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Abstract
Determining the net charge and protonation states populated by a small molecule in an environment of interest or the cost 
of altering those protonation states upon transfer to another environment is a prerequisite for predicting its physicochemical 
and pharmaceutical properties. The environment of interest can be aqueous, an organic solvent, a protein binding site, or 
a lipid bilayer. Predicting the protonation state of a small molecule is essential to predicting its interactions with biologi-
cal macromolecules using computational models. Incorrectly modeling the dominant protonation state, shifts in dominant 
protonation state, or the population of significant mixtures of protonation states can lead to large modeling errors that 
degrade the accuracy of physical modeling. Low accuracy hinders the use of physical modeling approaches for molecular 
design. For small molecules, the acid dissociation constant (pKa) is the primary quantity needed to determine the ionic states 
populated by a molecule in an aqueous solution at a given pH. As a part of SAMPL6 community challenge, we organized 
a blind pKa prediction component to assess the accuracy with which contemporary pKa prediction methods can predict this 
quantity, with the ultimate aim of assessing the expected impact on modeling errors this would induce. While a multitude 
of approaches for predicting pKa values currently exist, predicting the pKas of drug-like molecules can be difficult due to 
challenging properties such as multiple titratable sites, heterocycles, and tautomerization. For this challenge, we focused on 
set of 24 small molecules selected to resemble selective kinase inhibitors—an important class of therapeutics replete with 
titratable moieties. Using a Sirius T3 instrument that performs automated acid–base titrations, we used UV absorbance-
based pKa measurements to construct a high-quality experimental reference dataset of macroscopic pKas for the evaluation 
of computational pKa prediction methodologies that was utilized in the SAMPL6 pKa challenge. For several compounds in 
which the microscopic protonation states associated with macroscopic pKas were ambiguous, we performed follow-up NMR 
experiments to disambiguate the microstates involved in the transition. This dataset provides a useful standard benchmark 
dataset for the evaluation of pKa prediction methodologies on kinase inhibitor-like compounds.
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Introduction

Statistical Assessment of the Modeling of Proteins and 
Ligands (SAMPL) is a recurring series of blind prediction 
challenges for the computational chemistry community [1, 
2]. Through these challenges, SAMPL aims to evaluate 
and advance computational tools for rational drug design. 
SAMPL has driven progress in a number of areas over 
seven previous rounds of challenge cycles [3–15] by focus-
ing the community on specific phenomena relevant to drug 
discovery poorly predicted by current models, isolating 
that phenomenon from other confounding factors in well-
designed test systems, evaluating tools prospectively, ena-
bling data sharing to learn from failures, and releasing 
the resulting high-quality datasets into the community as 
benchmark sets.

As a stepping stone to enabling the accurate prediction 
of protein–ligand binding affinities, SAMPL has focused 
on evaluating how well physical and empirical modeling 
methodologies can predict various physicochemical prop-
erties relevant to binding and drug discovery, such as 
hydration free energies (which model aspects of desolva-
tion in isolation), distribution coefficients (which model 
transfer from relatively homogeneous aqueous to nonpolar 
environments), and host–guest binding affinities (which 
model high-affinity association without the complication 
of slow protein dynamics). These physicochemical prop-
erty prediction challenges—in addition to assessing the 
predictive accuracy of quantities that are useful in various 
stages of drug discovery in their own right—have been 
helpful in pinpointing deficiencies in computational mod-
els that can lead to substantial errors in affinity predictions.

Neglect of protonation state effects can lead 
to large modeling errors

As part of the SAMPL5 challenge series, a new cyclohex-
ane–water distribution constant (log D) prediction chal-
lenge was introduced, where participants predicted the 
transfer free energy of small drug-like molecules between 
an aqueous buffer phase at pH  7.4 and a nonaqueous 
cyclohexane phase  [16, 17]. While octanol–water dis-
tribution coefficient measurements are more common, 
cyclohexane was selected for the simplicity of its liq-
uid phase and relative dryness compared to wet octanol 
phases. While the expectation was that this challenge 
would be relatively straightforward given the lack of 
complexity of cyclohexane phases, analysis of participant 
performance revealed that multiple factors contributed 
to significant prediction failures: poor conformational 
sampling of flexible solute molecules, misprediction of 

