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Abstract
A variety of fields would benefit from accurate pKa predictions, especially drug design due to the effect a change in ioniza-
tion state can have on a molecule’s physiochemical properties. Participants in the recent SAMPL6 blind challenge were 
asked to submit predictions for microscopic and macroscopic pKa s of 24 drug like small molecules. We recently built a 
general model for predicting pKa s using a Gaussian process regression trained using physical and chemical features of each 
ionizable group. Our pipeline takes a molecular graph and uses the OpenEye Toolkits to calculate features describing the 
removal of a proton. These features are fed into a Scikit-learn Gaussian process to predict microscopic pKa s which are then 
used to analytically determine macroscopic pKa s. Our Gaussian process is trained on a set of 2700 macroscopic pKa s from 
monoprotic and select diprotic molecules. Here, we share our results for microscopic and macroscopic predictions in the 
SAMPL6 challenge. Overall, we ranked in the middle of the pack compared to other participants, but our fairly good agree-
ment with experiment is still promising considering the challenge molecules are chemically diverse and often polyprotic 
while our training set is predominately monoprotic. Of particular importance to us when building this model was to include 
an uncertainty estimate based on the chemistry of the molecule that would reflect the likely accuracy of our prediction. 
Our model reports large uncertainties for the molecules that appear to have chemistry outside our domain of applicability, 
along with good agreement in quantile–quantile plots, indicating it can predict its own accuracy. The challenge highlighted 
a variety of means to improve our model, including adding more polyprotic molecules to our training set and more carefully 
considering what functional groups we do or do not identify as ionizable.
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Introduction

Accurate predictions of pKa values are of interest in a variety 
of fields including pharmaceutical research, as absorption, 
distribution, metabolism, and toxicity can be profoundly 
affected by changes in ionization state [1, 2]. Other key 
physiochemical properties, such as lipophilicity, solubility, 
and permeability are also ionization state dependent [3–6]. 
Knowing the likely ionization state of a molecule is also 
important as preparation for other modeling studies. For 
example, predictions of distribution coefficients in SAMPL5 
demonstrated how dramatically free energy calculations can 
be affected by a choice in ionization state of a molecule [7, 
8]. Calculations of other biomolecular properties, such as 
protein ligand binding affinities, are similarly affected by 
choices in ionization state [9].

Because of the importance of pKa prediction, and 
the difficulty of predicting pKa values, the SAMPL 
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challenge organizers included a pKa prediction component 
in SAMPL6. Experimental macroscopic pKa s were col-
lected for 24 drug like molecules using an established spec-
trophotometric technique limited to a pH range between 2 
and 12. As a part of follow up analysis, a few NMR experi-
ments were performed to determine the microscopic pKa s 
of a select few molecules [10]. Microscopic pKa s refer to 
an equilibrium resulting from removing a specific hydrogen 
from a molecule and macroscopic pKa s describe the process 
of removing any hydrogen or an overall change in charge 
state [11, 12]. All experimental data was kept secret from 
the public to allow participants in the challenge to make 
blind microscopic and macroscopic predictions for the 24 
molecules. Specifically, there were three formats allowed 
for prediction submission:

–	 type I: microscopic pKas,
–	 type II: fractional microstate populations as a function of 

pH, and
–	 type III: macroscopic pKas

where microstates refer to a single tautomer of a specific 
charge state of a molecule. For each type of submission 
participants were encouraged, but not required, to submit 
all predictions their model generated for every molecule. 
SAMPL6 organizers then evaluated predictions based on 
experimental results for all macroscopic and a select set of 
microscopic pKas [13]. Details for the challenge including 
experimental results, all submitted predictions, and an over-
view analysis are available online (https​://githu​b.com/Moble​
yLab/SAMPL​6).

There are many different methods and tools for pKa 
prediction, and a variety can be seen in this special issue 
on SAMPL6 results. These techniques vary dramatically 
in scope, computational cost, and accuracy. Historically, 
a common approach for predicting pKa was through lin-
ear free energy relationships using empirically determined 
constants to relate an acid or base to a parent molecule 
in a known database [14, 15]. A related technique, quan-
titative structure-property relationships (QSPR), remain 
popular. These incorporate a variety of molecular and 
atomistic descriptors [16–18]. Some of these techniques 
have been updated to use more advanced machine learning 
models such as artificial neural networks [19, 20]. A vari-
ety of quantum mechanical descriptors, including partial 
atomic charges, have also been shown to be promising in 
QSPR models—due to computational cost, these methods 
are impractical for a general model and have only been 
applied to specific types of ionizable groups [6, 21–23]. 
Quantum mechanical calculations from first principles 
can also be used to calculate pKa using a thermodynamic 
cycle of deprotonation in the gas phase and the hydra-
tion free energy of both the protonated and deprotonated 

molecule [24]. QM calculations are often still limited in 
accuracy due to the difficulty in calculating hydration free 
energies of ionized molecules in implicit solvents. The 
most successful quantum mechanical predictions from 
first principles also apply an empirical linear correction 
factor [25, 26].

Here, we introduce a new machine learning model for 
predicting microscopic and macroscopic pKa s. Our goal 
was to create a universal model which provides predictions 
that come with accurate estimates of their uncertainty. 
Most general methods for pKa prediction build separate 
models for each type of ionizable group. Even predictions 
based on DFT calculations for model input can require 
specialized models for different ionizable groups [27].

