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Abstract
The ability of a small molecule to interact with multiple target proteins provides the molecular basis of polypharmacology. 
So-defined compound promiscuity is intensely investigated in drug discovery. For example, for kinase inhibitors, the inter-
play between target selectivity and promiscuity plays a decisive role for different therapeutic applications. The “promiscu-
ity cliff” (PC) concept was introduced previously to aid in promiscuity analysis. A PC is defined as a pair of structurally 
similar compounds with a large difference in promiscuity. Accordingly, PCs can reveal small structural modifications that 
might be responsible for selectivity or multi-target activity. In network representations, PCs form clusters of varying size 
and complexity that are difficult to analyze interactively. Herein, we introduce a computational method to systematically 
identify PC pathways, which are particularly rich in structure-promiscuity information, and extract them from PC clusters. 
PC pathways provide informative templates for experimental design. In a proof-of-concept investigation, we have applied 
the new computational approach to systematically identify pathways in more than 600 PC clusters formed by inhibitors of 
the human kinome, demonstrating the utility of the method and revealing many interesting promiscuity patterns.

Keywords Compound promiscuity · Structure-promiscuity relationships · Promiscuity cliffs · Promiscuity cliff pathways · 
Computational analysis · Automated pathway identification · Human kinome · Kinase inhibitors

Introduction

Possible origins of compound promiscuity continue to be 
debated in the drug discovery community. Promiscuity is 
often due to non-specific binding resulting from aggrega-
tion effects and other assay artifacts and thus highly undesir-
able [1–5]. On the other hand, compound promiscuity may 
originate from true binding events when a small molecule 
interacts with multiple targets in a defined way. Such multi-
target activities form the basis of polypharmacology with its 
associated functional effects [6–8]. The polypharmacology 
concept has gradually revised and further extended the long-
standing single-target specificity paradigm in drug discov-
ery [9, 10]. However, achieving target specificity of small 
molecules will continue to be a guiding principle for many 

therapeutic applications including, among others, the treat-
ment of chronic diseases or development of anti-infective 
agents. Target specificity is also of critical relevance in other 
areas such as chemical biology where the development of 
high-quality chemical probes to interrogate target-dependent 
functional effects is a major focal point [11, 12]. By contrast, 
compounds with multi-kinase activity have been success-
fully applied in oncology [13, 14]. Other multi-target com-
pounds show promise in therapeutic areas such as neurologi-
cal disorders [15].

There are several computational and experimental ave-
nues to explore molecular promiscuity. Compounds with 
multi-target activity can be identified through computational 
analysis of curated activity data [6, 7, 16] from medicinal 
chemistry that is available in major repositories such as 
ChEMBL [17] or biological screening data available in 
PubChem [18]. In addition, compound profiling and array 
experiments are a major source of multi-target activity infor-
mation [18–23].

The “promiscuity cliff” (PC) concept [24–26] was 
originally introduced to bridge between computational 
and experimental approaches and aid in the analysis of 
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compound array data [24]. A PC is defined as a pair of 
structurally analogous compounds, i.e., compounds that 
are only distinguished by a single substitution (R-group 
replacement), having a significant difference in the number 
of targets they are active against [24–26]. Accordingly, 
PCs reveal small chemical modifications that are impli-
cated in causing promiscuity [25, 26]. Furthermore, dif-
ferences in apparent promiscuity between PC compounds 
might be influenced by varying test (assay) frequencies. 
Thus, PCs also suggest additional target hypotheses for 
structural analogs of highly promiscuous compounds [26]. 
For meaningful applications of the PC concept, it must be 
ensured that compounds with assay liabilities and resulting 
frequent hitter characteristics are excluded from consid-
eration [26, 27]. Going beyond the analysis of compound 
array experiments, PCs were identified on a large scale in 
publicly available active compounds from different sources 
[27, 28].

Kinase inhibitors are a prime target for promiscuity 
analysis because the vast majority of currently avail-
able inhibitors target the adenosine triphosphate (ATP) 
(cofactor)-binding site that is largely conserved across 
the human kinome [29, 30]. Hence, these inhibitors are 
expected to be promiscuous [31]. However, general prom-
iscuity and lack of selectivity of kinase inhibitors is nei-
ther supported by profiling experiments [22, 23], nor com-
pound activity data analysis [32–34].

