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Abstract
Accurately predicting the binding affinities of small organic molecules to biological macromolecules can greatly accelerate 
drug discovery by reducing the number of compounds that must be synthesized to realize desired potency and selectivity 
goals. Unfortunately, the process of assessing the accuracy of current computational approaches to affinity prediction against 
binding data to biological macromolecules is frustrated by several challenges, such as slow conformational dynamics, mul-
tiple titratable groups, and the lack of high-quality blinded datasets. Over the last several SAMPL blind challenge exercises, 
host–guest systems have emerged as a practical and effective way to circumvent these challenges in assessing the predictive 
performance of current-generation quantitative modeling tools, while still providing systems capable of possessing tight 
binding affinities. Here, we present an overview of the SAMPL6 host–guest binding affinity prediction challenge, which fea-
tured three supramolecular hosts: octa-acid (OA), the closely related tetra-endo-methyl-octa-acid (TEMOA), and cucurbit[8]
uril (CB8), along with 21 small organic guest molecules. A total of 119 entries were received from ten participating groups 
employing a variety of methods that spanned from electronic structure and movable type calculations in implicit solvent to 
alchemical and potential of mean force strategies using empirical force fields with explicit solvent models. While empirical 
models tended to obtain better performance than first-principle methods, it was not possible to identify a single approach 
that consistently provided superior results across all host–guest systems and statistical metrics. Moreover, the accuracy of 
the methodologies generally displayed a substantial dependence on the system considered, emphasizing the need for host 
diversity in blind evaluations. Several entries exploited previous experimental measurements of similar host–guest systems 
in an effort to improve their physical-based predictions via some manner of rudimentary machine learning; while this strat-
egy succeeded in reducing systematic errors, it did not correspond to an improvement in statistical correlation. Comparison 
to previous rounds of the host–guest binding free energy challenge highlights an overall improvement in the correlation 
obtained by the affinity predictions for OA and TEMOA systems, but a surprising lack of improvement regarding root mean 
square error over the past several challenge rounds. The data suggests that further refinement of force field parameters, as 
well as improved treatment of chemical effects (e.g., buffer salt conditions, protonation states), may be required to further 
enhance predictive accuracy.
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dispersion corrections [44]
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method [97, 104]
GAFF  Generalized AMBER force field [130]
HREX  Hamiltonian replica exchange [122]
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scoring algorithm [138]
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model [140]
MD  Molecular dynamics
MMPBSA  Molecular mechanics Poisson Boltzmann/
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MovTyp  Movable type method [139]
OPLS3  optimized potential for liquid 

simulations [48]
PBSA  Poisson–Boltzmann surface area [114]
PM6-DH+  PM6 semiempirical method with disper-

sion and hydrogen bonding corrections [68, 
108]

RESP  Restrained electrostatic potential [12]
REST  Replica exchange with solute torsional 

tempering [73, 76]
RFEC  Relative free energy calculation
QM/MM  Mixed quantum mechanics and molecular 

mechanics
SOMD  Double annihilation or decoupling method 

performed with Sire/OpenMM6.3 soft-
ware [28, 133]

SQM  Semi-empirical quantum mechanics
TIP3P  Transferable interaction potential 

three-point [61]
TPSS  Tao, Perdew, Staroverov, and Scuseria 

exchange functional [125]
US  Umbrella sampling [128]
VSGB2.1  VSGB2.0 solvation model refit to 

OPLS2.1/3/3e [72]

Introduction

Quantitative physical and empirical modeling approaches 
have played a growing role in aiding and directing the design 
of small molecule biomolecular ligands for use as potential 
therapeutics or chemical probes [1–4, 24, 69]. The degree 
of inaccuracy of these predictions largely determines how 
effective they can be in prioritizing synthesis of small mol-
ecule ligands [113]. Retrospective estimates have suggested 
that current methodologies are capable of achieving about 

1–2 kcal/mol inaccuracy for well-behaved protein–ligand 
systems [6, 131], but more work remains to be done to 
extend the applicability domain of these technologies.

Assessment of how much of this inaccuracy can be 
attributed to fundamental limitations of the force field in 
accurately modeling energetics is complicated by the pres-
ence of numerous additional factors [83]. Proteins are highly 
dynamic entities, and many common drug targets—such 
as kinases [124] and GPCRs [67]—possess slow dynam-
ics with timescales of microseconds to milliseconds [66] 
that frustrate the computation of true equilibrium affinities. 
While there has been some attempt to curate benchmark sets 
of protein–ligand affinity data in well-behaved model pro-
tein–ligand systems that are believed to be mostly free of 
slow-timescale motions that would convolve convergence 
issues with forcefield inaccuracies [83], other effects can 
complicate assessment of the accuracy of physical mod-
eling benchmarks. Ionizable residues, for example, com-
prise approximately 29% of all protein residues [60], and 
large-scale computational surveys suggest that 60% of all 
protein–ligand complexes undergo a change in ionization 
state upon binding [5], with several notable cases charac-
terized experimentally [25, 26, 96, 120]. For physical or 
empirical modeling approaches that assume fixed protona-
tion states throughout the complexation process, protonation 
state effects are hopelessly convolved with issues of force 
field inaccuracy.

Host–guest systems are a tractable model 
for assessing force field inaccuracies

Over the last decade, supramolecular host–guest complexes 
have emerged as a practical and useful model system for 
the quantitative assessment of modeling errors for the inter-
action of druglike small molecules with receptors. Supra-
molecular hosts such as cucurbiturils, cavitands, and cyclo-
dextrins can bind small druglike molecules with affinities 
similar to protein–ligand complexes [89, 90, 107]. The lack 
of slowly relaxing conformational degrees of freedom of 
these hosts eliminates the potential for slow microsecond-
to-millisecond receptor relaxation timescales as a source 
of convergence issues [83], while the small size of these 
systems allows many methodologies to take advantage of 
faster simulation times to rapidly assess force field quality. 
The high solubilities of these systems permit high-quality 
biophysical characterization of their interactions via gold-
standard methods such as isothermal titration calorimetry 
(ITC) and nuclear magnetic resonance (NMR)  [23, 40, 
123]. Additionally, the stability of supramolecular hosts at 
extreme pH allows for strict control of protonation states in 
a manner not possible with protein–ligand systems, allowing 
confounding protonation state effects to be eliminated from 
consideration if desired [123]. Collectively, these properties 
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have made host–guest systems a productive route for reveal-
ing deficiencies in modern force fields through blind com-
munity challenge exercises we have organized as part of the 
statistical assessment of the modeling of proteins and ligands 
(SAMPL) series of blind prediction challenge [91, 93, 115, 
136].

SAMPL host–guest challenges have driven advances 
in our understanding of sources of error

The SAMPL challenges are a recurring series of blind pre-
diction challenges for the computational chemistry commu-
nity [27, 81]. Through these challenges, SAMPL aims to 
evaluate and advance computational tools for rational drug 
design: By focusing the community on specific phenomena 
relevant to drug discovery—such as the contribution of force 
field inaccuracy to binding affinity prediction failures—iso-
lating these phenomena from other confounding factors in 
well-designed test systems, evaluating tools prospectively, 
enforcing data sharing to learn from failures, and releasing 
the resulting high-quality datasets into the community as 
benchmark sets, SAMPL has driven progress in a number 
of areas over five previous rounds of challenge cycles [9, 36, 
37, 45, 46, 86, 87, 91, 93, 98, 115, 115, 116, 136].

More specifically, SAMPL host–guest challenges have 
provided key tests for modeling of binding interactions [83], 
motivating increased attention to how co-solvents and ions 
modulate binding (resulting in errors of up to 5 kcal/mol 
when these effects are neglected) and the importance of 
adequately sampling water rearrangements  [17, 83, 91, 
136]. In turn, this detailed examination has resulted in clear 
improvements in subsequent SAMPL challenges  [136], 
though host–guest binding remains difficult to model accu-
rately [50], in part due to force field limitations (spawning 
new efforts to remedy major force field deficiencies [134]).

SAMPL6 host–guest systems

Three hosts were selected for the SAMPL6 host–guest 
binding challenge from the Gibb Deep Cavity Cavitand 
(GDCC) [38, 51, 84, 85] and the cucurbituril (CB) [33, 74, 
88] families (Fig. 1). The guest ligand sets were purposefully 
selected for the SAMPL6 challenge. The utility of these par-
ticular host systems for evaluating free energy calculations 
has been reviewed in detail elsewhere [84, 85].

The two GDCCs, octa-acid (OA) [38] and tetra-endo-
methyl-octa-acid (TEMOA) [35], are low-symmetry hosts 
with a basket-shaped binding site accessible through 
the larger entryway located at the top. These hosts also 
appeared in two previous SAMPL host–guest challenges—
SAMPL4 [91] and SAMPL5 [136]—with the names of 
OAH and OAMe respectively with different sets of guests. 

OA and TEMOA differ by four methyl groups that reduce 
the size of the binding site entryway (Fig. 1). Both hosts 
expose eight carboxyl groups that increase their solubility. 
The molecular structures of the eight guests selected for 
the SAMPL6 challenge for characterization against both 
OA and TEMOA are shown in Fig. 1 (denoted OA-G0 
through OA-G7). These guests feature a single polar 
group situated at one end of the molecule that tends to be 
exposed to solvent when complexed, while the rest of the 
compound remains buried in the hydrophobic binding site.

A second set of guest ligands were developed for the 
host cucurbit[8]uril (CB8). This host previously appeared 
in the SAMPL3 host–guest binding challenge [92], but 
members of the same family or analogs such as cucurbit[7]
uril (CB7) and CBClip [137] were featured in SAMPL4 
and SAMPL5 challenges as well. CB8 is a symmetric 
 (D8h), ring-shaped host comprising eight identical gly-
coluril monomers linked by pairs of methylene bridges. 
Its top-bottom symmetry means that asymmetric guests 
have at least two symmetry-equivalent binding modes 
that can be kinetically separated by timescales not eas-
ily achievable by standard molecular dynamics (MD) or 
Monte Carlo simulations and may require special consid-
erations, in particular in alchemical absolute binding free 
energy calculations [80]. The CB8 guest set (compounds 
CB8-G0 to CB8-G13 in Fig. 1) includes both fragment-
like and bulkier drug-like compounds.