In contrast, we set out to build a single general model 
which could predict a microscopic pKa for any identified 
ionizable group. We believe that if our features, or input 
into the machine learning model, are based on the underly-
ing physical and chemical properties responsible for the 
variation in deprotonation energy, only one model would 
be necessary. Artificial neural networks have been suc-
cessful for predicting pKa , but require substantial training 
data. We were interested in a machine learning model that 
could be built from less training data, but did not require 
an assumption about the shape of the function being fit. 
Gaussian process regression meets these requirements pro-
viding a model based on distributions in feature space. It 
also automatically incorporates an assessment of uncer-
tainty based on how similar input data is to the training 
data [28]. Here, we present this new model and our results 
for the type I and type III components of the SAMPL6 
blind challenge.

Computational methods

We built a pipeline to predict the microscopic and macro-
scopic pKa s of a molecule starting from any molecular rep-
resentation, such as a SMILES string. Our model directly 
predicts microscopic pKa s and then calculates macroscopic 
pKa s. First, we identify all ionizable groups in a molecule 
and iterate through them to identify all transitions between 
microstates. In the next step, we convert each microscopic 
transition into a list of quantitative features. These features 
are used as input into our Gaussian process regression model 
which predicts a pKa for each micro-transition. The output 
from these steps is a list of all microscopic pKa s for each 
molecule. Lastly, macroscopic pKa s are analytically calcu-
lated from a thermodynamic cycle involving all microscopic 
transitions. Below, each of these steps is described in detail 
including an overview of how we trained, validated, and 
tested our model before the SAMPL6 challenge.

https://github.com/MobleyLab/SAMPL6
https://github.com/MobleyLab/SAMPL6
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A heuristic approach is used to identify aqueous 
ionizable groups

The first step in processing any molecule, either for train-
ing or prediction, is to identify all microscopic transitions. 
Molecules, in the form of SMILES strings or any com-
mon molecular file format, are processed using OpenEye’s 
OEChem toolkit [29] and one reasonable tautomer of the 
neutral form of the molecule is chosen. A substructure 
search is used to identify groups that commonly ionize in 
water [15] as either acidic:

–	 any protonated oxygen atom
–	 any protonated aliphatic sulfur atom
–	 cyclopentadiene
–	 carbon or nitrogen between two strongly electron with-

drawing groups
–	 arylsulfonamide nitrogens
–	 pyrrole-like aromatic nitrogens
–	 any atom with a non-dative, formal positive charge and 

a hydrogen

or basic:

–	 aliphatic nitrogen atoms, not a part of amide or sulfona-
mide groups

–	 pyridine-like aromatic nitrogens
–	 trivalent aliphatic phosphorous
–	 any atom with a non-dative, formal negative charge.

Next, we protonate all basic groups and then iterate 
through all ionizable groups recursively removing a pro-
ton from each in order to identify all micro-transitions. For 
each transition we store the protonated and deprotonated 
form of the molecule. OpenEye’s Omega toolkit is then 
used to generate a low-energy conformation for each form 
of the molecule [30]. Next, a list of features is calculated to 
describe the micro-transition between these two forms of the 
molecule. This feature list will then be used as input for into 
our Gaussian process model.

Features were chosen to describe physical 
characteristics

We chose features based on the chemical and physical 
properties that affect pKa . The key properties chemists are 
trained to think about in relation to ionization are the ioniz-
able atom, resonance, inductive effects, steric effects, and 
solvation. These properties affect the ability of an ionizable 
group to support a protonated or deprotonated state along 
with the associated change in formal charge. We also consid-
ered the quantum mechanical approach for calculating pKa 
using a thermodynamic cycle involving the gas phase acidity 

and the solvation free energy of each form of the molecule. 
Thus, we calculate features to describe the micro-transition 
using the protonated and deprotonated forms of the mol-
ecule in gas and aqueous phase. Using OpenEye Toolkits 
we calculate a total of ten features for each transition, some 
for each form of the molecule and some taking differences 
in properties between the two forms.

–	 Difference in enthalpy
–	 Mayer Partial Bond order on the bond between hydrogen 

and the ionizable group
–	 AM1-BCC partial charges on multiple atoms, resulting 

in six charge-related features
–	 Difference of solvation free energy
–	 Solvent accessible surface area of the deprotonated atom

To begin, we perform a semi-empirical AM1 calculation 
for each microstate and then extract several properties. The 
first feature mirrors gas phase acidity by taking the differ-
ence in enthalpy between the protonated and deprotonated 
form of the molecule. For the protonated form of the mol-
ecule, the Mayer partial bond order is also calculated for 
the bond between the ionized atom and the hydrogen to 
be removed [31–33]. AM1-BCC partial charges are calcu-
lated for atoms one and two bonds away from the ionized 
atom [33–35]. Previous work established partial charges as 
a useful feature to predict pKa on molecules. These stud-
ies used molecule sets with all the same ionizable groups 
considering the charge on the deprotonated and surrounding 
atoms [22, 23, 36]. In order to apply our model to all identi-
fied ionizable groups, we needed a more general approach. 
We decided to consider the partial charge of (1) the deproto-
nated atom and the average partial charge on atoms (2) one 
bond and (3) two bonds away from this atom, for both the 
protonated and deprotonated forms of the molecule (Fig. 1). 
This leads to six features based on the partial atomic charges. 
Since the AM1 calculations are performed in gas phase, the 
last two features attempt to capture the affect of solvation 

Fig. 1   We use the partial charge on the deprotonated atom (yel-
low) and the average partial charge on atoms one bond (purple) and 
two bonds (orange) away from that atom in both the protonated and 
deprotonated form of the molecule, making a total of six features 
involving partial charges
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on the equilibrium. The difference in solvation free energy 
of the two forms of the molecule is estimated by a Poisson 
Boltzmann surface area calculation as implemented in Open-
Eye’s Szybki toolkit [37, 38]. Lastly, the solvent accessible 
surface area around the deprotonated atom is determined 
with OpenEye’s Spicoli Toolkit [39–42].