relevant protonation and tautomeric states (or failure to 
accommodate shifts in their populations), and force field 
inaccuracies resulting in bias towards the cyclohexane 
phase. While these findings justified the benefit of future 
iterations of blind distribution or partition coefficient chal-
lenges, the most surprising observation from this initial 
log D challenge was that participants almost uniformly 
neglected to accurately model protonation state effects, 
and that neglect of these effects led to surprisingly large 
errors in transfer free energies [16–18]. Careful quantum 
chemical assessments of the magnitude of these protona-
tion state effects found that their neglect could introduce 
errors up to 6–8 kcal/mol for some compounds [18]. This 
effect stems from the need to account for the free energy 
difference between the major ionization state in cyclohex-
ane (most likely neutral state) and in water phase (which 
could be neutral or charged).

To isolate these surprisingly large protonation state mod-
eling errors from difficulties related to lipophilicity (log P 
and log D) prediction methods, we decided to organize a set 
of staged physicochemical property challenges using a con-
sistent set of molecules that resemble small molecule kinase 
inhibitors—an important drug class replete with multiple 
titratable moieties. This series of challenges will first evalu-
ate the ability of current-generation modeling tools to pre-
dict acid dissociation constants (pKa). It will be followed by 
a partition/distribution coefficient challenge to evaluate the 
ability to incorporate experimentally-provided pKa values 
into prediction of distribution coefficients to ensure meth-
odologies can correctly incorporate protonation state effects 
into their predictions. A third challenge stage will follow: 
a new blinded partition/distribution coefficient challenge 
where participants must predict pKa values on their own. At 
the conclusion of this series of challenges, we will ensure 
that modern physical and empirical modeling methods have 
eliminated this large source of spurious errors from mod-
eling both simple and complex phenomena.

This article reports on the experiments for the first stage 
of this series of challenges: SAMPL6 pKa prediction chal-
lenge. The selection of a small molecule set and collection 
of experimental pKa data are described in detail.

Conceptualization of a blind pKa challenge

This is the first time a blind pKa prediction challenge has 
been fielded as part of SAMPL. In this first iteration of the 
challenge, we aimed to assess the performance of current 
pKa prediction methods and isolate potential causes of inac-
curate pKa estimates.

The prediction of pKa values for drug-like molecules can 
be complicated by several effects: the presence of multiple 
(potentially coupled) titratable sites, the presence of het-
erocycles, tautomerization, the conformational flexibility 
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of large molecules, and ability of intramolecular hydrogen 
bonds to form. We decided to focus on the chemical space of 
small molecule kinase inhibitors in the first iteration of pKa 
prediction challenge. A total of 24 small organic molecules 
(17 drug-fragment-like and 7 drug-like) were selected for 
their similarity to known small molecule kinase inhibitors, 
while also considering properties predicted to affect the 
experimental tractability of pKa and log P measurements 
such as solubility and predicted pKas. Macroscopic pKa 
values were collected experimentally with UV-absorbance 
spectroscopy-based pKa measurements using a Sirius T3 
instrument, which automates the sample handling, titration, 
and spectroscopic measurements to allow high-quality pKa 
determination. The Sirius T3 is equipped with an autosam-
pler which allowed us to run 8–10 measurements per day. 
Experimental data were kept blinded for three months (25 
October 2017 through 23 January 2018) to allow partici-
pants in the SAMPL6 pKa challenge to submit truly blinded 
computational predictions. Eleven research groups partici-
pated in this challenge, providing a total of 93 prediction 
submission sets that cover a large variety of contemporary 
pKa prediction methods.

Our selected experimental approach determines 
macroscopic pKa values

Whenever experimental pKa measurements are used for 
evaluating pKa predictions, it is important to differentiate 
between microscopic and macroscopic pKa values. In mol-
ecules containing multiple titratable moieties, the protona-
tion state of one group can affect the proton dissociation 
propensity of another functional group. In such cases, the 
microscopic pKa (group pKa) refers to the pKa of deprotona-
tion of a single titratable group while all the other titratable 
and tautomerizable functional groups of the same molecule 
are held fixed. Different protonation states and tautomer 
combinations constitute different microstates. The macro-
scopic pKa (molecular pKa) defines the acid dissociation 
constant related to the observable loss of a proton from a 
molecule regardless of which functional group the proton is 
dissociating from, so it doesn’t necessarily convey structural 
information.