To quantify differences in kinase activities of ATP site-
directed compounds, a systematic search for PCs was carried 
out in a large collection of more than 112,000 inhibitors of 
426 human kinases (82% of the human kinome) that were 
assembled from several public compound databases [28]. 
Nearly 16,000 PCs were identified. In a global network 
representation, these PCs formed more than 600 clusters of 
varying composition [28].

PC clusters represent a rich source of information for 
promiscuity analysis. For example, from clusters, PC path-
ways (PCPs) can be isolated that represent sequences of 
compounds with alternating low promiscuity -or selectiv-
ity- and high promiscuity. Hence, inspection of PCPs makes 
it possible to follow stepwise structural modifications that 
strongly influence apparent promiscuity levels [28]. How-
ever, the large number of increasingly complex PC clusters 
quickly limits manual analysis of PCPs and makes it essen-
tially impossible to comprehensively study pathways in an 
interactive manner. Hence, there is a need to automate this 
process and enable systematic analysis of PC clusters and 
PCPs.

Herein, we present a computational approach to system-
atically identify PCPs in clusters, prioritize most informa-
tive PCPs, and extract them. In addition, an entropy-based 
measure is applied to assess the distribution of pathway-
associated kinase activities across the kinome.

Materials and methods

Data set

The previously reported set of kinase inhibitor PC clus-
ters [28] was taken for method development and subjected 
to systematic analysis. Transformation size-restricted 
matched molecular pairs (MMPs) [35, 36] were calculated 
to generate pairs of structurally analogous kinase inhibi-
tors. An MMP is defined as a pair of compounds that are 
only distinguished by a chemical modification (transfor-
mation) at a single site [36, 37]. For inhibitors forming 
MMPs, the promiscuity degree (PD) was determined as 
the number of kinase annotations on the basis of curated 
activity data, applying a potency threshold of 10 µM to 
 IC50,  Ki, or  Kd values. An MMP was considered a PC if 
the absolute difference of inhibitor PD values (ΔPD) was 
at least 5, i.e., if one inhibitor was active against five more 
kinases than the other. In addition, the PD value of the less 
promiscuous inhibitor was required to be between 1 and 4 
such that PCs could not be formed by pairs of highly pro-
miscuous inhibitors. Accordingly, the smallest possible PC 
involved an inhibitor with PD = 1 and a structural analog 
with PD = 6. Applying these criteria, a total of 15,939 
PCs were obtained that involved 10,741 kinase inhibitors, 
including 1653 inhibitors with PD values between 6 and 
295. These inhibitors were capable of participating in PCs 
as highly promiscuous cliff partners. The global network 
representation of the 15,939 PCs (nodes: compounds, 
edges: pairwise PC relationships) contained 622 disjoint 
PC clusters [28].

Computational extraction of PC pathways

For computational analysis, PCP was defined as the short-
est path between two nodes from a PC cluster. When mul-
tiple shortest paths existed between two nodes, ΔPD of 
the edges was considered and the path yielding the largest 
cumulative ΔPD value was chosen. In addition, to elimi-
nate path redundancy, only a single path was retained if 
multiple shortest paths contained the same set of promis-
cuous compounds (PD ≥ 6). So-defined PCPs were sys-
tematically generated for all pairs of promiscuous non-
terminal nodes (i.e., inhibitors forming at least two PC 
relationships with others). For each qualifying path, three 
parameters were calculated:

1. Length (number of nodes)
2. Total number of PCs involving promiscuous inhibitors 

with PD ≥ 6
3. Cumulative ΔPD of edges of the path.
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We note that the application of criterion 2 makes it pos-
sible to prioritize PCPs that contain “promiscuity hubs”, 
i.e., pathway compounds that form large numbers of PCs 
with others outside the PCP. Pathway hubs are further dis-
cussed below.

In addition to applying criteria for PCP prioritiza-
tion, a frequency model for n kinase groups [29] associ-
ated with a path is obtained by counting the frequency of 
occurrence of kinases belonging to each represented group. 
From frequency counts, the Shannon entropy (SE) [38] was 
calculated:

Here, the pi is the relative frequency of occurrence of 
each kinase group. Low SE values indicate that kinases asso-
ciated with a path belong to a single group while increasing 
values indicate that associated kinases belong to multiple 
(and increasing numbers of) groups.