Gaussian process regression provides a simple 
machine learning model

We built our Gaussian process regression model using the 
Python package Scikit-learn [43]. A Gaussian process is a 
nonparametric model which uses a Bayesian approach to 
sample a posterior distribution of functions [28]. There are 
two priors set for a Gaussian process, a mean function and a 
kernel (or covariance) function. As with most Gaussian pro-
cess models, we set our prior mean function to zero. When 
initially training and validating the model, we considered a 
variety of the kernel functions included in Scikit-learn. To 
choose a kernel and optimize any required parameters, we 
used a three-fold cross validation method considering the 
root mean squared error (RMSE), mean error, and correla-
tion coefficient of the training and validating sets (Section 
"Training, validation, and internal test sets include mono-
protic and select diprotic molecules"). The best performing 
kernel for our purposes was a Matérn kernel—a generalized 
function between the squared and absolute exponential ker-
nels [28]. This kernel requires a preset parameter � which 
was optimized to 2.5 for our model. The general form of 
Matérn kernel is complex including a Bessel function, and 
with � = 2.5 , our final kernel is the function:

where c and l are trained constants and d is the distance 
between two feature vectors.

Macroscopic pKa s are calculated from microscopic 
transitions

Our Gaussian process model is trained to predict micro-
scopic pKa s which can be used to analytically calculate 
macroscopic pKa s. Most experimentally measured pKa s 
are macroscopic, providing an equilibrium constant for an 
overall change in total charge. These macroscopic transi-
tions are comprised of multiple microscopic transitions, each 
of which consists of the removal of one specific hydrogen 
atom. If pKa s, or equilibrium constants, for all microscopic 
transitions are known, then the macroscopic pKa can be ana-
lytically calculated using a thermodynamic cycle [6, 15]. 
For example, for a molecule with two ionizable groups, the 
macroscopic Ka ’s are:
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where a and b are equilibrium constants for the first deproto-
nation and c and d are for the second deprotonation with the 
thermodynamic cycle in Fig. 2. Similar, though more com-
plex, cycles can be drawn for polyprotic molecules, allowing 
us to calculate macroscopic pKa s for any provided molecule.

Training, validation, and internal test sets include 
monoprotic and select diprotic molecules

Our training set was derived from an extensive experimental 
pKa database Tony Slater curated from four original sources:

–	 Dissociation constants of organic bases in aqueous solu-
tion, by D.D. Perin (3775 molecules, 8766 pKas) [15];

–	 Dissociation constants of organic acids in aqueous solu-
tion, by G. Kortum, W. Vogel and K. Andrussow (1063 
molecules, 2893 pKas) [44];

–	 Dissociation constants of organic bases in aqueous solu-
tion, supplement 1972, by D.D. Perin (4275 molecules, 
7844 pKas) [45];

–	 Ionisation constants of organic acids in aqueous solution, 
by E.P. Serjeant and Boyd Dempsey (4584 molecules, 
10,912 pKas) [46].

This is the same database used for the OpenEye application 
pKa Prospector. To begin, we filtered database entries for 
experimental measurements which were aqueous (including 
removing measurements in D2O ), taken between 20 and 25 
°C, and not tagged as very uncertain. This resulted in a set 
of 9890 molecules with 26,519 experimental measurements. 

(2)Ka1
= a + b

(3)Ka2
=

1
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d

Fig. 2   We identify two ionizable groups in SAMPL6 compound 
SM22; this thermodynamic cycle shows an example of how micro-
scopic transitions with equilibrium constants a, b, c, and d are related 
to macroscopic equilibrium constants ( Ka

1

 and Ka
2
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The large number of experimental results compared to num-
ber of molecules is not solely due to molecules with mul-
tiple pKa s; rather, it is primarily due to replicate measure-
ments for certain molecules. In such cases we performed a 
weighted average, propagating the estimated uncertainties. 
As we are most interested in biologically relevant ionization, 
we also removed molecules where the experimental pKa s 
were outside a range of 0–14.

We currently use SciKit-Learn’s out-of-the-box version 
of Gaussian Process which assumes one expected value for 
each feature vector, limiting the types of molecules we can 
use for training. Specifically, polyprotic molecules are not 
suitable for training input in this approach. Specifically, 
for polyprotic molecules, there is a feature vector for each 
microscopic transition, leading to more predicted values 
than experimental pKa values. For example, there are four 
microscopic transitions for a diprotic molecule but only 
two macroscopic pKa values. Thus, we focused our train-
ing set on instances where a microscopic transition can be 
directly mapped to an experimental macroscopic pKa . The 
first set of molecules was perhaps the most obvious—those 
with only one ionizable group where the microscopic and 
macroscopic transition are identical. We checked that mol-
ecules we identified as having a single ionizable group also 
only had one experimental measurement. This resulted in 
2672 molecules. To expand the diversity of the training set 
we added a selection of diprotic molecules. For this set we 
also included molecules where we identified two ionizable 
groups and two experimental values were reported. Addi-
tionally, we required the difference in these two experimen-
tal pKa s be greater than three log units to assure dominance 
of a single microstate in estimation of the macroscopic pKa . 
There were a total of 286 diprotic molecules in the database 
that met this requirement. For these molecules, we assumed 
each macroscopic pKa was dominated by only one micro-
scopic transition.