Whether a measured pKa is microscopic or macroscopic 
depends on the experimental method used (Fig. 1). For a 
molecule with only one titratable proton, the microscopic 
pKa is equal to the macroscopic pKa. For a molecule with 
multiple titratable groups, however, throughout a titration 
from acidic to basic pH, the deprotonation of some func-
tional groups can take place almost simultaneously. For 
these multiprotic molecules, the experimentally-measured 
macroscopic pKa will include contributions from multiple 
microscopic pKas with similar values (i.e., acid dissocia-
tion of multiple microstates). Cysteine provides an example 

of this behavior with its two macroscopic pKas observable 
by spectrophotometric or potentiometric pKa measurement 
experiments [19, 20].

While four microscopic pKas can be defined for cysteine, 
experimentally observed pKa values cannot be assigned to 
individual functional groups directly (Fig. 2, top). More 
advanced techniques capable of resolving individual 
protonation sites—such as nuclear magnetic resonance 
(NMR) [21], Raman spectroscopy [22, 23], and the anal-
ysis of pKas in molecular fragments or derivatives—are 
required to unambiguously assign the site of protonation 
state changes. On the other hand, when there is a large dif-
ference between microscopic pKas in a multiprotic molecule, 
the proton dissociations won’t overlap and macroscopic 
pKas observed by experiments can be assigned to individual 
titratable groups. The pKa values of glycine provide a good 
example of this scenario (Fig. 2, bottom) [19, 20, 22]. We 
recommend the short review on the assignment of pKa val-
ues authored by Darvey [20] for a good introduction to the 
concepts of macroscopic vs microscopic pKa values.

The most common methods for measuring small mol-
ecule pKas are UV-absorbance spectroscopy (UV-metric 
titration) [28–30], potentiometry (pH-metric titration) [30, 
31], capillary electrophoresis  [32, 33], and NMR spec-
troscopy [21], with NMR being the most time-consuming 
approach. Other, less popular pKa measurement techniques 
include conductometry, HPLC, solubility or partition based 
estimations, calorimetry, fluorometry, and polarimetry [34]. 
UV-metric and pH-metric methods (Fig. 3) of Sirius T3 are 
limited to measuring aqueous pKa values between 2 and 12 
due to limitations of the pH electrode used in these measure-
ments. The pH-metric method relies on determining the stoi-
chiometry of bound protons with respect to pH, calculated 
from volumetric titration with acid or base solutions. Accu-
rate pH-metric measurements require high concentrations of 
analyte as well as analytically prepared acid/base stocks and 
analyte solutions. By contrast, UV-metric pKa measurements 
rely on the differences in UV absorbance spectra of different 
protonation states, generally permitting lower concentrations 
of analyte to be used. The pH and UV absorbance of the 
analyte solution are monitored during titration.

Both UV-metric and pH-metric pKa determination meth-
ods measure macroscopic pKas for polyprotic molecules, 
which cannot be easily assigned to individual titration sites 
and underlying microstate populations in the absence of 
other experimental evidence that provides structural infor-
mation, such as NMR (Fig. 1). Macroscopic populations 
observed in these two methods are composed of different 
combinations of microstates depending on the principles of 
measurement technique. In potentiometric titrations, micro-
states with same total charge will be observed as one mac-
rostate, while in spectrophotometric titrations, protonation 
sites remote from chromophores might be spectroscopically 
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invisible, and macrostates will be formed from collections 
of microstates that manifest similar UV-absorbance spectra.

For UV-metric method to resolve populations of micro-
states, sufficiently different UV spectra between microstates 
and sufficiently non-overlapping change of populations 
with respect to pH are needed. However, relative tautomer 
populations of microstates with the same total charge do 
not depend on pH and stay constant while pH is titrated 
(Fig. 1b), therefore they cannot be resolved by UV-metric 

method. The pH-metric method also cannot resolve micro-
states that have the same total charge as shown in Fig. 1c.