PCPs were ranked separately in decreasing order accord-
ing to criteria 1–3 specified above. Then, rank fusion 
was applied. Therefore, the three ranks of each path were 
sorted in ascending order yielding a tuple (ra, rb, rc) with 
ra ≤ rb ≤ rc . The PCPs were ranked according to the lexico-
graphic order of the tuples. Initially, only the highest rank ra 
was considered and only in case of a tie, the second best rank 
rbwas used; if there was a tie for both ranks, rc was taken into 
consideration. Lexicographic ranking ensured that the high-
est ranked pathways according to each criterion appeared 
near the top of the final ranking.

All calculations were carried out using the Python-imple-
mented NetworkX package [39]. Shortest path calculations 
of the unweighted network were performed using a breadth-
first search strategy similar to Dijkstra’s algorithm [40]. The 
method organizes nodes of a network in layers of increasing 
distance around a source node. Each node in a layer repre-
sents a target node that contains pointers to all nodes of the 
previous layer, which extend possible shortest paths to the 
target node. Thus, all shortest paths from a source node to 
an arbitrary target node can be determined and prioritized 
according to the criteria outlined above.

Pathway visualization

Highly-ranked PCPs in PC clusters were visualized. Clus-
ters were drawn using NetworkX [39] applying the Kam-
ada–Kawai force-directed layout algorithm [41]. Cluster 
nodes were color-coded according to PD value ranges. In 
clusters, selected PCPs were traced using a thick black line. 

SE = −

n
∑

i=1,pi>0

pilog2pi

In addition, PCP compounds forming hubs with other nodes 
were identified. For kinases associated with PCP nodes, the 
frequency of occurrence was counted. For each selected 
PCP, a phylogenetic tree was drawn using KinMap [42], in 
which each dot represented a kinase associated with a PCP 
compound. Dots were scaled in size according to the fre-
quency of kinase annotations.

Results and discussion

The new methodology for PCP extraction from PC clusters 
was tested on kinase inhibitor PCs identified on the basis of 
medicinal chemistry data. For these active compounds, no 
test frequencies were available. We note that PCs have also 
been identified on the basis of publicly available screening 
compounds for which test frequencies were available [43]. 
These PCs also extensively formed clusters [43], similar to 
the kinase inhibitor PCs used herein. For the development 
of our method, the source of PCs (medicinal chemistry data 
or biological screening) made no difference.

Promiscuity cliff clusters

The 15,939 PCs formed by 10,741 kinase inhibitors were 
organized in a PC network in which nodes represented 
inhibitors and edges pairwise PC relationships. This net-
work contained 622 isolated clusters. Figure 1 reports the 
distribution of inhibitors, PCs, and mean ΔPD values for the 
clusters. About half of the clusters contained small numbers 
of compounds and PCs, with median values of 6.5 and 6.0, 
respectively. However, about 25% of the clusters contained 
20 or more compounds and PCs, representing increasingly 
large and complex clusters. The median ΔPD value for PC 
clusters was close to 10 and the third quartile value was 
close to 25. Thus, PC clusters captured large differences in 
compound promiscuity.

Promiscuity cliff pathways

An exemplary PCP is shown in Fig.  2a. The PCP data 
structure is particularly attractive for the analysis of prom-
iscuity patterns because PCPs consist of sequences of PC 
compounds with alternating large and small PD values. 
Hence, along a path iterative structural modifications can 
be examined that lead to large differences in promiscuity 
between structurally analogous compounds. In addition, as 
also shown in Fig. 2a, promiscuous PCP compounds fre-
quently represent promiscuity hubs forming multiple PCs 
with other structural analogs outside the path that are only 
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weakly promiscuous or non-promiscuous, which provides 
additional information. Thus, for the exploration of struc-
ture-promiscuity relationships, PCPs represent an informa-
tive data structure.

Computational identification of pathways

Manually tracing PCPs is cumbersome and becomes essen-
tially impossible when PC clusters grow in size beyond a 
few compounds such as the exemplary cluster shown in 
Fig. 2a. PC clusters contain many possible PCPs that need 
to be systematically examined to identify most informative 
paths. To these ends, computational analysis is essential and 
we introduce a new computational method for systemati-
cally identifying PCPs and extracting them from clusters. 
The approach relies on shortest path calculations between 
nodes in networks using breadth-first search akin to the Dijk-
stra’s algorithm [40]. Application of this approach makes 
it possible to exhaustively mine PC clusters for PCPs and 
automate their extraction, guided by criteria to prioritize 
PCPs according to their structure-promiscuity relationship 
information content. PCPs were extracted from all kinase 

inhibitor PC clusters containing at least two promiscuous 
compounds with PD ≥ 6. In the following, exemplary cases 
are presented.