Before training, we removed 10% of these molecules to 
later serve as an internal test set, resulting in setting aside 
243 monoprotic and 29 diprotic molecules, for a total of 301 
data points. The training data then consisted of 2186 mono-
protic and 257 diprotic molecules. We then split the training 
data into thirds in order to use a three-fold cross validation 
method to evaluate the choice of a Gaussian process model 
and choose a kernel [47]. To evaluate model performance, 
we considered RMSE, mean error, and correlation coeffi-
cients for each training and validation set pair. We judged 
model performance on training and cross-validation data-
sets in the context of learning curves for the purposes of 
model and feature selection. Statistical analysis from our 
final cross-validation sets and internal test sets can be found 
in our supporting information. All training data was recom-
bined for our final Gaussian process model used to evaluate 
our internal test set and make predictions for SAMPL6.

SAMPL6 challenge results

We predict microscopic pKa values using a Gaussian pro-
cess model trained on 2443 mono- and diprotic molecules 
(2700 data points). Physical and chemical features are 
calculated for the protonated and deprotonated form of 
the molecule using OpenEye toolkits (Section "Features 
were chosen to describe physical characteristics"). Macro-
scopic pKa s are then analytically calculated from a combi-
nation of microscopic transitions (Section "Macroscopic 
pKas are calculated from microscopic transitions"). We 
used our model to predict microscopic (type I) and mac-
roscopic (type III) pKa s for 24 drug like molecules in the 
SAMPL6 blind challenge [13]. The SAMPL6 submission 
IDs assigned to our predictions where 6tvf8 (type I) and 
hytjn (type III). While DLM is a co-organizer of the chal-
lenge, none of the authors had any access to the experi-
mental data nor any knowledge of details of the measure-
ments until experimental values and details were publicly 
released to all participants. The SAMPL6 organizers also 
asked for optional microstate populations as a function of 
pH (type II). However, we elected not to participate in that 
portion of the challenge.

Predictions were matched with experiment 
to reduce error

In an ideal world we would have a one-to-one match when 
comparing predicted and experimental results, where each 
calculated pKa has a corresponding experimental value. 
When SAMPL6 was announced, it included specification 
for how the experimental pKa values would be measured. 
This included the limitation to perform experiments in 
a pH range of 2−12 . Following the organizer sugges-
tions, we included predictions for all macroscopic pKa s 
our model predicted including those outside the specified 
experimental range. Thus, there are many molecules with 
fewer experimentally determined pKa s than we predicted. 
The organizers considered two matching algorithms and 
analyzed all challenge submissions with both methods. 
The first was a closest matching algorithm where each pre-
diction is matched to an experimental value based on the 
absolute difference between them. If two predictions are 
paired to the same experimental value then the match with 
the larger absolute difference is thrown out leading to one 
less pair used in the analysis. To prevent the loss of data 
due to multiple pairings, the organizers redid the analysis 
using a Hungarian matching algorithm instead [48]. In 
the Hungarian algorithm, the absolute difference is cal-
culated for each pair of prediction to experiment. Then 
the combination of pairs which reduces the absolute error 
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for that whole molecule is retained. One potential prob-
lem in this approach is that it does not account for the 
natural ordering of pKa values, meaning it is possible 
that the larger of two predictions could be paired with 
the smaller of two experimental pKa s. For example, if a 
molecule had two experimental pKa s 2.15 and 9.58 and a 
prediction reported values of 0.50 and 1.84, then the final 
pairs would be (9.58, 0.5) and (2.15, 1.84) as that would 
result in the smallest absolute error overall. In general, we 
believe the Hungarian approach is superior as it allows for 
all possible data to be included, though an ideal algorithm 
would restrict the order while matching. Fortunately, this 
reordering did not occur when our predictions were paired 
with experiment so we used the Hungarian matching to 
evaluate our performance. All analysis by organizers for 
all submissions can be found online (https​://githu​b.com/
Moble​yLab/SAMPL​6).

Microscopic pKa reported for type I predictions

We reported microscopic pKa s for all ionizable groups we 
identified in the SAMPL6 molecules. The first step for any 
prediction we perform is to identify ionizable groups and 
then iterate through those groups to find all microscopic 
transitions. For SAMPL6, all resonance structures of a given 
microstate were considered to be a single state and assigned 
a single identification number for the set. We matched each 
molecular microstate to the proper identification number 
using a script adapted from the SAMPL6 organizers that 
identifies identical resonance structures. A full table of 
microscopic pKa s and the script used to find their identifica-
tion numbers is provided in the supplementary information.

The SAMPL6 organizers initially provided an approxi-
mate evaluation of predicted microscopic transitions using 
macroscopic pKa s. Organizers provided experimental mac-
roscopic pKa s for all molecules, but experiments for micro-
scopic pKa s were only performed for seven molecules [10]. 
In an attempt to provide feedback on type I predictions, 
organizers compared experimental data for molecules with 
only one experimental pKa or two pKa s with a difference 
greater than three relative to microscopic predictions. For 
each molecule, the experimental values were matched to 
microscopic predictions that resulted in the lowest error, 
using the same closest and Hungarian pairing algorithms 
described in "Predictions were matched with experiment to 
reduce error". These results are available for all submissions 
on the SAMPL6 GitHub repository [13]. However, here, we 
have chosen to focus on analysis of directly measured micro-
scopic predictions rather than microscopic predictions with 
presumed correspondence to macroscopic measurements. 
While many macroscopic transitions are likely dominated by 
a single microscopic transition, including those in "Experi-
mental microscopic pKas were measured for two molecules", 

we cannot know for sure that this is true for every molecule 
in this set. These results are highly dependent on the par-
ticular matching algorithm and no rigorous analysis of the 
microscopic pKa predictions would be possible. Without 
evidence of which transition is dominant, this pairing does 
not provide constructive feedback for improving our model, 
thus we have chosen not to share those results here.