Spectrophotometric pKa determination is more sensitive 
than potentiometric determination, requiring low analyte 
concentrations (50–100 μM) —especially advantageous for 
compounds with low solubilities—but is only applicable 
to titration sites near chromophores. For protonation state 
changes to affect UV absorbance, a useful rule of thumb 
is that the protonation site should be a maximum of four 

Fig. 1   Comparison of macroscopic and microscopic pKa measure-
ment methods. Filled circles represent protonated sites and empty cir-
cles represent deprotonated sites with the order of carboxylic acid (1), 
piperazine nitrogen (2), and piperazine nitrogen (3). Protonation state 
populations shown for pH-metric and UV-metric pKa measurement 
methods are simulations, calculated using NMR-based microscopic 
pKa values. a Cetirizine has n = 3 titratable sites, shown in bold. 
b Left: 8 microstates ( 2n ) and 12 microscopic pKas ( n2n−1 ) of ceti-
rizine. Right: relative population of microspecies with respect to pH. 
Potentially all microstates can be resolved via NMR. c Simulated pH-
metric (potentiometric) titration and macroscopic populations. For a 
polyprotic molecule, only macroscopic pKas can be measured with 
pH-metric titration. Microstates with different total charges (related to 
the number of protons) can be resolved, but microstates with the same 
total charge are observed as one macroscopic population. d Simulated 
microscopic populations for UV-metric (spectrophotometric) titration 

of cetirizine. Since only protonation of the titration sites within four 
heavy atoms of the UV-chromophore is likely to cause an observa-
ble change in the UV-absorbance spectra, microstates that only differ 
by protonation of the distal carboxylic acid cannot be differentiated. 
Moreover, populations that overlap may or may not be resolvable 
depending on how much their absorbance spectra in the UV region 
differ. Both UV-metric and pH-metric pKa determination methods 
measure macroscopic pKas for polyprotic molecules, which cannot 
easily be assigned to individual titration sites and underlying micro-
state populations in the absence of other experimental evidence that 
provides structural resolution, such as NMR. Note that macroscopic 
populations observed in these two methods are composed of differ-
ent combinations of microstates depending on the principles of meas-
urement technique. Here, the illustrative diagram style of microstates 
were adopted from [24], and NMR-determined microscopic pKas for 
cetirizine were taken from [25]
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heavy atoms away from the chromophore, which might 
consist of conjugated double bonds, carbonyl groups, aro-
matic rings, etc. Although potentiometric measurements do 
not suffer from the same observability limitations, higher 
analyte concentrations ( ∼ 5 mM) are necessary for the ana-
lyte to provide sufficiently large enough buffering capac-
ity signal above the inherent buffering capacity of water to 
produce an accurate measurement. The accuracy of pKas fit 
to potentiometric titrations can also be sensitive to errors 
in the estimated concentration of the analyte in the sample 
solution, while UV-metric titrations are insensitive to con-
centration errors. We therefore decided to adopt spectro-
photometric measurements for collecting the experimental 
pKa data for this challenge, and selected a compound set to 
ensure that all potential titration sites are in the vicinity of 
UV chromophores.

Here, we report on the selection of SAMPL6 pKa chal-
lenge compounds, their macroscopic pKa values meas-
ured by UV-metric titrations using a Sirius T3, as well as 
NMR-based microstate characterization of two SAMPL6 

compounds with ambiguous protonation states associated 
with the observed macroscopic pKas (SM07 and SM14). 
We discuss implications of the use of this experimental 
technique for the interpretation of pKa data, and provide 
suggestions for future pKa data collection efforts with 
the goal of evaluating or training computational pKa 
predictions.

Methods

Compound selection and procurement

To select a set of small molecules focusing on the chemi-
cal space representative of kinase inhibitors for physico-
chemical property prediction challenges (pKa and lipo-
philicity) we started from the kinase-targeted subclass of 
the ZINC15 chemical library [35] and applied a series of 
filtering and selection rules as depicted in Fig. 4a. We 
focused on the availability “now” and reactivity “ano-
dyne” subsets of ZINC15 in the first filtering step [http://
zinc1​5.docki​ng.org/subcl​asses​/kinas​e/subst​ances​/subse​ts/
now+anody​ne/]. The “now” label indicates the compounds 
were availabile for immediate delivery, while the “ano-
dyne” label excludes compounds matching filters that flag 
compounds with the potential for reactivity or pan-assay 
interference (PAINs) [36, 37].

