focus on the 
relevant data: 149 macrocyclic compounds were extracted; 
after docking, their APF similarities to the docking poses of 
the challenge set were calculated; only 103 compounds with 
high APF similarity (> 0.55) to the challenge set were used 
in training the model for sub-challenge 1a.

Three‑fold clustered cross‑validation procedure

Each training data set was split into three diverse sets 
for testing activity prediction protocols in the following 

procedure: The ligands were clustered using ligand 3D 
docked poses by APF method at a distance of 0.25. The 
clusters of ligands were sorted by cluster size, and sequen-
tially assigned into one of three groups, ensuring that none 
of the groups is significantly larger in size than the other two 
groups, and that each group includes small and large clusters 
in similar proportion. During model training, one group of 
clusters would be set aside as validation set; the other two 
groups were used for training. The process was repeated 
for each group of clusters, so that Pearson correlation Q2 
and RMSE value can be calculated for the whole set by this 
three-fold procedure.

Activity models

APF 3D-QSAR activity models were derived as previously 
described [22, 33]. APF + Physics (APF/P) hybrid models 
combine the APF 3D QSAR descriptors with ICM VLS 
score components. Poses for 103 training set compounds 
were generated following the same docking protocol as for 
Stage 1A pose prediction.

Pose‑selection‑optimized 3D QSAR

For Cathepsin S target, we attempted to make the APF 3D 
QSAR model that can automatically select optimal binding 
poses for prediction, i.e. given an ensemble of low-scoring 
docked poses for a ligand, 3D QSAR prediction can be 
made for each pose and the highest predicted pKd value 
will represent the final prediction for that ligand. Optimiza-
tion was performed via iterative procedure that evolves the 
3D QSAR model towards self-consistency: (1) first genera-
tion model is made using the set of training ligands’ best-
scoring poses, as in our regular approach; (2) second and 
all consequent generation models are made by making pKd 
prediction for all training ligands’ poses (ensembles of 10 
poses per ligand were used) and selecting top predicted pKd 
poses. Ten iterations of the procedure were performed (we 
observed that model accuracy did not change significantly 
after ~ 5 iterations).

Software and hardware

All calculations, including receptor and ligand preparation, 
grid potential map calculations, docking simulations, ICM 
VLS score terms, APF similarity score, ligand pose clus-
tering, correlation and RMSD calculations, were carried 
out using ICM 3.8–7 (Molsoft LLC, San Diego, CA). The 
docking simulations and ICM VLS score calculations were 
performed on a Linux cluster of 20 eight-core (2xIntel Xeon 
E5620) compute nodes.
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Results and discussion

Initial benchmarking of ICM‑dock for macrocyclic 
ligands

As a preliminary test for the ability of ICM-dock to predict 
accurately bound poses and conformations of macrocycles, 
we assembled a retrospective benchmark of PDB struc-
tures comprising 246 complexes, including 198 unique 
ligands and 126 unique target proteins (see “Methods” 
and Supplementary Data). To our knowledge this is by 
far the largest such benchmark, with previously published 
sets comprising a few dozen complexes [4], [9]. The 
compounds in our set explore widely the so-called bRo5 
(beyond the Rules of 5) [10] space, with 65% of ligands 
having MW > 500 Da. Macrocycle ring sizes ranged from 
9 to 40 bonds with the median size of 16.

Results of ICM flexible ring docking on this bench-
mark confirmed that the method is capable of reproducing 
native-like structures for the large majority of complexes: 
among the top 5 solutions, a pose within 2 Å RMSD was 
found for 75% of complexes, and the top-scoring solu-
tion was within 2 Å for 62% complexes. Failures were 
more common among larger compounds. Indeed, if we 
consider half of the benchmark complexes comprising the 
smaller molecules (< 42 heavy atoms, or ≈ < 600 Da), 
success percentages rise to 86% and 76% (for best in top 
5 and the top pose, respectively). Doubling the sampling 
‘effort’ setting (from 5 to 10) was tested and resulted in a 
minor improvement (78% success for top 5 poses), there-
fore raising this parameter above 10 appears unnecessary, 
and setting of 5 may be an acceptable accuracy/speed 
compromise. When top 10 poses are considered in these 
longer simulations, success rate reaches 81%. Thus only a 
few near native solutions are found past the 5 top-ranked 
poses. We also investigated the effect of the grid box size, 
a factor that is often overlooked in benchmarks. Using nar-
rower (± 3 Å) margins around the ligand to define the box, 
noticeably higher success percentages of 69% for the top 
scoring solution and 82% for the top 5 could be obtained 
(effort = 5), likely because some of the artifactual poses 
are eliminated. Median simulation time (at effort = 5, all 
stages, starting from 2D structure through rescoring of 
top poses) was 16 min. It should be noted that 81% of 
compounds in the set have > 15 flexible torsions (including 
the flexible rings), and therefore these ligands are consid-
erably more challenging to sample adequately than most 
typical small molecule drug-like molecule.