Pathway analysis

Table 1 reports the composition of two representative clus-
ters A and B from the global PC network and their pathway 
statistics resulting from computational analysis. Cluster 
A contained 132 kinase inhibitors and 42 computation-
ally identified PCPs meeting the criteria specified above 
and cluster B contained 117 inhibitors and 21 PCPs. The 
comparison illustrates that the number of PCPs does not 
necessarily scale with the number of compounds. Rather, 
the topology of clusters and content of hubs are major fac-
tors determining the number of PCPs. For cluster A and 
B, PCPs with up to seven and five inhibitors were identi-
fied, respectively. Figure 2a depicts cluster A and the top 
ranked PCP identified by computational analysis. It consists 
of seven structural analogs with substitutions at three sites. 
The PCP compounds include two densely connected hubs 
(compounds 1 and 5) and have striking difference in prom-
iscuity including four in part highly promiscuous inhibitors, 
especially compound 1 (PD = 62), and three others with 
single kinase annotations. Large differences in promiscu-
ity along the path are accompanied by confined structural 
modifications. In Fig. 2b, a part of the hub configuration 
around highly promiscuous compound 1 is displayed, which 
forms PCs with numerous inhibitors having mostly single 
kinase annotations. These analogs are distinguished from 
the highly promiscuous inhibitor by only minor chemical 
modifications leading to very large differences in apparent 

Fig. 1  Distribution of inhibitors, 
PCs, and mean ΔPD values for 
PC clusters. Boxplots report 
distribution of compounds, PCs, 
and mean ΔPD values for 622 
kinase inhibitor PC clusters. 
Median values are reported and 
red diamond markers indicate 
the mean values of the distribu-
tions. Boxplots report the small-
est value (bottom line), first 
quartile (lower boundary of the 
box), median value (thick line), 
third quartile (upper boundary 
of the box), largest value (top 
line), and outliers (points below 
the smallest or above the largest 
value)

Table 1  Cluster and pathway statistics

For two exemplary PC clusters, the number of kinase inhibitors, PCs, 
and PCPs is reported. For PCPs, the size range (number of inhibitors) 
and cumulative ΔPD range are provided

Cluster Inhibitors PCs PCPs PCP size Cumulative ΔPD

A 132 234 42 3–7 23–230
B 117 261 21 3–5 10–175
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Fig. 2  Promiscuity cliff pathways from cluster A. In a, the top ranked 
PCP is traced. Nodes are color-coded according to PD value ranges 
and nodes of PCP compounds are numbered. Below the cluster, struc-
tures of PCP compounds are shown and their PD values are reported 
in corresponding nodes. Structural modifications distinguishing pairs 
of inhibitors along the path are colored red. In b, a promiscuity hub 
from the PCP is depicted that forms multiple PCs to other inhibitors 

with one or two kinase annotations. Structures of exemplary analogs 
are shown. In c, mapping of kinase annotations from the top ranked 
PCP onto a phylogenetic tree of the human kinome is shown. Each 
kinase associated with the PCP is represented as a red dot. The dots 
are scaled in size according to the number of kinase annotations 
along the path. In d, a lower ranked PCP from cluster A is traced
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promiscuity. These observations are puzzling and this PCP 
alone would provide a basis for extensive follow-up experi-
ments to better understand possible origins of large-mag-
nitude differences in promiscuity. For example, inhibitors 
with apparent specificity (PD = 1) might be tested against 

other PCP-associated kinases and/or additional analogs 
might be generated to probe the influence of selected and 
combined chemical modifications on promiscuity. Without 
the identification and analysis of PCPs, many of these puz-
zling structure-promiscuity relationships would most likely 

Fig. 2  (continued)
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remain unnoticed, illustrating the utility of the PCP data 
structure.

Figure 2c shows that kinase annotations of inhibitors 
forming the top ranked PCP are widely distributed across the 
human kinome. The distribution of large dots indicates that a 
variety of distantly related kinases have multiple annotations 
originating from inhibitors of the PCP, suggesting additional 
target hypotheses for PCP compounds and hub analogs.

Figure 2d depicts a lower ranked PCP from cluster A 
that overlaps with the top ranked path. This PCP consists 
of five inhibitors including two densely connected hubs 
(compound 1 and 5) and one highly promiscuous inhibitor 
(compound 1, PD = 47). The lower rank of this PCP com-
pared to the top ranked path is mainly due to its smaller 
size and lower cumulative ΔPD value. The kinome cov-
erage of kinase annotations from both PCPs is compara-
ble. Despite its lower rank, this PCP also reveals a variety 

of structure-promiscuity patterns and represents another 
informative template for experimental design.