Experimental microscopic pKa s were measured for two 
molecules

After the macroscopic pKa values and all predictions were 
made public, molecules SM07 and SM14 were analyzed 
in an NMR experiment to determine microscopic pKa

Fig. 3   NMR experiments were performed for molecules SM07 and 
SM14. SM07 has one microscopic transition for the protonation 
of the top nitrogen (green). SM14 has two microscopic transitions, 
first the protonation of the middle nitrogen (yellow) and then the left 
nitrogen (green). For both molecules, we highlight the other nitrogens 
we identified as ionizable (blue)

Table 1   All NMR verified microscopic pKa s are reported

First, are those for experiments performed on molecules SM07 and 
SM14. The second half of the table contains molecules similar to 
SM07 where we assume the equivalent microscopic transition also 
dominates their macroscopic experimental result

SAMPL ID Experiment Prediction

SM07 6.08 ± 0.01 7.05 ± 1.39

SM14 2.58 ± 0.01 2.73 ± 3.66

5.30 ± 0.01 6.48 ± 0.56

SM02 5.03 ± 0.01 5.32 ± 1.28

SM12 5.28 ± 0.01 5.89 ± 1.28

SM09 5.37 ± 0.01 6.09 ± 1.28

SM13 5.77 ± 0.01 6.95 ± 1.37

SM04 6.02 ± 0.01 6.73 ± 1.37

https://github.com/MobleyLab/SAMPL6
https://github.com/MobleyLab/SAMPL6
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s  [10]. SM14 has three nitrogens our algorithm identi-
fied as ionizable (Fig. 3). The NMR results indicated the 
two macroscopic pKa values were dominated by two dif-
ferent microscopic transitions included in our predictions 
(Table 1). SM07 is a 4-amino quinazoline derivative with 
three nitrogens our algorithm identified as ionizable (Fig. 3). 
The NMR results indicated the macroscopic pKa was domi-
nated by a single microscopic transition observed for this 
molecule. SAMPL6 included five other molecules that are 

also 4-amino quinazoline derivatives. If we assume all of 
these molecules have a dominant microscopic transition on 
the same nitrogen, then we can compare a total of six pre-
dicted microscopic pKa s with experiment (Table 1). Our 
predictions for these microscopic transitions have reason-
able correlation with the experimental values with an R2 of 
0.96 ± 0.09 (Fig. 4). While there appears to be a slight bias 
with a mean error of 0.7 ± 0.1 , all predictions were within 
uncertainty of experiment. Predicted uncertainties are also 
fairly large, greater than 1.2 for all 4-amino quinazoline 
derivatives. High uncertainties are expected as our train-
ing data only included molecules with one or two ioniz-
able groups and SM14 as well as these 4-amino quinazoline 
derivatives would not be well represented.

Commercial models provide a reference for more of our 
microscopic pKa predictions

In an attempt to evaluate a wider range of microscopic 
pKa s, we compared our predictions with some of the top 
results from the macroscopic analysis. SimulationsPlus’ pKa 
Predictor [20] (submission ID hdiyq) and ACD Lab’s pKa 
GALAS [49] (submission ID 8qph) both performed better 
than our approach in the macroscopic pKa challenge com-
pared to experiment and provided type I predictions [13]. 
We will refer to these two submissions as S+ and ACD 
respectively. The SAMPL6 challenge instructions encour-
aged all participants to submit whatever microscopic pKa s 
their method identified. Each method we are considering 
for comparison here reported a different number of micro-
scopic pKa s. Using our algorithm, we calculated 254 micro-
scopic pKa s while, S+ reported 313 and ACD reported 65. 
In Fig. 5, we compare our results with these two commer-
cial products (Fig. 5 a and b), then we also compare S+ 

Fig. 4   Predicted microscopic pKa s are compared to experiment for 
six 4-amino quinazoline derivatives based on NMR experiments 
on molecule SM07. The shaded region region indicates agreement 
within 1 pKa unit

(a) (b) (c)

Fig. 5   These plots compare microscopic pKa predictions for all com-
binations of our model, SimulationPlus’ pKa predictor and ACD 
Lab’s pKa GALAS. We divide our predictions into two sets: One with 
predicted uncertainties less than two pKa units (orange squares) and 

greater uncertainties (blue circles). The shaded region indicates an 
agreement within 1 pKa unit. Root mean squared deviation (RMSD) 
and R2 are reported for all pairs of points with the same statistics 
reported in parentheses for low uncertainty points where applicable
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and ACD predictions with each other (Fig. 5c). For all three 
comparisons, all microscopic transitions predicted by both 
methods are considered. The two commercial predictions 
agree reasonably well with one another (RMSE of 1.9 ± 0.2 ). 
Thus, comparing our predictions to both allowed for a more 
informative analysis of our microscopic pKa predictions 
than comparing them to macroscopic experimental data. 
Our results initially seem less promising than the analysis 
for SM07 and SM14 discussed above with an RMSD of 
4.7 ± 0.2 compared to S+ (Fig. 5a) and 2.9 ± 0.2 compared 
to ACD (Fig. 5b). Our model is trained on a limited data set, 
evident in that it has a smaller dynamic range than either ref-
erence method. Therefore, large errors on predictions involv-
ing highly charged microstates are to be expected.