Next, we identified resulting molecules that were also 
available for procurement through eMolecules [38] (free 
version, downloaded 1 June 2017), the supplier that would 
be used for procurement in this exercise. To find the inter-
section of ZINC15 kinase subset and eMolecules database, 
we matched molecules using their canonical isomeric 
SMILES strings, as computed via the OpenEye OEChem 
Toolkit (version 2017.Feb.1) [39].

To extract availability and price information from eMol-
ecules, we queried using a list of SMILES (as reported in 
eMolecules database) of the intersection set. We further 
filtered the intersection set (1204 compounds) based on 
delivery time (Tier 1 suppliers, 2-week delivery) and at 
least 100 mg availability in powder form (format: Sup-
plier Standard Vial). We aimed to purchase 100 mg of 
each compound in powder form with at least 90% purity. 
We calculated 100 mg was enough for optimization and 
replicate experiments to measure pKa, log P, and solu-
bility measurements with the Sirius T3. Each UV-metric 
and pH-metric pKa measurement requires a minimum of 
0.01 mg and 1.00 mg compound [solid or delivered via 
dimethyl sulfoxide (DMSO) stock solution], respectively. 
log P and pH-dependent solubility measurements require 
around 2 mg and 10 mg of solid chemical, respectively.
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Fig. 2   Assignment of cysteine and glycine pKa values. pKa1 , pKa2 , 
and pKa3 are macroscopic acid dissociation constants for cysteine and 
glycine [26]. When pKa values of a polyprotic molecule are very dif-
ferent, such as in the case of glycine, it is possible to assign the pKas 
to individual groups since the dissociation of protons is stepwise [19]. 
However, stepwise dissociation cannot be assumed for cysteine, 
because pKa2 and pKa3 are very close in value. Four underlying 
microscopic pKas ( pKa,S , pKa,N , pKa,S′ , and pKa,N′ ) for cysteine were 
measured using UV spectra analysis of cysteine and derivatives [27]. 
Notice that the proximity of pKa,S and pKa,N values indicates simi-
lar probability of proton dissociation from these groups. Subfigure of 
cysteine microscopic pKas was reproduced based on [19]
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Filtering for predicted measurable pKas and lack 
of experimental data

The Sirius T3 (Pion) instrument used to collect pKa and 
log P/log D measurements requires a titratable group in the 
pKa range of 2–12, so we aimed to select compounds with 
predicted pKas in the range of 3–11 to allow a ∼ 1 pKa unit 
margin of error in pKa predictions. pKa predictions for com-
pound selection were calculated using Epik (Schrödinger, 

LLC) sequential pKa prediction (scan) [40, 41] with target 
pH 7.0 and tautomerization allowed for generated states. 
We filtered out all compounds that did not have any pre-
dicted pKas between 3–11, as well as compounds with two 
pKa values predicted to be less than 1 pKa unit apart in the 
hopes that individual pKas of multiprotic compounds could 
be resolved with spectrophotometric pKa measurements. 
With the goal of selecting compounds suitable for subse-
quent log P measurements, we eliminated compounds with 

Fig. 3   UV-metric (spectrophotometric) and pH-metric (potentio-
metric) pKa measurements of pyridoxine HCl with Sirius T3. Spec-
trophotometic pKa measurement (a–c) relies on differences in the 
UV absorbance spectra between microscopic protonation states to 
deconvolute the population of macrostate species as a function of pH. 
While highly sensitive (and therefore requiring a very low analyte 
concentration of ~  50  μM), this approach can only resolve changes 
in protonation states for titratable sites near chromophores and can-
not separate the populations of microstates that change in the same 
manner as a function of pH. a Multiwavelength UV absorbance ver-
sus pH. Purple lines represents absorbance at distinct wavelengths in 
UV region. b Derivative of multiwavelength absorbance with respect 
to pH (dA/dpH) versus pH is plotted with purple lines. In a and b, 
blue, red, and green triangles represent population of protonation 
states (from most protonated to least protonated) as calculated from 
a global fit to experimental UV absorbances for all pH values, while 
thin lines denote model fits that utilize the fitted model pKas to com-
pute populations. pKa values (green flags) correspond to inflection 

point of multiwavelength absorbance data where change in absorb-
ance with respect to pH is maximum. c Molar absorption coefficients 
versus wavelength for each protonation state as resolved by TFA. d 
–f illustrate potentiometric pKa measurement where molar addition 
of acid or base is tracked as pH is titrated. d Mean molecular charge 
versus pH. Mean molecular charge is calculated based on the model 
provided for the analyte: predicted number and nature of titratable 
sites (acid or base type), and number of counter ions present. pKa 
values are calculated as inflection points of charge versus pH plot. e 
Predicted macroscopic protonation state populations versus pH cal-
culated based on pKa values ( H2A