Some of the general modeling challenges posed by both 
families of host–guest systems have been characterized 
in previous studies. While their relatively rigid structure 
minimizes convergence difficulties associated with slow 
receptor conformational dynamics, both families have been 
shown to bind guest ligands via a dewetting processes—
in which waters must be removed from the binding site 
to accommodate guests—in a manner that can frustrate 
convergence for strategies based on molecular simulation. 
In the absence of tight-binding guest ligands, the octa-
acid host experiences fluctuations in the number of bound 
waters on timescales of several nanoseconds [32]; a similar 
phenomenon was observed in alchemical absolute binding 
free energy calculations of CB7 at intermediate alchemi-
cal states with partially decoupled Lennard–Jones interac-
tions [109]. In addition, hosts in both families have been 
shown to bind ions that can compete with and lower the 
binding affinity of other guests in solution [39, 106, 117]. 
Depending on differences in concentration and composi-
tion, the effect on the binding free energy can be between 
1 and 2 kcal/mol [90, 100, 106]. Sensitivity of the guest 
affinity to ion concentration has been observed also with 
computational methods [53, 94, 101], which suggests that 
careful modeling of the buffer conditions is in principle 
necessary for a meaningful comparison to experiments.
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Experimental host–guest affinity 
measurements

A detailed description of the experimental methodology 
used to collect binding affinity data for OA, TEMOA, 
and CB8 host–guest systems is described elsewhere [95]. 
Briefly, all host–guest binding affinities were determined 
via direct or competitive isothermal titration calorim-
etry (ITC) at 298  K. OA and TEMOA measurements 
were performed in 10 mM sodium phosphate buffer at 
pH 11.7 ± 0.1 whereas CB8 guests binding affinities were 
measured in a 25 nM sodium phosphate buffer at pH 7.4. 
Phosphate buffer is a common choice of buffer for its rel-
evance to biology and can be prepared over a wide pH 
range for exerting control over protonation states. Binding 
stoichiometries were determined by 1H NMR spectral inte-
gration and/or by ITC. The ITC titration curves were fitted 
to a single-site model or a competition model for all guests, 
except for CB8-G12 (donepezil), for which a sequential 
binding model was used. The stoichiometry coefficient was 
either fitted simultaneously with the other parameters or 
fixed to the value verified by the NMR titrations, which 
is the case for the CB8 guest set, as well as for OA-G5, 
TEMOA-G5, and TEMOA-G7.

To determine experimental uncertainties, we added the 
relative error in the nonlinear fit-derived association con-
stant (Ka) or binding enthalpy (ΔH) with the relative error 
in the titrant concentration in quadrature [20]. We decided 
to arbitrarily assume a relative error in the titrant concen-
tration of 3% after personal communication with Professor 
Lyle Isaacs who suggested a value inferior to 5% based on 
his experience. The minimum relative nonlinear fit-derived 
uncertainty permitted was 1%, since the fit uncertainty was 
reported by the ITC software as smaller than this in some 
cases. It should be noted that the error propagation strategy 
adopted here assumes that the stoichiometry coefficient is 
fitted to the ITC data in order to absorb errors in cell vol-
ume and titrand concentration; this approach is exact only 
for the OA/TEMOA sets with the exclusion of OA-G5, 

TEMOA-G5, and TEMOA-G7, and an underestimate of the 
true error for the remaining cases. The error was then further 
propagated to the binding free energies and entropies that 
were calculated from Ka and ΔH. The final estimated experi-
mental uncertainties are relatively small, never exceeding 
0.1 kcal/mol.

The resulting experimental measurements with their 
uncertainties are reported in Table 1 and Fig. 2. The dynamic 
range of the binding free energy ΔG spans 4.25 kcal/mol for 
the merged OA and TEMOA guest set, and 7.05 kcal/mol for 
CB8. The relatively wide cavity of CB8 enables binding stoi-
chiometries different than 1:1. This is the case for three of 
the CB8 guests, specifically CB8-G1 (tolterodine), CB8-G4 
(gallamine triethiodate), and CB8-G12 (donepezil). Curi-
ously, while CB8-G12 was found to bind in 2:1 complexes 
(two guests bound to the same host), the NMR experiments 
determined stoichiometries of 1:2 and 1:3 for CB8-G1 and 
CB8-G4 respectively (one guest bound to multiple hosts). 
For the last two guests, the ITC titration curves fit well to a 
single set of sites binding model which indicates that each 
of the binding events is equivalent. In Table 1 and Fig. 2 
we report the binding affinity of both the 1:1 and the 2:1 
complex for CB8-G12, which are identified by CB8-G12a 
and CB8-G12b respectively, and the free energy of the 1:1 
complex for CB8-G1 and CB8-G4.

Fig. 1  Hosts and guests featured in the SAMPL6 host–guest blind 
challenge dataset. Three-dimensional structures of the three hosts 
featured in the SAMPL6 challenge dataset (OA, TEMOA, and CB8) 
are shown in stick view from top and side perspective views. Car-
bon atoms are represented in gray, hydrogens in white, nitrogens in 
blue, and oxygens in red. Guest ligands for each complex are shown 
as two-dimensional chemical structures annotated by hyphenated host 
and guest names. Protonation states of the guest structures correspond 
to the predicted dominant microstate at the experimental pH at which 
binding affinities were collected, and matches those provided in the 
mol2 and sdf input files shared with the participants when the chal-
lenge was announced. The same set of guests OA-G0 through OA-G7 
was used for both OA and TEMOA hosts. The gray frame (lower 
right) contains the three CB8 guests that constitute the bonus chal-
lenge

◂

Fig. 2  Overview of experimental binding affinities for all host–guest 
complexes in the SAMPL6 challenge set. Binding free energies 
(ΔG) measured via isothermal titration calorimetry (ITC) are shown 
(filled circles), along with experimental uncertainties denoting stand-
ard error of the mean (black error bars), for OA (yellow), TEMOA 
(green), and CB8 (blue) complexes
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Table 1  Summary of ITC and 
NMR measurements for the 
SAMPL6 host–guest dataset

Guest identifiers (ID), association constants (Ka), binding free energies (ΔG), enthalpies (ΔH), entropies at 
room temperature (TΔS) and stoichiometric ratios (n) as determined by ITC and NMR assays are reported 
for all compounds featured in the challenge. All quantities are reported as point estimates ± statistical error 
obtained by error propagation. For Ka and ΔH, the reported uncertainties incorporate both the uncertainty 
in the ITC enthalpogram least-squares fit and an assumed 3% uncertainty in titrant concentration. A mini-
mum least-squares fit uncertainty of 1% was assumed for fit errors reported by instrumentation as < 1%. 
ΔG and TΔS and their uncertainties were obtained from the first two quantities. Some of the compounds 
in the CB8 guest set can be bound by their hosts with stoichiometries different than 1:1. For CB8-G1 and 
CB8-G4, which can form 1:2 (two hosts bound to the same guest) and 1:3 complexes with CB8, respec-
tively, we report the thermodynamic quantities of only one of the equivalent binding events—the value 
used to calculate the statistics for challenge entries. For CB8-G12, we report the measurements of both 
the 1:1 (CB8-G12a) and the 2:1 (CB8-G12b) bound complexes. The original data can be found at https ://
githu b.com/Moble yLab/SAMPL 6/tree/maste r/host_guest /Analy sis/Exper iment alMea surem ents/exper iment 
al_measu remen ts.csv. Eventual updates or corrections to the data will be made available at the same URL, 
and anyone wishing to reuse the data should refer there
a Point estimate and uncertainties computed from the Ka measurements by error propagation
b All experiments were performed at 298 K
c The thermodynamic quantities given here represent the binding free energy and enthalpy of one of the 1/n 
equivalent binding events
d Units of  M−2

ID Ka(M−1) ΔG (kcal/mol)a ΔH(kcal/mol) TΔS (kcal/mol)b n

OA-G0 (147 ± 7) × 102 − 5.68 ± 0.03 − 4.8 ± 0.2 0.8 ± 0.2 1
OA-G1 (26 ± 1) × 102 − 4.65 ± 0.02 − 5.5 ± 0.2 − 0.9 ± 0.2 1
OA-G2 (140 ± 6) × 104 − 8.38 ± 0.02 − 12.1 ± 0.5 − 3.7 ± 0.5 1
OA-G3 (62 ± 2) × 102 − 5.18 ± 0.02 − 7.5 ± 0.3 − 2.4 ± 0.3 1
OA-G4 (164 ± 7) × 103 − 7.11 ± 0.02 − 6.9 ± 0.3 0.2 ± 0.3 1
OA-G5 (233 ± 9) × 10 − 4.59 ± 0.02 − 5.3 ± 0.2 − 0.7 ± 0.2 1
OA-G6 (44 ± 2) × 102 − 4.97 ± 0.02 − 5.3 ± 0.2 − 0.3 ± 0.2 1
OA-G7 (36 ± 1) × 103 − 6.22 ± 0.02 − 7.4 ± 0.3 − 1.2 ± 0.3 1
TEMOA-G0 (28 ± 1) × 103 − 6.06 ± 0.02 − 7.8 ± 0.4 − 1.8 ± 0.4 1
TEMOA-G1 (24 ± 2) × 103 − 5.97 ± 0.04 − 8.2 ± 0.6 − 2.3 ± 0.6 1
TEMOA-G2 (98 ± 4) × 103 − 6.81 ± 0.02 − 9.3 ± 0.4 − 2.5 ± 0.4 1
TEMOA-G3 (128 ± 9) × 102 − 5.60 ± 0.04 − 8.9 ± 0.4 − 3.2 ± 0.4 1
TEMOA-G4 (51 ± 2) × 104 − 7.79 ± 0.02 − 8.9 ± 0.4 − 1.1 ± 0.4 1
TEMOA-G5 (113 ± 5) × 10 − 4.16 ± 0.02 − 8.0 ± 0.3 − 3.8 ± 0.3 1
TEMOA-G6 (91 ± 5) × 102 − 5.40 ± 0.03 − 6.2 ± 0.2 − 0.8 ± 0.2 1
TEMOA-G7 (107 ± 4) × 10 − 4.13 ± 0.02 − 8.3 ± 0.3 − 4.2 ± 0.3 1
CB8-G0 (81 ± 6) × 103 − 6.69 ± 0.05 − 4.2 ± 0.2 2.5 ± 0.2 1
CB8-G1c (40 ± 3) × 104 − 7.65 ± 0.04 − 5.0 ± 0.2 2.6 ± 0.2 0.5
CB8-G2 (41 ± 4) × 104 − 7.66 ± 0.05 − 6.5 ± 0.3 1.2 ± 0.3 1
CB8-G3 (53 ± 5) × 103 − 6.45 ± 0.06 − 2.5 ± 0.1 4.0 ± 0.2 1
CB8-G4c (51 ± 4) × 104 − 7.80 ± 0.04 − 9.8 ± 0.4 − 2.0 ± 0.4 0.33
CB8-G5 (99 ± 9) × 104 − 8.18 ± 0.05 − 3.2 ± 0.1 5.0 ± 0.1 1
CB8-G6 (13 ± 1) × 105 − 8.34 ± 0.05 − 5.7 ± 0.2 2.6 ± 0.2 1
CB8-G7 (21 ± 4) × 106 − 10.0 ± 0.1 − 6.5 ± 0.3 3.5 ± 0.3 1
CB8-G8 (83 ± 6) × 108 − 13.50 ± 0.04 − 14.4 ± 0.6 − 0.9 ± 0.6 1
CB8-G9 (23 ± 3) × 105 − 8.68 ± 0.08 − 4.6 ± 0.2 4.0 ± 0.2 1
CB8-G10 (10 ± 1) × 105 − 8.22 ± 0.07 − 2.00 ± 0.08 6.2 ± 0.1 1
CB8-G11 (50 ± 4) × 104 − 7.77 ± 0.05 − 2.11 ± 0.08 5.7 ± 0.1 1
CB8-G12a (167 ± 9) × 105 − 9.86 ± 0.03 − 9.2 ± 0.4 0.7 ± 0.4 1
CB8-G12b (146 ± 6) × 103(d) − 7.05 ± 0.02 − 4.8 ± 0.2 2.2 ± 0.2 2
CB8-G13 (161 ± 8) × 103 − 7.11 ± 0.03 − 6.8 ± 0.3 0.3 ± 0.3 1

https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/ExperimentalMeasurements/experimental_measurements.csv
https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/ExperimentalMeasurements/experimental_measurements.csv
https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/ExperimentalMeasurements/experimental_measurements.csv
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Methods