If we focus on predictions with uncertainty ≤ 2.0 pKa 
units, our microscopic pKa predictions are comparable to 
commercially available tools. Of all the microscopic pKa 
predictions submitted to SAMPL6, only about half the meth-
ods included a prediction of uncertainty. Furthermore, ours 
was the only submission that did not report the same uncer-
tainty value for all predictions. In comparing our results 
with S+ and ACD we also considered only the points with 
a predicted uncertainty less than or equal to two pKa units 
(Fig. 5 a and b). Considering this limited set, there is a sig-
nificant improvement in overall performance with RMSD’s 
of 1.8 ± 0.2 and 2.1 ± 0.3 compared to S+ and ACD respec-
tively. These smaller RMSD’s show that when our method 
predicts a low uncertainty, it agrees with S+ and ACD as 
well as those two methods agree with each other. Agree-
ment with established commercial models shows promise for 
our algorithm and reinforces the importance of expanding 
our limited training set. Additionally, the ability to predict 
uncertainty demonstrates the reliability of this approach. 
While predicting uncertainty is a critical feature for model 
predictions, our model still needs improvement consider-
ing S+ and ACD agree on most microscopic pKa s and both 
are more accurate than our method for many macroscopic 
ionization states.

Macroscopic pKa reported for type III predictions

We reported macroscopic pKa values (type III) for all 
molecules in SAMPL6 (Table 2). These were calculated 
analytically based on the microscopic pKa s determined 
for each molecule as described in "Macroscopic pKas are 
calculated from microscopic transitions". Using the Hun-
garian algorithm described in "Predictions were matched 
with experiment to reduce error", SAMPL6 organizers com-
pared experimental results with all 34 prediction submis-
sions using RMSE, mean error (ME), and R2 correlation 
coefficient. Overall, we saw reasonable agreement between 
our predictions and experiment (Fig. 6). The SAMPL6 mol-
ecules included a variety of polyprotic functional groups that 

are completely outside the scope of our mono- and diprotic 
training set. Despite this, over half (18 predictions) fall 
within one pKa unit of experiment. By RMSE and ME we 
fall within the middle 15 predictions which cannot be easily 
ranked due to wide confidence intervals, determined using 
bootstrapping, for most participants. By correlation coef-
ficient ( R2 ) our method ranks very low, in the bottom five 
submissions, but this appears to be due to one rather extreme 
outlier we discuss in detail below. If we were to remove this 
one outlier, our ranking would improve significantly with 
a change in R2 from 0.4 ± 0.1 to 0.62 ± 0.09 and a shift in 
RMSE from 2.2 ± 0.5 to 1.7 ± 0.3.

Molecule SM06 can definitely be considered an outlier, 
not just due to the large discrepancy between our predic-
tion and experiment, but also due to an ionizable group we 
did not properly identify (Fig. 7). In this case our predicted 

Table 2   A list of experimental pKa s for all molecules in SAMPL6 by 
molecule ID and our predicted macroscopic pKa that matches with 
each, based on the Hungarian matching algorithm

SAMPL ID Prediction Experiment

SM01 9.27 ± 0.17 9.53 ± 0.01

SM02 5.19 ± 2.47 5.03 ± 0.01

SM03 4.49 ± 3.47 7.02 ± 0.01

SM04 6.73 ± 1.39 6.02 ± 0.01

SM05 7.62 ± 1.04 4.59 ± 0.01

SM06 1.77 ± 2.43 3.03 ± 0.04

3.94 ± 0.54 11.74 ± 0.01

SM07 5.17 ± 2.47 6.08 ± 0.01

SM08 4.61 ± 0.23 4.22 ± 0.01

SM09 5.14 ± 2.47 5.37 ± 0.01

SM10 6.44 ± 0.98 9.02 ± 0.01

SM11 5.07 ± 3.59 3.89 ± 0.01

SM12 5.17 ± 2.47 5.28 ± 0.01

SM13 4.97 ± 2.49 5.77 ± 0.01

SM14 0.12 ± 3.42 2.58 ± 0.01

6.49 ± 0.58 5.30 ± 0.01

SM15 5.42 ± 0.45 4.70 ± 0.01

8.71 ± 0.20 8.94 ± 0.01

SM16 5.91 ± 0.34 5.37 ± 0.01

SM17 3.47 ± 4.20 3.16 ± 0.01

SM18 −0.26 ± 2.70 2.15 ± 0.02

5.00 ± 4.39 9.58 ± 0.03

10.98 ± 1.59 11.02 ± 0.04

SM19 6.04 ± 0.88 9.56 ± 0.02

SM20 7.31 ± 1.84 5.70 ± 0.03

SM21 4.07 ± 0.02 4.10 ± 0.01

SM22 2.73 ± 0.34 2.40 ± 0.02

6.60 ± 1.08 7.43 ± 0.01

SM23 5.48 ± 2.83 5.45 ± 0.01

SM24 1.71 ± 3.14 2.60 ± 0.01
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value of 3.94 ± 0.5 is matched with the experimental value 
11.74 ± 0.01 , as pointed out in Fig. 6. This molecule contains 
three ionizable groups: the pyridine nitrogen base, the qui-
noline nitrogen base and the amide nitrogen either as a base 
at low pH or as an acid at high pH [50–52]. We did not train 
our model to treat amides as either acids or bases (Section 
"A heuristic approach is used to identify aqueous ionizable 
groups"). Our model predicted the transition from + 2 to 