Figure 3a depicts cluster B and its top ranked PCP. It 
consists of five inhibitors including three promiscuity hubs 
and two inhibitors with dual kinase activity. With 140 
kinase annotations, PCP compound 1 is one of the most 
promiscuous kinase inhibitors we have identified. The PCP 
contains a close structural analog of this inhibitor with dual 
kinase activity (compound 2) that only differs by a hydroxyl 
to fluoro substitution. In addition, as shown in Fig. 3b, the 
hub environment of compound 1 also contains a variety of 
close analogs with only two or three kinase annotations. 
Thus, at a first glance, one might hypothesize that many 
analogs of compound 1 would also be more promiscuous 
but might have not been sufficiently tested. However, this 
immediate and plausible assumption of data sparseness 
as a cause of apparent differences in promiscuity is called 

Fig. 2  (continued)
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into question when analyzing the kinome distribution of 
PCP kinase annotations, shown in Fig. 3c. In this case, 
kinome-wide activities only result from the pan-kinase 
inhibitor (compound 1), whereas activities of the other 

PCP compounds and PCP-associated inhibitors are strongly 
focused on the Src family within the tyrosine kinase (TK) 
group. This is a characteristic of inhibitors comprising 
cluster B, as also illustrated by considering another lower 

Fig. 2  (continued)
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Fig. 3  Promiscuity cliff pathways from cluster B. In a, the top ranked 
PCP is traced. In b, a promiscuity hub is shown in detail. In c, the 
phylogenetic tree representation of kinase annotations associated with 

the top ranked PCP is depicted. In d, a lower ranked PCP from clus-
ter B is shown. In e, the phylogenetic tree representation of the lower 
ranked PCP is displayed. The representation is according to Fig. 2

ranked PCP from this cluster, depicted in Fig. 3d. This 
PCP comprises five inhibitors and includes three promis-
cuity hubs (with a maximum of 14 kinase annotations). As 
revealed in Fig. 3e, these inhibitors are exclusively active 

against members of the TK group. Taken together, these 
observations suggest that it is unlikely that data sparseness 
alone would account for the apparent difference in promis-
cuity between compound 1 in Fig. 3a and other inhibitors in 
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Fig. 3  (continued)
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cluster B. Accordingly, exploring possible structural origins 
of pan-kinase versus TK promiscuity should, in this case, 
also be an attractive opportunity for follow-up investigation. 
Cluster A and B are representative of many PC clusters 
formed by kinase inhibitors that can be studied in detail on 
the basis of computational PCP analysis.

For the promiscuity hub examples reported in Figs. 2b 
and 3b, no comparative X-ray data are available to fur-
ther investigate promiscuity differences. However, other 
examples of promiscuous compounds have recently been 
discussed on the basis of structural data [44], which are 
well worth considering in the context of PC analysis.

Conclusions

PC clusters from network representations represent a rich 
source of structure-promiscuity relationship information. 
The PCP data structure is particularly informative for 

promiscuity analysis and suitable to aid in experimen-
tal design. However, interactive graphical analysis of 
PC clusters and manual delineation of PCPs is difficult 
and limits PC analysis. Therefore, we have introduced 
a new computational approach to systematically extract 
and organize PCPs from PC clusters. The methodol-
ogy makes it possible to exhaustively identify PCPs in 
data sets, as exemplified by our analysis of PC clusters 
formed by inhibitors of the human kinome. Systemati-
cally identified PCPs reveal many structure-promiscuity 
relationships that would be difficult, if not impossible to 
detect on the basis of interactive case-by-case analysis. 
PCPs provide a basis for exploring structural modifica-
tions that are implicated in triggering promiscuity ver-
sus selectivity and identify compound subsets in which 
apparent differences in promiscuity are likely due to data 
sparseness. Accordingly, the computational approach 

Fig. 3  (continued)
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introduced herein enables a thorough investigation of 
promiscuity patterns on the basis of PCPs and associated 
promiscuity hubs. PCPs covering the human kinome we 

have identified as a part of our study will be made freely 
available for follow-up investigations as an open access 
deposition on the ZENODO platform [45].

Fig. 3  (continued)
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