Challenge design and logistics

Challenge timeline

On August 24th, 2017, we released in a publicly accessible 
GitHub repository [55] a brief description of the host–guest 
systems and the experimental methodology, together with 
the challenge directions, and input files in mol2 and sdf 
formats for the three hosts and their guests. The instructions 
shared online included information about buffer concentra-
tions, temperature, and pH used for the experiments. The 
participants were asked to submit their predicted absolute 
binding free energies and, optionally, binding enthalpies, 
along with a detailed description of the methodology and the 
software employed through the Drug Design Data Resource 
(D3R) website (https ://drugd esign data.org/about /sampl 6) by 
January 19th, 2018. We also encouraged the inclusion of 
uncertainties and/or standard error of the mean (SEM) of the 
predictions when available. The results of the experimental 
assays were released on January 26th in the same GitHub 
repository. The challenge culminated in a conference held on 
February 22–23, 2018 in La Jolla, CA where the participants 
shared lessons learned from participating in the challenge 
after performing retrospective analysis of their data.

Bonus challenge

Three molecules in the CB8 guest sets, namely CB8-G11, 
CB8-G12, and CB8-G13, were proposed to participants as 
an optional bonus challenge since they were identified in 
advance to present some atypical difficulties for molecular 
modeling. In particular, the initial experimental data sug-
gested both CB8-G11 and CB8-G12 to bind with 2:1 binding 
stoichiometry while CB8-G13 was deemed to be an espe-
cially challenging case for modeling due to the presence of a 
coordinated platinum atom, which is commonly not readily 
handled by classical force fields and usually requires larger 
basis sets for quantum mechanics (QM) calculations than 
those commonly employed with simple organic molecules. 
Further investigation after the start date of the challenge 
revealed an error in the calibration of a CB8 solution which 
affected the measurement of CB8-G11. After correcting the 
error, a 1:1 stoichiometry was recovered, and the experi-
ment was repeated to validate the result. Unfortunately, the 
new data was obtained too late to send out a correction to 
all participants, so only six entries included predictions for 
this guest.

Preparation of standard input files

Standard input files for the three hosts were generated for 
the previous rounds of the SAMPL host–guest binding chal-
lenge and uploaded to the repository unchanged, while the 
guests’ atomic coordinates were generated from their SMILES 
string representation through the OMEGA library [49] in the 
OpenEye Toolkit (version 2017.Oct.b5) except for oxaliplatin 
(CB8-G13), which was generated with OpenBabel to handle 
the platinum atom. The compounds were then docked into 
their hosts with OpenEye’s FRED docking facility [77, 78]. 
Stereochemistry of the 3D structures recapitulated the ste-
reochemistry of compounds assayed experimentally; experi-
mental assays for chiral compounds were enantiopure except 
OA-G5, which was measured as a racemic mixture. For this 
molecule, we picked at random one of the two enantiomers 
under the assumption that the guest chirality (for this guest 
with a single chiral center) would not affect the binding free 
energy to an achiral host such as OA and TEMOA since the 
system otherwise contains no chiral centers. This informa-
tion was included in the instructions when the challenge was 
released. Guest mol2 files also included AM1-BCC point 
charges generated with the AM1-BCC charge engine in the 
Quacpac tool from the OpenEye toolkit [58, 59]. Figure 1 
shows the protonation state of the molecules as provided in 
the input files, which reflects the most likely protonation state 
as predicted by Epik [43, 110] from the Schrödinger Suite 
2017-2 (Schrödinger) at experimental buffer pH (11.7 for OA 
and 7.4 for CB8). This resulted in all molecules possessing 
a net charge, with the exception of oxaliplatin and the CB8 
host, which have no acidic or basic groups. Specifically, the 
eight carboxyl groups of OA and TEMOA were modeled as 
deprotonated and charged. The instructions stated clearly that 
the protonation and tautomeric states provided were not guar-
anteed to be optimal. In particular, participants in the bonus 
challenge were advised to treat CB8-G12 with care as, in its 
protonated state, the nitrogen proton could be placed so that 
the substituent was axial or equatorial. The latter solution was 
arbitrarily adopted by the tools used to generate the input files 
for CB8-G12.

Statistical analysis of challenge entries

Performance statistics

We computed root mean square error (RMSE), mean signed 
error (ME), coefficient of determination  (R2), and Kendall 
rank correlation coefficient (τ) comparing experimentally 
determined binding free energies with blinded participant free 
energy predictions.

The mean signed error (ME), which quantifies the bias in 
predictions, was computed as

https://drugdesigndata.org/about/sampl6
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where ΔG(exp)

i
 and ΔG(calc)

i
 are the experimental measurement 

of the binding free energy and its computational prediction 
respectively for the i-th molecule, and N is the total num-
ber of molecules in the dataset. A positive ME reflects an 
overestimated binding free energy ΔG (or underestimated 
affinity Kd = e−�ΔG × (1 M).

Some of the methods appearing in SAMPL6 were also 
used in previous rounds of the same challenge to predict 
relative binding free energies of similar host–guest sys-
tems. In order to comment on the performance of these 
methods over sequential challenges, for which statistics on 
absolute free energies are not readily available, we com-
puted a separate set of statistics defined as offset statistics, 
as opposed to the absolute statistics defined above, in the 
same way they were reported in previous challenge over-
view papers. These statistics are computed identically to 
absolute statistics but by substituting ΔG(calc)

i
 with

in the estimator expressions. The offset root mean square 
error computed from the ΔG(calc)

i,o
 data points is termed 

 RMSEo. It should be noted, however, that  R2 and τ are invar-
iant under a constant shift of the data points. For this reason, 
we will use the symbols  R2 and τ both for the absolute and 
the offset correlation statistics.

Given the similarities of the two octa-acid hosts the set 
of their guest molecules, and that the large majority of the 
submitted methodologies were applied to both sets, we 
decided to report here the statistics computed using all 
the 16 predictions performed for OA and TEMOA (i.e., 8 
predictions for each host). This merged set will be referred 
to as OA/TEMOA set in the rest of the work. The only 
method used to predict the binding free energies of the 
TEMOA set but not of the OA set was US-CGenFF (see 
Table 2 for a schematic description of the methodology). 
We also decided to calculate separate statistics for the CB8 
to highlight the general difference in performance between 
the predictions of the two host families. Statistics calcu-
lated on the two separate OA and TEMOA sets, as well 
as on the full dataset including CB8, OA, and TEMOA, 
are available on the GitHub repository (https ://githu b.com/
Moble yLab/SAMPL 6/tree/maste r/host_guest /Analy sis/
Accur acy/).

We generated bootstrap distributions of the statistics and 
computed 95-percentile bootstrap confidence intervals of 
the point estimates by generating 100,000 bootstrap sam-
ples through random sampling of the set of host–guest pairs 
with replacement. When the submission included SEMs for 

(1)ME =
1

N

N
∑

i=1

(

ΔG
(exp)

i
− ΔG

(calc)

i

)

(2)ΔG
(calc)

i,o
=ΔG

(calc)

i
−ME

each prediction, we accounted for the statistical uncertainty 
in predictions by adding, for each bootstrap replicate, an 
additional Gaussian perturbation to the prediction with a 
standard deviation indicated by the SEM for that prediction.

Null model

In order to compare the results obtained by the partici-
pants to a simple model that can be evaluated with minimal 
effort, we computed the binding free energy predicted by 
MM-GBSA rescoring [42] using Prime [56, 57] with the 
OPLS3 forcefield  [48] in the Schrödinger Suite 2018-1 
(Schrödinger). We used the same docked poses provided in 
the input files that were shared with all the participants as 
the initial coordinates for all the calculations. All docked 
positions were minimized before being rescored with the 
OPLS3 force field and the VSGB2.1 solvent model. The 
only exception to this was CB8-G4, which was manually re-
docked into the host, as the initial structure contained steric 
clashes that could not be relaxed by minimization, causing 
the predicted binding free energy to spike to an unreasonable 
value of + 2443 kcal/mol.

Results

We received 42 submissions for the OA guest set, 43 for 
TEMOA, and 34 for CB8, for a total of 119 submissions, 
from ten different participants, five of whom uploaded pre-
dictions for the three compounds in the bonus challenge as 
well. Only two groups submitted enthalpy predictions, which 
makes it impractical to draw general conclusions about the 
state of the field regarding the reliability of enthalpy predic-
tions. Moreover, the predictive performance was generally 
poor (see Supplementary Fig. 3). The results of the enthalpy 
calculations are thus not discussed in detail here, but they are 
nevertheless available on the GitHub repository.

Overview of the methodologies

Including the null model, 41 different methodologies were 
applied to one or more of the three datasets. In particular, 
the submissions included a total of 25 different variations of 
the movable type method exploring the effect of the input 
structures, the force field, the presence of conformational 
changes upon binding, and the introduction of previous 
experimental information on the free energy estimates. In 
order to facilitate the comparison among methods, we focus 
in this analysis on a representative subset of seven different 
variations of the methodology. Supplementary Figures 1 and 
2 show statistic bootstrap distributions and correlation plots 
for all the movable type free energy calculations submit-
ted. As many of the methodologies are reported in detail 

https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/Accuracy/
https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/Accuracy/
https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/Accuracy/
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Table 2  Summary of methodologies used by the participants in the SAMPL6 host–guest challenge

When a method uses multiple models (e.g., MM is used to generate the conformations to evaluate at the QM level in DFT(TPSS)-D3), only the 
energy and solvation models used for the final free energy prediction are listed. Source: https ://githu b.com/Moble yLab/SAMPL 6/tree/maste r/
host_guest /Analy sis/Submi ssion s
COSMO-RS conductor-like screening model for real solvents [65], DDM double decoupling method [41], FM force matching [30], FSDAM fast 
switching double annihilation method  [97, 104] , KMTISM KECSA-movable type implicit solvation model  [140], MD molecular dynamics, 
MovTyp movable type method [139], PBSA Poisson–Boltzmann surface area [114], REST replica exchange with solute torsional tempering [73, 
76], RFEC relative free energy calculation, QM/MM mixed quantum mechanics and molecular mechanics, SOMD double annihilation or decou-
pling method performed with Sire/OpenMM6.3 software  [28, 133], SQM semi-empirical quantum mechanics, US umbrella sampling  [128], 
VSGB2.1 VSGB2.0 solvation model refit to OPLS2.1/3/3e [72]
a Alchemical calculations are flagged by (A). All of these are absolute free energy calculations except for the RFEC entries.
b (E) and (I) denote explicit and implicit solvation models respectively
c The corrections based on previous experimental data either apply only an additive term (offset) or both an additive term and a multiplicative 
factor (linear).