+ : blue, HA : red, and A− : green) 
f Buffering index versus pH profile of water (grey solid line, theo-
retical) and the sample solution (blue triangles represent experimental 
data points). A higher concentration of analyte ( ∼ 5mM ) is necessary 
for the potentiometric method than the spectrophotometric method in 
order to provide large enough buffering capacity signal above water 
for an accurate measurement
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OpenEye XlogP [42] values less than − 1 or greater than 
6. Subsets of compounds with molecular weights between 
150–350 and 350–500 g/mol were selected for fragment-
like and drug-like categories respectively. Compounds 
without available price or stock quantity information were 
eliminated. As the goal was to provide a blind challenge, 

compounds with publicly available experimental log  P 
measurements were also removed. The sources we checked 
for publicly available experimental log  P values were 
the following: DrugBank [43] (queried with eMolecules 
SMILES), ChemSpider [44] (queried by canonical isomeric 
SMILES), NCI Open Database August 2006 release [45], 

Fig. 4   Compound selection for the SAMPL6 pKa challenge, with 
the goal of running subsequent log P/log D challenges on the same 
compound set. a Flowchart of filtering steps for the selection of com-
pounds that resemble kinase inhibitors and their fragments. Num-
bers next to arrows indicate the number of compounds remaining 
after each filtering step. A total of 25 fragment-like and 10 drug-like 
compounds were selected, out of which procurement and pKa meas-
urements for 17 fragment-like and 7 drug-like compounds were suc-

cessful, respectively. b Frequent heterocycles found in FDA approved 
kinase inhibitors, as determined by Bemis–Murcko fragmentation 
into rings [49]. Black structures were represented in SAMPL6 set at 
least once. Compounds with piperazine and indazole (gray structures) 
could not be included in the challenge set due to library and selection 
limitations. c Structures of heterocycles that were overrepresented 
based on our compound selection workflow. We have limited the 
number of occurrences of these heterocycles to at most one
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Enhanced NCI Database Browser [46] (queried with canoni-
cal isomeric SMILES), and PubChem [47] (queried with 
InChIKeys generated from canonical isomeric SMILES with 
NCI CACTUS Chemical Identifier Resolver [48]).

Filtering for kinase inhibitor‑like scaffolds

In order to include common scaffolds found in kinase inhib-
itors, we analyzed the frequency of rings found in FDA-
approved kinase inhibitors via Bemis–Murcko fragmentation 
using OEMedChem Toolkit of OpenEye [49, 50]. Heterocy-
cles found more than once in FDA-approved kinase inhibi-
tors are shown in Fig. 4b. In selecting 25 compounds for the 
fragment-like set and 10 compounds for the drug-like set, we 
prioritized including at least one example of each heterocy-
cle, although we failed to find compounds with piperazine 
and indazole that satisfied all other selection criteria. We 
observed that certain heterocycles (shown in Fig. 4c) were 
overrepresented based on our selection criteria; therefore, 
we limited the number of these structures in the SAMPL6 
challenge set to at most one in each set. To achieve broad and 
uniform sampling of the measurable log P dynamic range, 
we segregated the molecules into bins of predicted XlogP 
values and selected compounds from each bin, prioritizing 
less expensive compounds.

Filtering for UV chromophores

The presence of UV chromophores (absorbing in the 
200–400 nm range) in close proximity to protonation sites 
is necessary for spectrophotometric pKa measurements. To 
filter for molecules with UV chromophores, we looked at 
the substructure matches to the SMARTS pattern [n,o,c]
[c,n,o]cc which was considered the smallest unit of pi-
conjugation that can constitute a UV chromophore. This 
SMARTS pattern describes extended conjugation systems 
comprised of four heavy atoms and composed of aromatic 
carbon, nitrogen, or oxygen, such as 1,3-butadiene, which 
possess an absorption peak at 217 nm. Additionally, the final 
set of selected molecules was manually inspected to makes 
sure all potentially titratable groups were no more than four 
heavy atoms away from a UV chromophore.