No comparably large-scale macrocycle docking bench-
marks (to our knowledge) have been previously reported. 
A binding mode prediction protocol consisting of the 
LowModeMD conformational search for the free ligand 

followed by ligand ensemble docking in MOE reproduced 
52% of the 48 complex benchmark set with accuracy better 
than 2.5 Å [4]. In our benchmark, ICM-dock reproduced 
67% of complexes at RMSD < 2.5 Å, although different 
benchmark sets may not be fully comparable. Of further 
interest, LowModeMD conformational search generated 
ensembles containing a conformer within 2.5 Å of the 
experimental bound conformation in 98% cases,our ICM-
dock protocol includes integrated free ligand pre-sampling 
stage, which had the same percentage of success (again, 
difference in benchmark sets needs to be kept in mind). In 
another work, a set of 20 macrolides (i.e. a class of macro-
cyclic natural products) and related macrocycle complexes 
from PDB was used to test two versions of AutoDock (AD) 
[25], AD Vina [38], DOCK 6.0 [23] and Glide 6.6 [12], 
all coupled to a pre-sampling stage of MD/LLMod con-
formation generator (Castro-Alvarez et al. 2017. Most of 
the macrolide complexes (18 out of 20 overlapped with our 
benchmark and per-complex RMSD numbers were pub-
lished, so that we were able to calculate directly compara-
ble averages. Mean RMSD was 1.4/1.59/2.54/1.4/1.35 Å 
for ADVina/AD4.2/AD3.0/DOCK/Glide, respectively, 
versus 1.2  Å for ICM-Dock,and a median RMSD of 
0.93/1.1/1.34/0.77/1.03  Å (same software order, ver-
sus 0.59 Å for ICM-Dock for the set of 18 complexes. 
Thus ICM-dock performance on macrocycles appears to 
compare favorably with published results for widely used 
docking software.

BACE pose prediction protocol optimization

Despite the overall success on the retrospective benchmark, 
considering a significant number of complexes for which 
near-native solution was found but not top-ranked, as well 
as the fact that cross-docking (i.e. docking into non-cognate 
receptor) context was likely to adversely impact perfor-
mance, we used LigBEnD (ligand biased ensemble docking) 
approach for the Challenge 1A pose prediction. LigBEnD 
adds a knowledge-based bias to the receptor interaction 
potential grids during docking Monte-Carlo simulation and 
also into the rescoring step, while the 4D ensemble is used 
to take advantage of multiple available receptor X-ray struc-
tures for the receptor flexibility modeling.

In our experience, MRC docking in general can suffer 
from imbalances in scoring to different receptor conformers. 
Physically, receptor conformations may have substantially 
different internal energies—as an example, some conform-
ers with deeper, more extensive and potentially stronger 
interacting binding pockets are likely to incur a certain 
internal energy penalty; such a penalty is not accounted for 
by the ligand-receptor interaction scoring functions and is 
also difficult to evaluate directly. Systematic errors in scor-
ing function may also inaccurately favor certain receptor 
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conformations. Furthermore, when the ligand APF bias is 
introduced, the issue is exacerbated by different strengths of 
APF fields: for example, “general” receptor conformations 
that are compatible with many co-crystallized ligands may 
have stronger ligand APF bias than “specialized” receptor 
conformations with one or few compatible ligands. There-
fore, some receptor conformers in the MRC ensemble may 
produce artifactual low energies/scores for ligands that in 
reality would match better to a different conformer, if either 
the APF bias or physical interaction fields turn out to be 
excessively strong in comparison to the matching receptor 
conformer.

To counteract these effects, we introduced a vector of 
receptor energy offsets that are assigned to each receptor 
conformation, to adjust ‘prominence’ of an individual recep-
tor conformation in MRC docking. Each 4D grid layer will 
have its specific energy offset. Offsets are optimized for 
the best recognition of cognate ligand/receptor conformer 
pairs on an ensemble of receptor conformations and ligand 
poses generated through exhaustive docking of all co-crys-
tallized ligands to all receptor conformations as described 
in “Methods”.