Method  IDa Sampling Energy model Solvation  modelb Experimental 
fit correctionc

SAMPL6 refer-
ence

DDM-AMOEBA (A) MD AMOEBA AMOEBA (E) No Laury [70]
DDM-FM (A) HREX; MD Force-matching/RESP TIP3P (E) No Han [47],Nishi-

kawa [99]
DDM-FM-QMMM (A) HREX; MD Force-matching/RESP; 

DFT(B3LYP)
TIP3P (E) No Hudson [54]

DDM-GAFF (A) MD GAFF/AM1-BCC TIP3P (E) No
DFT(B3PW91) MD; clustering DFT(B3PW91) SMD (I) No Eken [29]
DFT(B3PW91)-D3 MD; clustering DFT(B3PW91)-D3 SMD (I) No Eken [29]
DFT(TPSS)-D3 MD DFT(TPSS)-D3 COSMO-RS (I) No Caldararu [22]
FSDAM (A) REST; MD GAFF2/AM1-BCC TIP3P (E) No Procacci [105]
NULL Docking OPLS3 VSGB2.1 (I) No
MMPBSA-GAFF MD; clustering GAFF/RESP PBSA (I) No Eken [29]
MovTyp-GE3Nd MD; clustering GARF KMTISM (I) No Song [118]
MovTyp-GE3O MD; clustering GARF KMTISM (I) Offset Song [118]
MovTyp-GE3L MD; clustering GARF KMTISM (I) Linear Song [118]
MovTyp-GT1N MD; clustering GARF KMTISM (I) No Song [118]
MovTyp-GT1L MD; clustering GARF KMTISM (I) Linear Song [118]
MovTyp-KT1N MD; clustering KECSA KMTISM (I) No Song [118]
MovTyp-KT1L MD; clustering KECSA KMTISM (I) Linear Song [118]
RFEC-GAFF2 (A)e MD GAFF2/RESP TIP3P (E) Offset Caldararu [22]
RFEC-QMMM (A) MD GAFF2/RESP; PM6-DH+ TIP3P (E) Offset Caldararu [22]
SQM(PM6-DH+) MD PM6-DH+ COSMO-RS (I) No Caldararu [22]
SOMD-A (A)f MD GAFF/AM1-BCC TIP3P (E) No Papadourakis 

[102]
SOMD-A-nobuffer (A) MD GAFF/AM1-BCC TIP3P (E) No Papadourakis 

[102]
SOMD-C (A) MD GAFF/AM1-BCC TIP3P (E) No Papadourakis 

[102]
SOMD-C-nobuffer (A) MD GAFF/AM1-BCC TIP3P (E) No Papadourakis 

[102]
SOMD-D (A) MD GAFF/AM1-BCC TIP3P (E) Linear Papadourakis 

[102]
SOMD-D-nobuffer (A) MD GAFF/AM1-BCC TIP3P (E) Linear Papadourakis 

[102]
US-CGenFF MD CGenFF TIP3P (E) No Han [47],Nishi-

kawa [99]
US-GAFF MD GAFF/AM1-BCC TIP3P (E) No Song [118]
US-GAFF-C MD GAFF/AM1-BCC TIP3P (E) Linear Song [118]

https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/Submissions
https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/Submissions
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elsewhere, in this section, we give a brief overview of the 
different strategies employed for the challenge to model the 
host–guest systems and estimate the binding free energies, 
and we leave the detailed descriptions of the various meth-
odologies to the articles referenced in Table 2.

Modeling

The majority of the participants either used the docked poses 
provided in the input files or ran a separate docking program 
to generate the initial complex conformation for the calcula-
tions. In few cases, the starting configuration was found by 
manually placing the guest inside the host. Surprisingly, the 
most common solvent model used in classical simulations 
was still TIP3P [61], a water model parameterized by Jor-
gensen 35 years ago for use with a fixed-cutoff Monte Carlo 
code neglecting long-range dispersion interactions and omit-
ting long-range electrostatics. The only other explicit water 
models used in this round of the challenge were the signifi-
cantly more modern AMOEBA [103] and TIP4P-Ew [52] 
water models, which was used to sample conformations 
to evaluate at the QM level. Implicit solvent models were 
adopted only in MMPBSA and for the movable type and QM 
calculations. We observed more variability in the treatment 
of buffer salt concentrations despite the known importance 
of this element in affecting the binding predictions, which 
may reflect a lack of standard practices in the field. Some 
entries modeled the buffer ionic strength explicitly with  Na+ 
and  Cl− ions while others included only the neutralizing 
counterions or used a uniform neutralizing charge. One of 
the participating groups submitted multiple variants of the 
SOMD method either utilizing only neutralizing counterions 
or including additional ions simulating the ionic strength at 
experimental conditions, which makes it possible to directly 
assess the effect of this modeling decision on the selected 
host–guest systems.

Most methods employing classical force fields used 
GAFF [130] or GAFF2 (still under active development) 
with AM1-BCC [58, 59] or RESP [12] charges, which were 
usually derived at the Hartree-Fock or MP2 level of theory. 
Other approaches made use of the AMOEBA polarizable 
model [103], CGenFF [30] or force matching [129] starting 

from CGenFF parameters. The movable type calculations 
utilized either the KECSA [138] scoring algorithm or the 
more recently developed GARF  [11]. Several submis-
sions employed QM potentials at the semi-empirical PM6-
DH+ [68, 108] or DFT level of theory either modeling the 
full host–guest system or in hybrid QM/MM approaches that 
treated quantum mechanically the guest only. DFT calcula-
tions employed B3LYP [13], B3PW91 [13], or TPSS [125] 
functionals and often the DFT-D3 dispersion correction [44].

Sampling and free energy prediction

All the challenge entries used MD to sample host–guest 
conformations; uses of docking were limited to prepara-
tion of initial bound geometries for subsequent simula-
tions. This was also the case also for QM and movable type 
calculations, where samples generated from MD were in 
some cases clustered prior to quantum chemical energy 
evaluations. In a few cases, enhanced sampling techniques 
were used; in particular, the entries identified by DDM-FM 
and DDM-FM-QMM used Hamiltonian Replica Exchange 
(HREX) [122] as part of their double decoupling method 
(DDM) calculation [41] while Replica Exchange with Sol-
ute torsional Tempering (REST) [73, 76] was employed 
in FSDAM to generate from equilibrium the starting con-
figurations for the fast switching protocol. Many groups 
used the double decoupling or the double annihilation 
method with purely classical force fields or with hybrid 
QM/MM potentials and either Bennett acceptance ratio 
(BAR) [15, 111] or the multistate Bennett acceptance ratio 
(MBAR) [112] to estimate free energies for the aggregated 
simulation data. Other classes of methodologies applied to 
this dataset include umbrella sampling (US) [128], movable 
type [139], MMPBSA [119], and free energy predictions 
based on QM calculations.

The repeat appearance of hosts chosen from the octa-
acid and cucurbituril families as test systems for the SAMPL 
binding challenge, which reflects the continuous contribu-
tion of experimental data from the Gibb and Isaacs labo-
ratories, led some groups to take advantage of previously 
available experimental data to improve their computational 
predictions. Several entries (e.g., SOMD-D, US-GAFF-C, 

d Only a subset of the 25 movable type variations are included here. The four-letter suffix of each movable type submission is to be interpreted as fol-
lowing: first letter indicates the force field (G: GARF; K: KECSA), the second letter input structures (E: ensemble of structures from MD sampling; 
T: lowest energy structure during movable type scoring), the third letter is the number of states (1: only the complex is considered, 3: includes also 
the energy scores of host and guest in solution), and the fourth letter the type of experimental correction (L linear, O offset, N no correction)
e Both RFEC-GAFF2 and RFEC-QMMM report the results of relative free energy calculations. The offsets were determined from experimental 
data for similar OA or TEMOA guests
f SOMD submissions denoted with the nobuffer suffix include only the neutralizing counterions while the others add extra ions to model the buffer 
salt concentration. SOMD-A has no corrections. SOMD-B adds corrections for missing long-range dispersion interactions and for the flat-bottomed 
restraint to bring the ligand to standard state concentration. SOMD-D includes a linear correction fit to previously-available experimental data

Table 2  (continued)
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and MovTyp-GE3L) were submitted with a linear1 correc-
tion of the form

where the slope and offset coefficients (i.e., a and b respec-
tively) were trained on data generated for previous rounds 
of the challenge. In some of the movable type calculations 
(e.g., MovTyp-GE3O), the coefficient a was fixed to unity 
and the training data used to determine a purely additive bias 
correction. Relatedly, RFEC-GAFF2 and RFEC-QMMM, 
which included predictions for the OA and TEMOA guest 
sets, calculated the relative binding free energy between the 
compound and determined the offsets necessary to obtain 
absolute free energy using binding measurements of similar 
OA and TEMOA guests.

Submission performance statistics

As mentioned above, we present here the statistics obtained 
by the challenge entries on the CB8 dataset and the merged 
OA and TEMOA dataset with the exception of US-CGenFF, 
for which we received a submission for the TEMOA set only. 
Moreover, since only a minority of entries had predictions 
for the bonus challenge, we excluded CB8-G11, CB8-G12, 
and CB8-G13 when computing the statistics of all the meth-
odologies in order to compare them on the same set of com-
pounds. Table 3 reports such statistics with 95-percentile 
confidence intervals and Fig. 3 show the statistics bootstrap 
distributions. Some of the methods were used to estimate the 
binding free energy of only one between the OA/TEMOA 
and the CB8 sets, and, as a consequence, some of the table 
entries are missing. For the methodologies that made pre-
dictions of the bonus compounds, we report the statistics 
obtained including them separately in Table 4. While it is 
difficult to isolate methods and models that performed very 
well across datasets and statistics, a few patterns emerged 
from comparing the different entries.