+ 1 to occur at a pH of 1.77 ± 2.43 and to be dominated by 
deprotonation of the pyridine nitrogen. It predicts + 1 to 
+ 0 transition at 3.94 ± 0.54 dominated by deprotonation 
of the quinoline nitrogen. In order to improve our model, 
we consider how similar functional groups are represented 
in our training set and look to the literature to attempt to 
determine which microstate dominates at the 11.74 ± 0.01 
transition. It seems probable that the deprotonation from + 
3 charge to + 2 charge would occur well below pH 2.0, out-
side the experimental range, and is most likely dominated 
by the deprotonation of a charged and doubly protonated 
amide. The next transitions are less immediately obvious, so 
we look to our training set which contains meta-substituted 
bromo-pyridines and carboxamide pyridines, both with pKa s 
in the low 3s. It also includes several monoprotic quinoline 
derivatives with pKa s from 4.8 to 5.5 . One explanation for 
this large error could be that the carbonyl of the amide group 
could form an internal hydrogen bond stabilizing the proto-
nated form of the quinoline and increasing its pKa . While 
internal hydrogen-bonding may affect some of the features 
we already include, our model does not directly consider it. 
Adding a more explicit descriptor to capture such affects 
may be something we should explore as we improve our 
model. A more likely explanation for the error is that it is 
due to the amide nitrogen our model misses. Our logic for 
not including amides as ionizable sites in our model was 
because they often have a basic pKa value less than 2.0 
and an acidic pKa value greater than 14.0. However, in this 
highly conjugated system, that amide nitrogen could be an 
important contributor to the pKa of 11.74 ± 0.01 . An analo-
gous system to consider is N-(2-pyrimidyl)benzamide, with 
its second ionization measured at 11.2 [53], demonstrat-
ing that acidic amide nitrogens can have pKa values in the 
appropriate range. Improving our model will likely involve 
conducting a more thorough investigation of which groups 
should be considered ionizable.

We knew going into the SAMPL6 challenge that com-
plex polyprotic molecules would fall outside the domain of 
applicability for our model, however, other functional groups 
appear to also be poorly represented. For example, molecule 
SM20 has only one ionizable group, the acidic imide group 
(Fig. 8). While our training set includes some similar func-
tional groups, there was not a wide diversity. Specifically, 
none in the training set had a sulfur one bond away. This is 
also evident in our prediction 7.31 ± 1.84 where the large 
uncertainty reflects the lack of similarity between this ioniz-
able group and our training set. Expanding our training data 
to include polyprotic molecules was already in our plans, but 
considering more complex mono- or diprotic molecules with 
overlapping micro-constants could also improve our model.

An important goal in building our model was to be able to 
predict uncertainties which actually provide some guidance 
as to expected accuracy and limitations in the training data. 

Fig. 6   This plot shows our macroscopic pKa predictions compared 
to experiment. The shaded region represents agreement within 1 pKa 
unit. The most significant outlier (SM06) is due to an acidic amide we 
did not identify as ionizable

Fig. 7   SM06 provided feedback on our ability to accurate identify 
ionizable groups as our method only finds two (blue), notably missing 
the acid amide (red)
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Not all commercial products make this a priority; for exam-
ple, SimulationPlus did not provide uncertainty estimates 
for any of their predictions. One obvious feature in our data 
is that the predicted uncertainties are all very large, greater 
than 1 pKa unit for 19 of the matched predictions. Most of 
the molecules with large uncertainties are polyprotic and 
include functional groups outside the domain of our training 
set. Therefore it seems these large uncertainties are a good 
sign as they seem to correlate with actual error.

Previous SAMPL challenges have included quan-
tile–quantile plots (QQ plots) which provide a more quanti-
tative assessment of a participants reported model uncertain-
ties [7, 54]. QQ plots are based on the concept that actual 
errors should be drawn from a normal distribution, and 
well-predicted uncertainties should be able to predict the 
frequency of deviations of a given size. Thus in QQ plots, 
y-axis has the fraction of predicted minus experimental val-
ues that fall within a given number of uncertainties and the 
x-axis shows the fraction of a normal distribution within that 
many standard deviations. The closer the predicted uncer-
tainties compare to a normal distribution the closer they 
will come to an x = y line. Thus, the slope of a regression 
is also often used as a part of the evaluation. We compare 
two possibilities for model uncertainty in our QQ plot. The 
first uncertainty approach we consider uses the predicted 
uncertainties from our Gaussian process model (blue cir-
cles in Fig. 9). Another common way to report uncertainty 
is to assume it is the same for all predictions based on past 
performance of the approach. For the second set of data, we 
assumed the uncertainty for each predicted pKa was equal 
to the RMSE for our internal test set, 0.75 (red squares in 
Fig. 9). A method producing accurate predicted uncertain-
ties should lead to a diagonal line on the resulting plot, with 
slope of 1; in this case, we find that the uncertainty model 
using predicted uncertainties from the Gaussian process 
(slope = 0.87) outperforms the model with a fixed uncer-
tainty (slope = 0.73). This is promising evidence that our 
model is capable of predicting how its reliability varies with 

the chemistry being considered, rather than just its overall 
typical performance.