Figure 2 shows the results of 4D grid redocking for the 14 
co-crystallized ligands to 7 BACE receptor conformations 
from PDBs, each with 2 protonation states. Without recep-
tor conformation offsets, two receptor conformers strongly 
dominated the top scoring solutions—all ligands are paired 
to one of these two conformers. Furthermore, one of the 
ligands was mis-docked (RMSD > 2.0 Å). With optimized 
offsets, all 14 ligands were redocked within 1.0 Å RMSD, 
and all 7 receptor conformations were utilized by some of 
the top docking poses. The receptor conformations selected 

by docking were also closer to the cognate structures, as 
reflected in the Cα RMSD. (note that in Fig. 2c, each of the 
7 receptor conformations were present as two copies with 
different protonation states, therefore conformations #1 & #2 
were from the same parent conformation, #3 & #4 the next 
one, and so on). Among the 7 ligands with cognate receptor 
conformations present in the 4D docking ensemble, match-
ing receptor conformation was selected for 6 when receptor 
offsets were applied whereas only 2 matching pairs were 
identified without the offset. Thus, introduction of offsets 
improved accuracy of ligand poses as well as quality of con-
formational selection of receptor states in this retrospective 
test.

Pose prediction accuracy for BACE

Ligand prediction accuracy

In challenge Stage 1a, we used 14 receptor conformations 
from 7 PDBs for docking. 14 co-crystallized ligands that are 
chemically related to challenge ligands were used as ligand 
APF bias to drive docking process towards binding modes 
similar to experimentally determined. At the end of simula-
tion, 5 best poses for each ligand were selected according to 
a composite docking / ligand APF similarity score. Figure 3a 
shows the docking results of the 20 challenge compounds. 
The median and mean RMSD of the top rank poses is 0.7 Å 
and 0.92 Å respectively, with the least accurate ligand at 
1.9 Å. The median and mean RMSDs of the best poses are 
0.7 Å and 0.76 Å, with the least accurate ligand at 1.5 Å. For 
12 out of the 20 ligands, our top ranked pose was also the 
lowest RMSD pose among the top five.

Fig. 2   Docking 14 BACE Cc-crystallized ligands to the ‘4D’ ensem-
ble of 7 selected receptor conformations, each represented by 2 proto-
nation states. Blue: with receptor energy offset; red: without receptor 
energy offset. a Ligand RMSD. b Receptor Cα RMSD (within 5 Å of 

ligand). c Receptor conformations selected by docking. Note that con-
secutive pairs of receptor states correspond to the same conformer: 
for example, 9th and 10th state represent the same conformation and 
differ only in the protonation of the active site aspartic acid residues
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Receptor prediction accuracy

In a realistic cross-docking scenario, both ligand and 
receptor in the docked complex model deviate from the 
experimental structure. Therefore, while it is common to 
report only ligand RMSD, the question of quality of the 
prediction is not restricted to the ligand pose, it is also 
important to consider how close the receptor conforma-
tion chosen (or generated) by the docking procedure is 
to the experimental cognate receptor structure. We are 
using MRC approach to account for receptor flexibility: 
‘4D’ docking simulations switch on the fly from one con-
former of the receptor to another within the 4D ensemble, 
which for BACE included 7 distinct conformers, and opti-
mal energy offsets were derived (see previous section) to 
improve receptor conformer selection. Figure 3b shows 
that among best ligand poses, for half of the complexes (10 
out of 20) our procedure selected receptor conformation 
closest to the cognate, and for most of the remaining com-
plexes RMSD was below the MRC ensemble average, i.e. 
the receptor conformation selection was still better than 
random. Thus, our 4D docking simulations with recep-
tor energy offsets are successfully mimicking receptor 

conformational selection mechanism of induced fit (within 
the ensemble).

For Challenge Stage 1B, D3R organizers released X-ray 
structures of the receptor for the 20 complexes (without 
the co-crystallized ligands) for re-docking of the ligands to 
their cognate receptor conformations. Given the encouraging 
results in the macrocycle re-docking benchmark, we chose 
to perform this exercise without using any ligand APF bias. 
Figure 4a summarizes the results. Top ranking poses have 
a mean/median RMSD of 0.61/0.56 Å with a maximum of 
1.2 Å; the best poses out of 5 have a mean/median RMSD 
of 0.58/0.56 Å with maximum of 1.0 Å; for 19 out of 20 
ligands, the top ranking pose is the best pose.