Challenge entries generally performed better on OA/
TEMOA than CB8

In general, the CB8 guest set proved to be more challenging 
than the OA/TEMOA set both in terms of error and cor-
relation statistics. It is rarely the case that the same method 
scored better statistics on the former set, and only MovTyp-
GT1N does so with statistical significance while the oppo-
site can be observed relatively often. Figure 4a shows the 
root mean square error (RMSE) and mean signed error (ME) 

(3)ΔG(corrected) = a ⋅ ΔG(calc) + b

with 95-percentile bootstrap confidence interval computed 
for each molecule using the ten methods that scored best in 
RMSE statistics in the merged OA/TEMOA set or the CB8 
set (excluding the bonus challenge), which formed a set of 
14 different techniques employing GAFF and GAFF2 [130], 
CGenFF  [129], force matching  [30], AMOEBA  [103], 
and QM/MM potentials using DFT(B3LYP) [13] or PM6-
DH+ [68, 108]. These top ten methods performed poorly 
on eight out of the eleven CB8 compounds, and while confi-
dence intervals for all the statistics are generally large, they 
also performed significantly worse on several CB8 guests 
than the OA/TEMOA ligands they accurately predicted affin-
ities for. This loss of accuracy seems to be fairly consistent 
across models and methodologies, but the data is not suffi-
cient to determine the exact cause of this behavior (e.g., force 
field parameters, the generally larger dimensions of the CB8 
guests, protonation states). However, the results of the related 
SAMPL6 SAMPLing challenge does suggest that properly 
accounting for slow conformational dynamics for some of the 
CB8 guests may require longer simulation times than for the 
OA compounds [55], which may have contributed to poorer 
performance over the OA set. Moreover, explicitly modeling 
the buffer salt concentration in SOMD significantly reduced 
the difference in error on the two guest sets (compare SOMD-
C with SOMD-C-nobuffer), albeit without a commensurate 
improvement in correlation statistics, so the issue of missing 
chemical effects may also have a role.

The same trend appears when examining the performance 
of methods in correctly predicting the tightest binder of the 
three guest sets Fig. 4b. About 61% and 66% of the meth-
ods correctly ranked OA-G2 and TEMOA-G4 as the tightest 
complexes in their respective sets, while CB8-G8 was cor-
rectly classified in only about 43% of the cases. In particular, 
the latter observation is interesting when considering that 
the binding free energy of G8 to CB8 is 3.5 kcal/mol greater 
than the second tightest binder (G7), despite the structural 
similarities between both guests. It is also worth mention-
ing that SOMD method was the only methodology that cor-
rectly ranked the tightest binder of the three separate guest 
sets, although the prediction that G8 was the highest affinity 
guest for CB8 did not hold when buffer salt conditions were 
modeled explicitly.

Linear corrections fit to prior experimental data can reduce 
error without improving correlation

Nine of the entries represented in Fig. 3 incorporate fits to 
prior experimental data with the goal of either improving 
the computationally-predicted affinities or determining the 
offset necessary to convert relative free energy estimates 
into absolute binding affinities. It should be noted that a con-
stant offset or multiplicative factor modifying all data points 
cannot alter the R 2 statistic besides correcting an inverse 

1 Technically, this is an affine transformation in the general case 
since b ≠ 0 for some of the corrections employed by participants, but 
we will refer to it as linear here.
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correlation, and they can change � only if the transforma-
tion is such that the ranking of at least two data points is 
switched, which a single linear transformation with posi-
tive slope cannot do. However, since some of the entries fit 
distinct correction terms for OA and TEMOA guests, cor-
relation statistics for the combined OA/TEMOA set were 
affected (see, e.g., Supplementary Fig. 2 results for SOMD-
C and SOMD-D, MovTyp-GE3N and MovTyp-GE3S). We 
can thus observe the effects of the linear transformations 
trained on experimental data on both the error and correla-
tion statistics.

The corrections were generally successful in reducing 
RMSE. Among the top ten methods scoring the lowest 
RMSE on the OA/TEMOA set, seven employ a correc-
tion. Moreover, when considering multiple submissions of 
the same technique that differ only in whether a fit to prior 
experimental data was included, the entry with the low-
est RMSE incorporates experimental data in every case. 
However, the results are less consistent when considering 
the CB8 guest set. The trend is the same for the SOMD, 
US-GAFF, and MovTyp submissions that used the KECSA 
potential, but it is reversed for the majority of the MovTyp 
submissions employing the GARF energy model (see also 

Supplementary Fig. 2). It should be noted that many of the 
MovTyp corrections were trained on a dataset that pooled 
binding measurements of OA, TEMOA, and CB8 guests, so 
it is possible that the approach failed to generalize when the 
methodology was affected by a systematic error of opposite 
sign on the OA/TEMOA and CB8 sets (see Fig. 5). The 
methods that scored best (in terms of lowest RMSE) are 
US-GAFF-C for OA/TEMOA, and SOMD-D-nobuffer for 
CB8; excluding methods utilizing fits to experimental data, 
US-CGenFF and MovTyp-GT1N have the lowest RMSE on 
the OA/TEMOA and CB8 sets, respectively.

On the other hand, integrating prior experimental data did 
not appreciably impact correlation statistics, and the same 
methods with or without experimental correction show very 
similar R 2 and � bootstrap distributions. It is true that the 
initial performance of these methods without the experi-
ment-based correction on the separated OA and TEMOA 
sets was relatively similar, thus leaving a small margin of 
improvement for this type of correction to reduce the data 
variance around the regression line and increasing R 2 . How-
ever, comparing the statistics computed pooling together the 
OA/TEMOA and CB8 predictions, which displayed very 
different correlation statistics, did not show any significant 

Table 3  Method performance statistics and bootstrap confidence intervals on OA/TEMOA and CB8 datasets

Root mean square error (RMSE), mean signed error (ME), coefficient of determination (R2 ), and Kendall correlation coefficient ( � ) obtained 
by each methodology on the merged OA/TEMOA and the CB8 datasets. The only exception is US-CGenFF whose OA/TEMOA statistics were 
computed using only the TEMOA set since no submission was received for OA. Table entries are left blank for those methods that were applied 
to only one of the guest sets. The predictions performed for the bonus challenge guests were excluded when computing the statistics for the 
CB8 dataset. Each statistic is reported with bootstrap distribution mean (between parentheses) and 95-percentile bootstrap confidence interval 
(square brackets) obtained through 100,000 cycles of resampling with replacement. The standard errors of the mean of the predictions reported 
in the submissions are included in the confidence intervals. The original data for the combined OA/TEMOA and CB8 datasets can be found 
respectively at https ://githu b.com/Moble yLab/SAMPL 6/tree/maste r/host_guest /Analy sis/Accur acy/OA-TEMOA /Stati stics Table s/stati stics .csv 
and https ://githu b.com/Moble yLab/SAMPL 6/tree/maste r/host_guest /Analy sis/Accur acy/CB8-NOBON US/Stati stics Table s/stati stics .csv. Even-
tual updates or corrections to the data will be made available at the same URL, and anyone wishing to reuse the data should refer there

https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/Accuracy/OA-TEMOA/StatisticsTables/statistics.csv
https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/Accuracy/CB8-NOBONUS/StatisticsTables/statistics.csv
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Fig. 3  Bootstrap distribution of the methods performance statistics. 
Bootstrap distributions of root mean square error (RMSE), mean 
signed error (ME), coefficient of determination (R2 ) and Kendall 
rank correlation coefficient ( � ). For each methodology and statistic, 
two distributions are shown for the merged OA/TEMOA set (yellow, 
pointing upwards) and the CB8 set excluding the bonus challenge 
compounds (blue, downwards). The black horizontal box between the 
two distributions of each method shows the median (white circle) and 
interquartile range (box extremes) of the overall distribution of statis-
tics (i.e., pooling together the OA/TEMOA and CB8 statistic distribu-

tions). The short vertical segment in each distribution is the statistic 
computed using all the data. The distributions of the methods that 
incorporate previous experimental data into the computational pre-
diction are highlighted in gray. Methodologies are ordered using the 
statistics computed on the OA/TEMOA set, unless only data for the 
CB8 set was submitted (e.g., DDM-FM), in which case the CB8 set 
statistic was used to determine the order. Only a representative subset 
of the movable type calculations results are shown. See Supplemen-
tary Fig.  2 for the bootstrap distributions including all the movable 
type submissions
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improvement (data not shown). In fact, R 2 for the SOMD-C 
calculations decreased from 0.47 [0.09, 0.78] to 0.18 [0.01, 
0.48] when incorporating the experimental correction in 
SOMD-D, despite the expected drop in RMSE, and a simi-
lar observation can be made for SOMD-D-nobuffer and the 
� statistic.

GAFF/AM1‑BCC and TIP3P consistently overestimated 
the host–guest binding affinities

Several entries used GAFF to parameterize the host–guest 
systems with AM1-BCC charges and TIP3P water mole-
cules (i.e., SOMD, US-GAFF, DDM-GAFF) so it is possible 
to make relatively general observations about the perfor-
mance of this model. Firstly, if we ignore the submissions 
that employ an experiment-based correction, every single 
method in this group predicted tighter binding than what 
supported by experiments with both the OA/TEMOA and 

the CB8 sets. This observation extends to MMPBSA-GAFF 
as well, which still used GAFF but with RESP charges and 
the implicit PBSA solvent model, but many of the meth-
odologies that entered the challenge display a similar sys-
tematic error (see also ME in Fig. 4), although GAFF is the 
only force field that was independently adopted by multiple 
groups and used with various classes of techniques.

Secondly, while error statistics vary substantially 
among GAFF entries, the correlation statistics are quite 
similar. Most of these are among the best-performing 
methods for the OA/TEMOA set, with � ranging between 
0.7 and 0.8, despite showing poor correlations on the CB8 
set. The main exception to this pattern is given by DDM-
GAFF, which shows moderate correlations for both data-
sets. The reason for this is not entirely clear, as the meth-
odology adopted for DDM-GAFF entry is very similar to 
SOMD-C-nobuffer. Their main difference appears to lie in 
their treatment of long-range electrostatics, with SOMD 
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Fig. 4  Free energy error statistics by molecule and tightest binders 
ranking. a Root mean square error (RMSE) and mean signed error 
(ME) computed using the ten methodologies with the lowest RMSE 
on the merged OA/TEMOA and CB8 datasets (excluding bonus chal-
lenge compounds) for all guests binding to OA (yellow), TEMOA 
(green), and CB8 (blue). Error bars represent 95-percentile boot-
strap confidence intervals. b Ranking of the tightest binder of each 
host–guest dataset for all methods. Methods that correctly predicted 

OA-G2, TEMOA-G4, and CB8-G8 to be the tightest binders of the 
OA (yellow), TEMOA (green), and CB8 (blue) guest sets respectively 
are marked by a colored cell. A gray cell is shown when the method 
incorrectly predicted the tightest binder, and a white space is left if no 
submissions were received for that method and guest set. The meth-
ods are ordered by the number of correctly ranked tightest binders in 
the three guest sets
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using reaction field electrostatics [126] and DDM-GAFF 
using PME [31], as well as the use of restraints, with 
SOMD employing a single flat-bottom restraint to keep 
the guest in the host’s cavity and DDM-GAFF restraining 
the relative orientation of the guest by means of harmonic 
restraining potentials applied to one distance, two angles, 
and three torsions.