25 fragment-like and 10 drug-like compounds were 
selected, out of which procurement of 28 was completed 
in time. pKa measurements for 17 (SM01–SM17) and 7 
(SM18–SM24) were successful, respectively. The result-
ing set of 24 small molecules constitute the SAMPL6 pKa 
challenge set. For the other four compounds, UV-metric 
pKa measurements show no detectable pKas in the range of 
2–12, so we decided not to include them in the SAMPL6 
pKa challenge. Experiments for these four compounds are 
not reported in this publication.

Python scripts used in the compound selection process 
are available from GitHub [https​://githu​b.com/chode​ralab​
/sampl​6-physi​coche​mical​-prope​rties​]. Procurement details 
for each compound can be found in Supplementary Table 1. 
Chemical properties used in the selection of compounds are 
summarized in Supplementary Table 2.

UV‑metric pKa measurements

Experimental pKa measurements were collected using the 
spectrophotometric pKa measurement method with a Sirius 
T3 automated titrator instrument (Pion) at 25.0 °C and con-
stant ionic strength. The Sirius T3 is equipped with an Ag/
AgCl double-junction reference electrode to monitor pH, 
a dip probe attached to UV spectrophotometer, a stirrer, 
and automated volumetric titration capability. The Sirius 
T3 UV-metric pKa measurement protocol measures the 
change in multi-wavelength absorbance in the UV region 
of the absorbance spectrum while the pH is titrated over pH 
1.8–12.2 [28, 29]. UV absorbance data is collected from 
160–760 nm while the 250–450 nm region is typically used 
for pKa determinations. Subsequent global data analysis 
identifies pH-dependent populations of macrostates and fits 
one or more pKa values to match this population with a pH-
dependent model.

DMSO stock solutions of each compound with 10 mg/
mL concentration were prepared by weighing 1 mg of pow-
der chemical with a Sartorius Analytical Balance (Model: 
ME235P) and dissolving it in 100 μL DMSO (Fisher Biore-
agents, CAT: BP231-100, LOT: 116070, purity ≥ 99.7% ). 
DMSO stock solutions were capped immediately to limit 
water absorption from the atmosphere due to the high hygro-
scopicity of DMSO and sonicated for 5–10 min in a water 
bath sonicator at room temperature to ensure proper dis-
solution. These DMSO stock solutions were stored at room 
temperature up to 2 weeks in capped glass vials. 10 mg/
mL DMSO solutions were used as stock solutions for the 
preparation of three replicate samples for the independent 
titrations. For each experiment, 1–5 μL of 10 mg/mL DMSO 
stock solution was delivered to a 4 mL Sirius T3 glass sam-
ple vial with an electronic micropipette (Rainin EDP3 LTS 
1–10 μL). The volume of delivered DMSO stock solution, 
which determines the sample concentration following dilu-
tion by the Sirius T3, is optimized individually for each 
compound to achieve sufficient but not saturated absorbance 
signal (targeting 0.5–1.0 AU) in the linear response region. 
Another limiting factor for sample concentration was ensur-
ing that the compound remains soluble throughout the entire 
pH titration range. An aliquot of 25 μL of mid-range buffer 
(14.7 mM K2HPO4 and 0.15 M KCl in H2O ) was added to 
each sample, transferred with a micropipette (Rainin EDP3 
LTS 10–100 μL) to provide enough buffering capacity in 

https://github.com/choderalab/sampl6-physicochemical-properties
https://github.com/choderalab/sampl6-physicochemical-properties
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middle pH ranges so that pH could be controlled incremen-
tally throughout the titration.