For the challenge submission, we included a single 
tightly-bound structural water molecule for 12 out of 20 
complexes. Post-challenge, we decided to investigate the 
impact of including or omitting this water on the accuracy, 
and repeated calculations without any water molecules 
included. The results (Fig. 4b) were overall very similar, 
with median RMSDs unchanged. Some loss of accuracy was 
noted for two ligands: top pose for compounds #17 and #18 
went from RMSDs of 0.5 Å and 0.6 Å to 1.6 Å and 1.5 Å, 
respectively, although sub-angstrom pose was still present 

Fig. 3   Docking pose prediction results for BACE in Challenge 1A. 
RMSDs of five top ranking poses submitted for each ligand. The low-
est RMSD pose for each ligand is highlighted in red box. a Ligand 
RMSD; b receptor RMSD, heavy atoms within 10  Å of the ligand. 

Distribution of RMSDs for all seven receptor conformers in the 
‘4D’ ensemble is shown as a min/mean/max bar. Pose #1 has recep-
tor RMSD at the minimum or below the mean for 14 complexes, and 
lowest ligand RMSD pose for 15 complexes out of 20
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for #18 at rank 2. Visual inspection revealed formation of a 
water-mediated hydrogen bond for these ligands, explaining 
greater deviations from native pose when the water molecule 
is omitted (Supplementary Fig. 2)

Overall, our blind cross-docking (Stage 1A) results were 
among the top ranked submission and cognate re-docking 
(Stage 1B) results were the top ranked submission in this 
challenge. The latter result is also remarkable in that no 
ligand data was used for Stage 1B prediction.

Activity prediction

APF 3D QSAR predictions for BACE

To select optimal approach for the blind challenge, two 
prediction methods were first tested using a threefold clus-
tered cross-validation method: pure APF 3D QSAR PLS 
model, and a hybrid APF/P 3D QSAR PLS model, in which 
6 energy terms were introduced as additional, physics-
based descriptors. In the D3R GC4 the latter approach led 
to improved models across multiple kinase targets [22]. Pure 
APF 3D QSAR gave cross-validated RMSE of 0.90 pKd 
unit, and a Pearson and Kendall’s τ-b correlation of 0.74 and 
0.51, respectively. The hybrid model achieved an RMSE of 
0.91 pKd unit, and a Pearson and Kendall’s τ-b correlation 

of 0.72 and 0.49, respectively. Thus, no significant differ-
ences in performance between models were observed in 
cross-validation on the training set, and we decided to opt 
for the simpler APF model for the challenge submission. 
Unfortunately, the model accuracy in the prediction of 154 
BACE challenge set turned out to be significantly below our 
cross-validation results: RMSE of 1.15 pKd unit, Pearson 
and Kendall’s τ-b correlation of 0.35 and 0.21, respectively.

It should be noted that some of the submissions for this 
Challenge did achieve higher correlations, up to 0.38 τ-b. 
We decided to investigate whether any simple base-line 
activity correlates may produce similar results. Several 
physical properties that frequently correlate with activ-
ity were calculated (using Molsoft ICM cheminformatics 
module): molecular weight, cLogP, polar surface area, 
molecular surface area, and molecular volume, as shown 
in Table 1. Also included was the hydrophobic term from 
the ICM scoring function. Remarkably, for the Challenge 
set ligands, pKd values were significantly correlated with 
several physical properties as well as the hydrophobic term 
in ICM-score. Using molecular volume alone as an activity 
predictor would result in a τ-b value of 0.38, on par with 
the top result among all submissions. However, these cor-
relations are much weaker already on our focused training 
sets and essentially disappear when the calculation is done 

Fig. 4   Self-docking pose prediction results for BACE in GC4 Chal-
lenge 1B. RMSDs of five top ranking poses submitted for each 
ligand. The lowest RMSD pose for each ligand is highlighted in red 

box. a Docking with one structural water included in 12 of 20 recep-
tors; b docking without any water
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on the full set of 7124 compounds with available BACE 
inhibition data in ChEMBL—as one might expect, relatively 
strong size correlations seem to be restricted to the specific 
chemotypes. Nevertheless, the implication of these findings 
is that a model with a strong size and/or lipophilicity bias 
would be able to generate Challenge set predictions with a 
τ-b value in the range of 0.31–0.38.