Models accounting for polarization did not perform 
significantly better than point charge models

Several of the entries adopted explicit model of electrostatic 
polarization through either QM potentials or the AMOEBA 
force field. Two groups submitted predictions obtained 
both a point-charge force field that were corrected with 
the free energy of moving to a QM/MM potential. This is 
the case of RFEC-QMMM and DDM-FM-QMMM, both 
of which included only the guest in the QM region using 
PM6-DH+ and DFT(B3LYP) respectively. In both cases, 
when compared to the pure MM model, the correlation 
slightly increased, although this difference was not statisti-
cally significant. Notably, RFEC-QMMM and DDM-FM-
QMMM scored the top � for the OA/TEMOA and CB8 set 
respectively.

On the other hand, calculations based on the polarizable 
AMOEBA force field or pure QM potentials were gener-
ally outperformed by point charge force-fields and QM/MM 
models in terms of correlation with experimental data. How-
ever, when limiting the comparison to methods that did not 
include a linear correction fitted on previous experimental 
data, SQM(PM6-DH+), DFT(TPSS)-D3, and in particular 
DDM-AMOEBA obtained a relatively low RMSE in spite 
of their poor correlation with experimental data. It is of 
interest to note that SQM(PM6-DH+) and DFT(TPSS)-D3 
performed similarly. Indeed, the two methodologies were 
submitted by the same group and differ only by the potential 
function used to compute the energy of the complex on a 
set of configurations sampled with MD. SQM(PM6-DH+) 
scored a slightly lower RMSE and DFT(TPSS)-D3 obtained 
slightly higher correlation statistics, but the difference is not 
statistically significant in either case. The data, however, 
seems to suggest opposite tendencies of the two models in 
regard to the bias, with SQM(PM6-DH+) and DFT(TPSS)-
D3 overestimating and underestimating the binding affin-
ity of the OA/TEMOA guest set respectively. Similarly, 
DFT(B3PW91) and DFT(B3PW91)-D3 differ exclusively 
by the addition of the dispersion correction, which, surpris-
ingly, significantly worsen the error for both guest sets.

Comparison to null model

The vast majority of the entries statistically outperformed 
the MMGBSA calculation we used as a null model. Sur-
prisingly, while the null model correlation on the CB8 
set was objectively poor (R2 = 0.0 [0.0, 0.5], � = − 0.1 
[− 0.6, 0.5]), the R 2 and � statistics obtained by the MMG-
BSA null model on the OA/TEMOA set was comparable 
to more expensive methods and, in fact, surpassed many of 
the challenge entries (Table 3). Nevertheless, the MMG-
BSA null model was in general poorly accurate in terms 
of RMSE. We note the difference of our null model with 
the MMPBSA-GAFF, which generally performed better 
than MMGBSA on the OA/TEMOA guest set but similarly 
or slightly worse on the CB8 set. Besides differences in 
solvent model (i.e., Generalized Born and Poisson–Boltz-
mann respectively), the former used OPLS3 to rescore a 
single docked pose, while the second one used GAFF and 
molecular dynamics to collect samples that were subse-
quently clustered for the purpose of rescoring.

Bonus challenge

The platinum atom in CB8-G13 required particular atten-
tion during parameterization as this atom is not customar-
ily handled by general small molecule force fields. Even 
in the case of DFT(B3PW91) and DFT(B3PW91)-D3, the 
configurations used for the QM calculations were gener-
ated by classical molecular dynamics requiring empirical 
parameters. In general, all the participants to the bonus 
challenge relied on DFT-level quantum mechanics cal-
culation to address the problem. In MMPBSA-GAFF, 
DFT(B3PW91), and DFT(B3PW91)-D3, Mulliken charges 
were generated from DFT(B3LYP), which were subse-
quently used to determine AM1-BCC charges. A different 
approach was adopted in DDM-FM-QMMM in which the 
platinum was substituted by palladium, and the confor-
mations necessary to the force matching parameterization 
procedure were obtained by MNDO(d) dynamics.

All groups participating to the bonus challenge submit-
ted 1:1 complex predictions also for CB8-G11 and CB8-
G12, for which the initial experimental data suggested the 
possibility of 2:1 complexes (two guests simultaneously 
bound to one host). This later turned out to be correct 
only for CB8-G12, and several groups reported to have 
computationally tested the hypothesis for CB8-G11 with 
the correct outcome. DDM-AMOEBA was used to esti-
mate affinity of both the 1:1 and 2:1 complexes, but in the 
end the first one was used in the submission as the two 
predicted binding free energies differed by only 0.1 kcal/
mol. Accordingly, we used the experimental measurement 
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determined for the first binding event to compute the sta-
tistics (CB8-G12a in Table 1).

Summary statistics incorporating bonus challenge 
compounds are reported in Table 4. Although the RMSE 
generally improves in most cases, it should be noted that 
this effect varies greatly across the three molecules, and 
this improvement is mainly due to CB8-G11, whose pre-
dictions are regularly much closer to the experimental 
measurement than the estimates provided for the other 
two compounds.

Comparison to previous rounds of the SAMPL host–
guest binding challenge

Since previous rounds of the host–guest binding chal-
lenge featured identical or similar hosts to those tested 
in SAMPL6, it is possible to compare earlier results and 
observe the evolution of methodological performance.

Accuracy improvements over SAMPL5 for OA/TEMOA were 
driven by fits to prior experimental data

SAMPL5 featured a set of compounds binding to both OA 
and TEMOA, which will be referred in the following as the 
OA/TEMOA-5 set to differentiate it from the combined OA/
TEMOA set used in this round of the challenge. In the top 
row of Fig. 6a, we show median and fitted distributions of 
the RMSE and R 2 statistics taken from the SAMPL5 over-
view paper [136] together with the results from SAMPL6. 

OA was used as a test system in SAMPL4 as well, but in this 
case, only relative free energy predictions were submitted 
so we cannot draw a direct comparison. Prediction accu-
racy displays a slight improvement of the median RMSE 
from the previous round from 3.00 [2.70, 3.60] kcal/mol to 
2.76 [1.85, 3.28] kcal/mol (95-percentile bootstrap confi-
dence intervals of the medians not shown in Fig. 6a). How-
ever, this change seems to be entirely driven by the methods 
employing experiment-based fit corrections since removing 
them results in a median RMSE that is essentially identical 
to SAMPL5. The data raises the question of whether the field 
is hitting the accuracy limit of current general force fields.

On the other hand, the median R 2 improved with respect 
to the last round from 0.0 [0.0, 0.8] to 0.5 [0.4, 0.8]. Even in 
this case, we observe a slightly lower SAMPL6 median R 2 
when ignoring methods incorporating experimental data, but 
this is likely due not to the correction itself but to the fact 
that the top performing methods were generally submitted 
with and without correction, thus reducing the number of 
data points with high R 2 . Indeed, as already discussed, no 
positive effect on correlation was evident from the inclu-
sion of a trained linear correction. The improvement is par-
ticularly evident when considering only free energy-based 
methodologies (e.g., alchemical and potential of mean force 
calculations). It should be pointed out that the higher median 
R 2 observed in SAMPL6 can, in principle, be explained not 
only by recent methodological advancements and the com-
position of the methods entering the challenge but also by 
the particular set of assayed guests. While the first explana-
tion is obviously the most desirable, the latter is a confound-
ing factor when attempting to associate the results of the 
challenge to the progress of the community.

Since SOMD calculations entered the SAMPL5 challenge 
as well [19], we can compare directly the same statistics 
obtained by the method on the two guest sets to form an idea 
about the relative complexity of the two sets for free energy 
methods. To this end, we report in Table 5 the uncertainties 
of the absolute statistics in terms of the mean and stand-
ard deviations of the bootstrap distributions instead of their 
95-percentile confidence intervals to allow a direct compari-
son to those published in the SAMPL5 overview paper. The 

Fig. 5  Free energy correlation plots obtained by the methods on the 
three host–guest sets. Scatter plots showing the experimental meas-
urements of the host–guest binding free energies (horizontal axis) 
against the methods’ predictions on the OA (yellow), TEMOA 
(green), and CB8 (blue) guest sets with the respective regression 
lines of the same color. The solid black line is the regression line 
obtained by using all the data points. The gray shaded area represents 
the points within 1.5 kcal/mol from the diagonal (dashed black line). 
Only a representative subset of the movable type calculations results 
are shown. See Supplementary Fig. 1 for the free energy correlation 
plots of all the movable type predictions

◂

Table 4  Performance statistics including the bonus challenge molecules

Root mean square error (RMSE), mean signed error (ME), coefficient of determination (R2 ), and Kendall correlation coefficient ( � ) obtained 
by all methods applied to the bonus challenge on the full CB8 set (left super column), including the three bonus molecules. Statistics computed 
excluding the bonus molecules are reported again here (right super column) for easy comparison. Bootstrap distribution mean and 95-percentile 
confidence intervals are reported between parentheses and square brackets respectively. Data source: https ://githu b.com/Moble yLab/SAMPL 6/
tree/maste r/host_guest /Analy sis

https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis
https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis
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results of the SOMD methods applied to the OA/TEMOA-5 
were submitted with a restraint and long-range dispersion 
correction, similarly to SOMD-C-nobuffer here, and with-
out it, similarly to SOMD-A-nobuffer here. The two meth-
ods were referred to as SOMD-3 and SOMD-1 respectively 
in the SAMPL5 overview. In both cases, the calculations 
used GAFF with AM1-BCC charges and TIP3P water mol-
ecules as well as a single flat-bottom restraint. The RMSE 
obtained by SOMD-C-nobuffer increased with respect to 
the statistic computed for SOMD-3 on OA/TEMOA-5 from 
2.1 (2.1 ± 0.3) kcal/mol to 3.0 (3.0 ± 0.4) kcal/mol, where 
the number outside the parentheses is the statistic computed 
using all the data, and the numbers between parentheses 
are the mean and standard deviation of the bootstrap distri-
bution. Incorporating experimental data into the prediction 
improved the error as SOMD-D-nobuffer obtained a RMSE 
of 1.6 (1.6 ± 0.3) kcal/mol. On the other hand, the Kendall 
correlation coefficient slightly increased on the SAMPL6 
dataset from 0.4 (0.4 ± 0.2) to 0.7 (0.7 ± 0.4) while R 2 
remained more or less stationary from the already high 
value of 0.9 (0.7 ± 0.2) obtained on OA/TEMOA-5. Very 
similar observations can be made for SOMD-A-nobuffer 
and SOMD-1. While the improved � correlation does not 
rule out the possibility of system-dependent effects on R 2 , 
it is unlikely for the difference between the median R 2 of 
SAMPL5 and SAMPL6 (amounting to 0.76) to be entirely 
explained by the different set of guests, and the improvement 
is likely due, at least in part, to the different methodolo-
gies entering the challenge. In particular, SAMPL5 featured 
several free energy methods that scored near-zero R 2 on the 
OA/TEMOA-5 set, affecting considerably the SAMPL5 
median statistic. One of these methods is BEDAM, which 
used the OPLS-2005 [8, 62] force field and the implicit sol-
vent model AGBNP2 [34], none of which entered the latest 
round of the challenge. However, the rest of these meth-
ods consist of double decoupling calculations carried out 

either with thermodynamic integration (TI) [64, 121] or 
HREX and BAR that employed CGenFF and TIP3P, which 
performed relatively well in SAMPL6 on OA/TEMOA. It 
should be noted that the TI and HREX/BAR methodologies 
in SAMPL5 made use of a Boresch-style restraint [18] har-
monically constraining one distance, two angles, and three 
dihedrals. This is similar to the solution adopted in DDM-
GAFF in SAMPL6, which also showed a relatively low R 2 
compared to the other free energy submissions in the same 
round of the challenge so it is natural to suspect that it may 
be particularly challenging to treat this class of host–guest 
systems with this type of restraint in alchemical calculations.