Conclusions

Our Gaussian process model showed promising results in 
the SAMPL6 challenge, but was limited by the scope of 
our training set. The chemical space represented in our 
training set was limited to mono- and diprotic molecules 
(Section "Training, validation, and internal test sets include 
monoprotic and select diprotic molecules"). Despite this 
limitation, we still saw fairly good agreement between our 
predicted macroscopic pKa s and the experimentally meas-
ured values and performed competitively compared to other 
participants. We rank in the top ten by RMSE ( 1.7 ± 0.3 ) 
after removing a single obvious outlier (Fig. 6). This outlier, 
with an acidic amide group, highlighted a potential hole in 
our limited definition of ionizable groups. Improving our 
model will require adding groups which are often ionized 
outside the aqueous pKa range, but which can be perturbed 
to ionize within that range. Our performance in this blind 
challenge is evidence that a single model trained on physi-
cally and chemically relevant features can be competitive 
with established methods which rely on specialized models 
for individual functional groups.

Fig. 8   Our prediction for SM20 was still rather inaccurate, despite it 
being monoprotic (blue). This is likely due to a lack of representation 
of imide groups in similar environments in our training set

Fig. 9   This QQ plot provides an assessment for predicted uncertain-
ties compared to a normal distribution. Our predicted uncertainties 
(blue circles) out perform a fixed error of 0.75 taken from our test set 
RMSE (red squares), as evident by the proximity of the point to the 
x = y black line and a slope approaching one
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The other important step in improving our model will 
be to augment our training set with additional polyprotic 
molecules. Currently, the likelihood function in Scikit-
learn requires one feature vector for each experimental 
result. Using this function, we would require a large data-
set of experimental microscopic pKa s in order to include 
polyprotic molecules. Generally speaking, it is easier 
to acquire experimental macroscopic pKa data. Thus, a 
preferred approach would be to define a new likelihood 
function which would take advantage of the analytical 
relationship between microscopic and macroscopic pKa s 
and evaluate a set of microscopic predictions with one 
macroscopic value. We are confident that with this expan-
sion we will have a general model which could predict pKa 
for molecules with any combination of ionizable groups.

Evaluating microscopic pKa predictions was limited 
by the availability of experimental results. For the seven 
molecules with NMR supported microscopic pKa s, our 
predicted values agreed with experiment within predicted 
uncertainty. This was a rather limited set of the possi-
ble microscopic transitions so we also compared our per-
formance to top-performing commercial products. For 
microscopic predictions with low predicted uncertain-
ties, our model performs well compared to Simulation-
Plus and ACD Labs commercial products (Fig. 5). While 
these results are promising, this portion is a comparison 
of three predictive models and has not been experimentally 
verified. A valuable addition to future SAMPL challenges 
including pKa predictions would be to expand experimen-
tal measurements to include more microscopic results 
when available.

We believe predictions are only valuable when they 
include an accurate assessment of uncertainty, otherwise 
downstream users have no guidance as to the reliability of 
such predictions and thus no confidence as to when they can 
usefully be used and when they should be ignored. These 
uncertainties are even more valuable if they are determined 
based on the input molecule, capturing when reliability var-
ies with chemistry. Unfortunately, 10 out of 34 type III sub-
missions in SAMPL6 provided no uncertainties with their 
predictions. Perhaps requiring such predictions for every 
submission would improve future challenges and drive pro-
gress in this respect. From the beginning, we considered 
providing an uncertainty evaluation for each prediction an 
important component of our model. Thus, our ability to 
determine accurate uncertainty predictions based on input 
chemistry shows our model’s potential to be a successful 
predictive method. Previous SAMPL challenges have high-
lighted the importance and difficulty in accurately assessing 
model uncertainty for hydration free energies [54] and dis-
tribution coefficients [7]. The large error bars for ionizable 
sites we consider outside our domain of applicability provide 
evidence our uncertainty estimates are working as desired. 

QQ plots also support the conclusion that our model is capa-
ble of predicting its own uncertainty (Fig.  9).

SAMPL6 was an opportunity to test our Gaussian pro-
cess model on an external test set and our first completely 
blind set of predictions. Our new Gaussian process model 
performed semi-competitively, especially considering its 
limited training set compared to more established meth-
ods which participated. We look forward to incorporating 
important lessons from this challenge, particularly, expand-
ing our definition of an ionizable group and improving our 
likelihood function to include polyprotic molecules in our 
next training set. Overall, SAMPL challenges provide an 
important service to the community allowing participants 
to test their predictive models in a blind manner.

Supplementary materials

Included with this article you will find supplementary mate-
rials in the form of a PDF with human readable figures and 
tables and a compressed file with machine readable data 
and analysis scripts. In the PDF we provide equations for 
computing macroscopic equilibrium constants Ka1

 , Ka2
 , and 

Ka3
 for a triprotic molecule along with the corresponding 

thermodynamic cycle similar to the one in Fig. 2. Here, we 
also provide statistics from our cross-validation with our 
training set and a comparison plot for our internal test set. 
Also included there is a full list of all microscopic and mac-
roscopic pKa s our model predicts for all 24 SAMPL6 mol-
ecules. In the electronic materials we include the prediction 
files we submitted for type I and type III, along with all the 
analysis scripts we used to generate data and figures pro-
vided here. For analysis of all SAMPL6 submissions and 
details on the experimental data [10] see the GitHub reposi-
tory provided by challenge organizers (https​://githu​b.com/
Moble​yLab/SAMPL​6).
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