APF 3D QSAR predictions for Cathepsin S

For this target the challenge did not include any dock-
ing accuracy component, only the predictions of bind-
ing affinity for ligands. When building APF 3D QSAR 
model, we attempted to make the activity (pKd) model 
that could also optimally select bound ligand poses in an 
ensemble generated by docking using a procedure resem-
bling “autoshimming” approach in Ref. [24]. In a series 
of model ‘generations’, we would use the previous gen-
eration model to predict pKd for multiple poses of each 
ligand and select highest predicted pKd poses as a basis for 
the next generation QSAR. Initial set of poses for the first 
generation QSAR model was based on the regular scoring. 
We expected that the procedure could result in a better 
3D QSAR model because pose ranking/selection becomes 
consistent with pKd prediction, as it should be in terms of 
ligand binding physics. In the three-fold clustered cross-
validation this ‘pose-ranking-consistent’ (PRC) 3D QSAR 
model achieved a pKd RMSE, Pearson and Kendall’s τ-b 

correlations of 0.65, 0.60 and 0.45, respectively, as com-
pared to 0.69, 0.50 and 0.38 for the base-line model using 
initial selection of top-ranking docking poses. Marked 
improvement across all accuracy measures in cross-vali-
dation led us to use the PRC approach for our GC4 submis-
sion. On the blind test set, the submitted model achieved 
0.4 RMSE, 0.75 Pearson and 0.54 Kendall τ-b metrics, 
exceeding our expectations based on cross-validation 
accuracy, and sharing top rank with one more submission 
among all models submitted to this Challenge. It should 
be noted that in the post-challenge evaluation, comparison 
of the PRC model results with the base-line model using 
top-ranking docking poses revealed that on the GC4 set 
the models performed essentially identically (Table 2), 
despite the apparent advantage of the PRC approach in 
cross-validation and minor but marked differences in poses 
selected by the two methods (Supplementary Fig. 3). More 
extensive testing will be needed to further validate the ben-
efits of PRC model.

Why were we able to build a 3D QSAR models with good 
predictivity for this target, while similar approach did not 
yield a meaningfully predictive model for BACE, and none 
of the other methods could do better than a simple base-
line physical property correlation? A possible explanation 
transpires if we consider the distribution of the Tanimoto 
distances (i.e. chemical dissimilarity) from each challenge 
compound to a closest available training set compound (Sup-
plementary Fig. 4a, b). Median Tanimoto distance to the 

Table 1   Pearson and Kendall’s τ-b Correlation between pKd and 5 calculated physical properties as well as the hydrophobic interaction term for 
BACE ChEMBL compounds and 154 BACE challenge set compounds

Compound Set Number of 
compounds

Molecular weight LogP Polar surface area Molecular surface 
area

Molecular volume Hydrophobic 
interaction 
term

Related ChEMBL 103 0.25/0.15 0.43/0.28 − 0.20/− 0.21 0.22/0.11 0.31/0.19 − 0.33/− 0.30
Macro ChEMBL 149 0.20/0.14 0.44/0.28 − 0.19/− 0.23 0.11/0.04 0.21/0.13 − 0.24/− 0.22
All ChEMBL 7124 − 0.01/− 0.03 − 0.02/− 0.05 0.00/− 0.01 − 0.03/− 0.04 − 0.01/− 0.03 N/A
D3R Challenge 154 0.46/0.31 0.35/0.21 0.24/0.15 0.54/0.35 0.58/0.38 − 0.51/ − 0.32

Table 2   Prediction results for 
Cathepsin S

Accuracy metrix for submitted model are highlighted in bold
APF + Physical: 6 Docking energy terms were added as descriptors
a Pose-selection-consistent model
b Poses with highest Docking + APF composite score were used for all compounds
c APF: Pure APF 3D QSAR using the docking pose of training compounds;

Pose selection for training 
set

Prediction method/
descriptors usedc

pKd RMSE Pearson  
Correlation

Kendall’s τ-b 
correlation

PSC 3D QSARa APF 0.4 0.75 0.54
Best Scoreb APF 0.4 0.76 0.55

APF + Physical 0.4 0.76 0.55
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training set among BACE compounds is 0.25, while among 
Cathepsin S compounds it is only 0.03. Thus, good coverage 
of activity data for the closely related compounds appears to 
be the critical factor.

Conclusions

ICM-dock shows accurate predictions for macrocyclic ligand 
complexes both, on a broad retrospective benchmark and 
the BACE target of the prospective blind Challenge. In the 
cross-docking scenario of Stage 1A, we introduced receptor 
conformation energy offsets to improve accuracy of ‘4D’ 
receptor ensemble docking and demonstrated that receptor 
conformational selection during 4D sampling identifies near-
cognate receptor conformations in the ensemble.

Good quality predictive 3D QSAR model was constructed 
using APF approach for Cathepsin S but not for BACE. 
Proximity of challenge set to the training compounds with 
available experimental data appears to be crucial for the pre-
diction accuracy.
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