An improvement can also be observed for the movable 
type method, which was applied to the OA/TEMOA-5 set 
as well [10] using the KECSA 1 and KECSA 2 potentials. 
These two submissions, identified with MovTyp-1 and 
MovTyp-2 respectively in the SAMPL5 overview paper, 
obtained similar statistics so we will use MovTyp-2 for 
the comparison. The SAMPL6 entry MovTyp-KT1N, 
which uses the KECSA energy model too, obtained a 
comparable RMSE of 2.9 (2.9 ± 0.2) kcal/mol against the 
3.1 (2.9 ± 1.1) kcal/mol achieved by MovTyp-2 on OA/
TEMOA-5, but, even in this case, the error becomes statisti-
cally distinguishable once the experimental-based correc-
tion is included (i.e., in MovTyp-KT1L), which decreases 
the RMSE to 1.0 kcal/mol. The correlation statistics gen-
erally compare favorably with respect to SAMPL5 with 
R 2 moving from 0.0 (0.3 ± 0.3) to 0.5 (0.5 ± 0.2) and � 
going from 0.1 (0.1 ± 0.3) to 0.3 (0.3 ± 0.2), although 
the uncertainties are too large to achieve statistical signifi-
cance. Moreover, MovTyp-GE3N, which employs the more 
recently developed GARF energy model, obtained a better 
RMSE (1.8 (1.8 ± 0.4) kcal/mol) and comparable correla-
tion statistics to MovTyp-KT1N.

Finally, it seems appropriate to compare the performance 
of DFT(TPSS)-D3 on OA/TEMOA to DFT/TPSS-c [21] in 

Table 5  Offset statistics of the 
methods appearing in previous 
rounds of the SAMPL host–
guest binding challenge

Root mean square error (RMSE), coefficient of determination (R2 ), Kendall correlation coefficient ( � ), 
and offset root mean square error (RMSEo ) computed by subtracting the mean signed error from the free 
energy predictions. Absolute and offset statistics for R 2 and � are identical, and they are thus reported only 
once. Absolute statistics are identical to those presented before, but, consistently with the format adopted in 
the SAMPL5 host–guest binding challenge overview paper, the are reported as mean ± standard deviation 
of the bootstrap distribution (between parentheses) instead of the 95-percentile confidence interval

Method Dataset RMSE RMSEo R2 �

DDM-AMOEBA CB8 3.9 (3.8 ± 1.0) 3.2 (3.0 ± 0.7) 0.1 (0.3 ± 0.2) 0.1 (0.1 ± 0.3)
DFT(TPSS)-D3 OA/TEMOA 3.1 (3.0 ± 0.4) 2.6 (2.5 ± 0.4) 0.5 (0.5 ± 0.2) 0.3 (0.4 ± 0.2)
MovTyp-GE3N OA/TEMOA 1.8 (1.8 ± 0.4) 1.4 (1.4 ± 0.3) 0.3 (0.4 ± 0.2) 0.3 (0.3 ± 0.2)
MovTyp-KT1N OA/TEMOA 2.9 (2.9 ± 0.2) 0.9 (0.9 ± 0.2) 0.5 (0.5 ± 0.2) 0.3 (0.3 ± 0.2)
MovTyp-KT1L OA/TEMOA 1.0 (0.9 ± 0.1) 0.8 (0.8 ± 0.1) 0.6 (0.6 ± 0.2) 0.4 (0.4 ± 0.2)
SOMD-A-nobuffer OA/TEMOA 4.9 (4.9 ± 0.5) 1.9 (1.9 ± 0.3) 0.8 (0.8 ± 0.1) 0.7 (0.7 ± 0.1)
SOMD-C-nobuffer OA/TEMOA 3.0 (3.0 ± 0.4) 1.9 (1.9 ± 0.3) 0.8 (0.8 ± 0.1) 0.7 (0.7 ± 0.1)
SOMD-D-nobuffer OA/TEMOA 1.6 (1.6 ± 0.3) 1.6 (1.5 ± 0.3) 0.8 (0.8 ± 0.1) 0.7 (0.7 ± 0.1)



955Journal of Computer-Aided Molecular Design (2018) 32:937–963 

1 3

SAMPL5 and RRHO-551 [79] in SAMPL4 [91]. DFT(TPSS)-
D3 and DFT/TPSS-c are very similar in that they both use 
the DFT-D3 approach to include dispersion correction, but 
while DFT(TPSS)-D3 generated an ensemble of configu-
rations with MD, DFT/TPSS-c estimated the binding free 
energy from a single minimized structure. On the other hand, 
RRHO-551 does use MD for conformational sampling, but it 
employs DTF-D to correct for dispersion interactions, which 
was developed earlier than DFT-D3. As already mentioned, 

SAMPL4 featured a set of 9 OA guests [91], but only relative 
free energy predictions were submitted so absolute statistics 
are not available. Thus, in order to facilitate the comparison, 
we decided to report offset statistics for the subset of the 
SAMPL6 methods analyzed in this section in the same way 
they were computed in the previous two rounds of the chal-
lenge. The results are given in Table 5. The RMSE of the 
two models was relatively similar in SAMPL4 and SAMPL5: 
5.8 ± 2.6 kcal/mol for RRHO-551 and 5.3 (5.2 ± 0.8) kcal/

A B

C

Fig. 6  CB analogues and distribution of RMSE and R 2 achieved by 
methods in SAMPL3 and SAMPL5. a Probability distribution fitting 
of root mean square error (RMSE, left column) and coefficient of 
determination (R2 , right column) achieved by all the methods enter-
ing the SAMPL6 (yellow), SAMPL5 (green), and SAMPL3 (purple) 
challenge. Statistics for SAMPL4 are not shown in the panel because 
the subject of the challenge was confined to relative binding affinity 
predictions. The markers on the x-axis indicate the medians of the 
distributions. Distributions are shown for all the methods entering the 
challenge (solid line, square marker), excluding the SAMPL6 entries 
that used previous experimental data (dotted line, triangle marker), 
or isolating alchemical and potential of mean force methodologies 
that did not use an experiment-based correction (dashed line, cir-
cle marker). The RMSE axis is truncated to 14 kcal/mol, and a few 
outlier submissions are not shown. The data shows an essentially 
identical median RMSE and an increased median correlation on the 
combined OA/TEMOA guest sets (top row) with respect to the pre-

vious round of the challenge. The comparison of the results to dif-
ferent sets of guests binding few cucurbit[n]uril and cucurbit[n]uril-
like hosts appearing in SAMPL3 and SAMPL5 (bottom row) shows 
instead a deteriorated performance in the most recent round of the 
challenge, which is likely explained by the major complexity of the 
SAMPL6 CB8 guest set. b Three-dimensional structures in stick view 
of the CBClip (top) and H1 (bottom) hosts featuring in SAMPL5 and 
SAMPL3 respectively. Carbon atoms are represented in gray, nitro-
gens in blue, oxygens in red, and sulfur atoms in yellow. Hydrogen 
atoms are not shown. c Box plot comparing the range of the binding 
affinity experimental measurements used as references for the host–
guest systems entering the SAMPL3 (purple), SAMPL4 (light blue), 
SAMPL5 (green), or SAMPL6 (yellow) challenges. The gray data 
points represent the measurements for the single host–guest entries. 
The inter-quartile range and the median represented by the rectangu-
lar box were obtained by linear interpolation. The whiskers span the 
entire dynamic range of reported experimental measurements
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mol for DFT/TPSS-c, where the estimate for RRHO-551 
does not include the mean of the statistic bootstrap distribu-
tion, which was not reported in the SAMPL4 overview paper. 
However, the SAMPL6 DFT(TPSS)-D3 calculations attained 
a lower error (2.6 (2.5 ± 0.4) kcal/mol) while maintaining a 
similar coefficient of determination of 0.5 (0.5 ± 0.2) against 
the 0.3 (0.4 ± 0.2) and 0.5 ± 0.2 of DFT/TPSS-c and RRHO-
551 respectively.

The SAMPL6 CB8 system presents significant challenges 
to modern methodologies

A different perspective is offered by the history of the bind-
ing free energy predictions involving cucurbituril hosts. 
CB8 and the closely related CB7 appeared previously in 
SAMPL3  [92] together with an acyclic cucurbit[n]uril-
type molecular container referred to as H1 [75]. Moreo-
ver, SAMPL5 featured another acyclic CB analogue called 
CBClip [137]. The 3D structures of the last two hosts are 
shown in Fig. 6b, while in Fig. 6a (bottom row), we show 
the distribution of RMSE and R 2 computed from the bind-
ing free energy predictions submitted for SAMPL3 and 
SAMPL5 against these four hosts.

In general, both statistics appear to have deteriorated from 
SAMPL3 to SAMPL5. Even though H1 and CBClip are suf-
ficiently different for system-dependent effects to reasonably 

dominate the overall performance, the most marked differ-
ence appears from the comparison of the SAMPL6 predic-
tions to those submitted for CB7 and CB8 in SAMPL3, 
which achieved a much greater R 2 in spite of the smaller 
dynamic range of the binding affinity measurements and 
none of which involved simulation-based methods. The 
explanation for this inequality is likely to be found in the 
complexity of the guest sets rather than a methodological 
regression as SAMPL3 featured only two relatively simple 
fragment-like binders while the latest round of the challenge 
included compounds of moderate size and/or complex ste-
reochemistry (e.g., gallamine triethiodate, quinine).

That the CB8 guests in SAMPL6 were particularly chal-
lenging is corroborated by the comparison between the per-
formance of DDM-AMOEBA and the results obtained by 
BAR-560, which also uses the double decoupling method 
and the AMOEBA polarizable force field, on the CB7 guests 
in SAMPL4 [14]. In this case as well, only offset statistics 
are available for comparison as SAMPL4 accepted exclu-
sively relative free energy predictions. DDM-AMOEBA 
generally performed worse on the CB8 guest set featured 
in SAMPL6 with R 2 decreasing from 0.6  ±  0.1 to 0.1 
(0.3 ± 0.2) and RMSE increasing from 2.2 ± 0.4 to 3.2 
(3.0 ± 0.7). While the CB8 guest set featured in SAMPL6 
highlights the limits of current free energy methodologies, 
it also uncovers new learning opportunities that can be 
exploited to push the boundaries of the domain of applica-
bility of these technologies.

Similarly to the OA/TEMOA guest set, simulation-based 
free energy methods display a higher median R 2 than the 
global R 2 computed from considering all the methods in the 
challenge, albeit a slightly higher RMSE as well. The pattern 
is consistent across the three rounds of the challenge, but the 
distributions of the statistics are too wide to draw statisti-
cally significant conclusions without collecting more data.

Discussion

As in previous years, the SAMPL host–guest binding chal-
lenge has provided an opportunity for the computational 
chemistry community to focus on a common set of systems 
to assess the state-of-the-art practices and performance of 
current binding free energy calculation methodologies. The 
value of the blind challenge does not lie exclusively in the 
comparison and benchmarking of different methods, but 
also in its ability to highlight general areas of weakness in 
the field as a whole on which the community can focus. 
The latter aspect, in particular, risks becoming of secondary 
importance in retrospective studies. Moreover, the consistent 
use of octa-acid and cucurbiturils since SAMPL3, which 
took place in 2011, give us the opportunity to make general 
observations over a longer time span.

Table 6  pK
a
free energy 

penalties predicted by Epik 
for the second most likely 
protonation state of the CB8 
guests

In all cases, the second most 
probable protonation state pre-
dicted by Epik can be obtained 
by removing the nitrogen pro-
ton of the dominant state. The 
estimated free energy penalties 
to access the deprotonated state 
are reported in kcal/mol and 
units of k

B
T  , where k

B
 is the 

Boltzmann’s constant and T is 
the absolute temperature, taken 
to be 298  K (i.e., the tempera-
ture at experimental conditions). 
For all the other compounds, 
including the octa-acid guests, 
Epik was not able to find a sec-
ond protonation state within a 
tolerance of 3 pH units

Complex pK
a
 penalty

(kcal/mol) (k
B
T)

CB8-G0 2.86 4.82
CB8-G1 2.67 4.50
CB8-G2 3.20 5.40
CB8-G3 1.41 2.37
CB8-G11 2.76 4.65
CB8-G12 1.58 2.66
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The variability in difficulty highlights the need 
to evaluate methodologies on the same systems

Several recurring themes have emerged from this and pre-
vious rounds of the challenge. Firstly, even for systems 
relatively simple as supramolecular host–guests, the per-
formance of free energy methodologies and models can be 
heavily system-dependent. This is evident not only from the 
results of the same method applied to different guest sets but 
also from the relative performance of the methods against 
different molecules. For example, most of the predictions 
employing GAFF obtained among the highest correlation 
statistics on the OA/TEMOA set while ranking among the 
lowest positions on the CB8 set. This stresses the importance 
of using the same set of systems when comparing multiple 
methodologies, which, without any coordination between 
groups, is a difficult task to carry out on a medium–large 
scale given the amount of expertise and resources necessary 
to perform this type of studies.

A useful dataset should be large enough to have the sta-
tistical power to resolve differences in performance, and 
diverse enough for the distribution of the binding affinity 
to approximate the distribution of the population of interest 
and reflect how the method would perform on new data. 
At the same time, however, correlation statistics tend to 
increase with the dynamic range spanned by the data, and 
some methods, such as relative free energy calculations, 
often impose practical limits to the structural differences 
between compounds. For example, RFEC-GAFF and RFEC-
QMMM submitted predictions only for the OA/TEMOA set, 
where the similarities between the guests are more promi-
nent. These contrasting requirements, together with practical 
problems connected to the availability of experimental data 
and resources, make crafting an appropriate dataset a very 
challenging task.

Force field accuracy is a dominant limiting factor 
for modeling affinity

A second consideration surfacing from previous SAMPL 
rounds as well is the tendency of classical methods to 
overestimate the binding affinities. Since the results of the 
related SAMPLing challenge support the claim that con-
vergence for this class of systems is achievable [55], and 
considering that the RMSE has not improved significantly 
across rounds of the challenge, this seem to suggest that 
an investment of resources into improving the empirical 
parameters of force fields and solvent models could have a 
dramatic impact. It should be noted that, while these sys-
tems do not put to the test protein parameters, they rely on 
general force fields that are routinely used in drug and small 
molecule design.

Other missing chemical details may also be major 
limiting factors

However, the problem of missing details of the chemical 
environment such as salts and alternative protomers can-
not be ruled out as a major determinant of predictive accu-
racy. Explicitly modeling the buffer salt concentrations in 
the SOMD-C predictions reduced the RMSE from 7.9 to 
5.1 kcal/mol for two sets of simulations otherwise identical, 
and, curiously, it had the opposite effect of increasing the 
error statistics on the OA/TEMOA set. Despite the sensitiv-
ity of the free energy prediction to the presence of ions, a 
lack of standard best practices emerges from the challenge 
entries. Many participants decided to add only neutralizing 
counterions or use a uniform neutralizing charge, and oth-
ers did not include information about how the buffer was 
modeled in the submitted method sections, which possi-
bly reflects a generally minor role currently played by this 
particular aspect of the decision-making process during 
the modeling step in comparison to other elements (e.g., 
charges, force field parameters, water model).

Even at extreme pH, protonation state effects may 
still contribute

The possible influence of multiple accessible protonation 
states of the guest compounds on the binding free energy 
was left unexplored during the challenge, mirroring the 
widespread tendency in the free energy literature to neglect 
its effect, and participants largely used the most likely pro-
tonation states predicted by Epik that were provided in the 
input mol2 and sdf files. However, the p Ka free energy 
penalties estimated by Epik for the second most probable 
protonation state of the CB8 guests in water at experimental 
pH (Table 6), which is obtained in all cases by the depro-
tonation of the charged nitrogen atoms as given in Fig. 1, 
suggest that for several guests, and in particular for CB8-G3 
and CB8-G11, the deprotonated state is accessible by pay-
ing a cost of a few kBT  (where kB is Boltzmann’s constant 
and T is the absolute temperature), and a change in relative 
populations between the end states driven by the hydropho-
bic binding cavity may have a non-negligible effect on the 
binding affinity. Furthermore, even if the probability of hav-
ing the carboxyl group of the octa-acid guests protonated at 
pH 11.7 is usually neglected, a previous study performed 
for SAMPL5 showed that modeling changes in protonation 
state populations upon binding resulted in improved predic-
tive performance for a set of OA and TEMOA guests that, 
similarly to the latest round of the challenge, included sev-
eral carboxylic acids and was measured at a similar buffer 
pH [127]. Experimentally, net proton gain or loss during 
complexation could straightforwardly be assessed for highly 
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soluble host–guest systems via isothermal titration calorim-
etry (ITC) in buffers with the same pH but different ioniza-
tion heats for proton loss from solvent [7], a technique that 
has been used for protein–ligand systems [25, 26, 96, 120]. 
Similarly to buffer salts, there are few established practices 
in the community to treat multiple protonation states in 
free energy calculations [71], and further development and 
testing of force fields and solvent models with the goal of 
improving accuracy to experiments should consider these 
issues as ignoring them during the fitting procedure could 
push the error caused by missing essential chemicals (e.g., 
ions, protonation and tautomeric states) to other force field 
parameters with the risk of decreasing the transferability of 
the model.

Linear corrections fit to prior experimental 
measurements do not improve predictive utility

The experimental-based correction adopted by several 
groups introduces a new theme in the challenge which per-
tains to strategies that can be used to inject previous knowl-
edge into molecular simulations. Force field parameters are 
in principle capable of incorporating experimental data, 
but an update of the model driven by binding free energy 
measurements or other ensemble observables is doubtlessly 
challenging and may involve calculations as expensive as 
the production calculations so this is normally not rou-
tinely viable, although previous studies indicated the valid-
ity and feasibility of such an approach [134, 135]. Other 
schemes that emerged in particular from the field of crystal-
lographic structural refinement avoid modifying the force 
field parameters and instead add one or more biasing terms 
to the simulation to replicate experimental measurements 
that the underlying force field cannot reproduce [16, 132]. 
The simple linear corrections used independently by vari-
ous participants in this round of the challenge had a positive 
impact on the error, but a very small effect in terms of cor-
relation, which is often of central importance in the context 
of molecular design. However, the simplicity of its applica-
tion, which is confined entirely to the post-processing step, 
was such that the participants were able to submit multiple 
entries with and without the correction.

Outlook for future SAMPL host–guest challenges

The SAMPL roadmap [82] outlines a proposal for subse-
quent host–guest challenges for SAMPL7–10. While the 
future of these blind exercises is uncertain given the absence 
of a sustainable funding source, we briefly review the likely 
future design of these host–guest challenges below.

In one line of exploration ([82], Sect. 2.2), SAMPL7 
proposes to explore variants of Gibb deep cavity cavitands 

(related to OA/TEMOA) in which carboxylate substituent 
locations are modified, comparing multiple host variants 
against a set of guests to explore how well affinities and 
selectivities could be predicted. SAMPL8 would provide a 
second iteration of this experiment with novel guests and a 
trimethylammonium-substituted host variant to assess how 
algorithmic improvements from the first round could lead 
to improved performance. SAMPL9–10 would consider 
the effect of common biologically relevant salts, compar-
ing the effects of NaCl and NaI on various host variants, 
while SAMPL11 would consider the effects of cosolvents 
that might compete for the binding site or modulate the 
strength of the hydrophobic effect.

In another line of exploration ([82], Sect.  2.1), 
SAMPL7-11 are also proposed to feature cucubituril 
variants, including methylated forms of CB8, glcoyura-
cil hexamer, and acyclic forms of CB[n]-type receptors. 
By comparing the constrained cyclic and less constrained 
acyclic forms of CB[n] hosts, the accuracy with which 
participants can model the energetics of receptor flexibil-
ity and receptor desolvation can be probed. SAMPL8–9 
also plans to feature small molecule guests with pKa val-
ues between 3.8 and 7.4, which brings the possibility that 
host binding can induce substantial shifts in protonation 
state.

Finally, recent work by one of the authors has demon-
strated how a library of monosubstituted β-cyclodextrin 
analogues can be generated via a simple chemical 
route  [63]. This strategy could ultimately lead to the 
attachment of chemical groups that resemble biopolymer 
residues, such as amino or nucleic acids, allowing interac-
tions between small druglike molecules and biopolymer-
like functional groups to be probed without the multifold 
challenges that protein–ligand interactions present. While 
development of this system is still ongoing, it is likely 
to make an appearance in upcoming SAMPL host–guest 
challenges.
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