pH is temperature and ionic-strength dependent. A pel-
tier device on the Sirius T3 kept the analyte solution at 
25.0 ± 0.5 °C throughout the titration. Sample ionic strength 
was adjusted by dilution in 1.5 mL ionic strength-adjusted 
water (ISA water = 0.15M KCl in H2O ) by the Sirius T3. 
Analyte dilution, mixing, acid/base titration, and measure-
ment of UV absorbance was automated by the Sirius T3 
UV-metric pKa measurement protocol. The pH was titrated 
between pH 1.8 and 12.2 via the addition of acid (0.5 M 
HCl) and base (0.5 M KOH), targeting 0.2 pH steps between 
UV absorbance spectrum measurements. Titrations were 
performed under argon flow on the surface of the sample 
solution to limit the absorption of carbon dioxide from air, 
which can alter the sample pH to a measurable degree. To 
fully capture all sources of experimental variability, instead 
of performing three sequential pH titrations on the same 
sample solution, three replicate samples (prepared from the 
same DMSO stock solution) were subjected to one round of 
pH titration each. Although this choice reduced throughput 
and increased analyte consumption, it limited the dilution of 
the analyte during multiple titrations, resulting in stronger 
absorbance signal for pKa fitting. Under circumstances 
where analyte is scarce, it is also possible to do three sequen-
tial titrations using the same sample to limit consumption 
when the loss of accuracy is acceptable.

Visual inspection of the sample solutions after titration 
and inspection of the pH-dependent absorbance shift in the 
500–600 nm region of the UV spectra was used to verify 
no detectable precipitation occurred during the course of 
the measurement. Increased absorbance in the 500–600 
nm region of the UV spectra is associated with scattering 
of longer wavelengths of light in the presence of colloidal 
aggregates. For each analyte, we optimized analyte concen-
tration, direction of the titration, and pH titration range in 
order to maintain solubility over the entire experiment. The 
titration direction was specified so that each titration would 
start from the pH where the compound is most soluble: low-
to-high pH for bases and high-to-low pH for acids. While 
UV-metric pKa measurements can be performed with analyte 
concentrations as low as 50 μM (although this depends on 
the absorbance properties of the analyte), some compounds 
may yet not be soluble at these low concentrations through-
out the pH range of the titration. As the sample is titrated 
through a wide range of pH values, it is likely that low-
solubility ionization states—such as neutral and zwitterionic 
states—will also be populated, limiting the highest analyte 
concentration that can be titrated without encountering solu-
bility issues. For compounds with insufficient solubility to 
accurately determine a pKa value directly with a UV-metric 
titration, a cosolvent protocol was used, as described in the 
next section.

Two Sirius T3 computer programs—Sirius T3 Control 
v1.1.3.0 and Sirius T3 Refine v1.1.3.0—were used to execute 
measurement protocols and analyze pH-dependent multi-
wavelength spectra, respectively. Protonation state changes 
at titratable sites near chromophores will modulate the UV-
absorbance spectra of these chromophores, allowing popula-
tions of distinct UV-active species to be resolved as a function 
of pH. To do this, basis spectra are identified and populations 
extracted via TFA analysis of the pH-dependent multi-wave-
length absorbance [29]. When fitting the absorbance data to 
a titratable molecule model to estimate pKas, we selected the 
minimum number of pKas sufficient to provide a high-quality 
fit between experimental and modeled data based on visual 
inspection of pH-dependent populations.

This method is capable of measuring pKa values between 
2 and 12 when titratable groups are at most 4–5 heavy atoms 
away from chromophores such that a change in protonation 
state alters the absorbance spectrum of the chromophore. 
We selected compounds where titratable groups are close to 
potential chromophores (generally aromatic ring systems), 
but the possibility exists that our experiments did not detect 
protonation state changes of titratable groups distal from UV 
chromophores.

Cosolvent UV‑metric pKa measurements 
of molecules with poor aqueous solubilities

If analytes are not sufficiently soluble during the titration, pKa 
values cannot be accurately determined via aqueous titration 
directly. If precipitation occurs, the UV-absorbance signal 
from pH-dependent precipitate formation cannot be differ-
entiated from the pH-dependent signal of soluble microstate 
species. For compounds with low aqueous solubility, pKa 
values were estimated from multiple apparent pKa measure-
ments performed in ISA methanol:ISA water cosolvent solu-
tions with various mole fractions, from which the pKa at 0% 
methanol (100% ISA water) can be extrapolated. This method 
is referred to as a UV-metric psKa measurement in the Sirius 
T3 Manual [51]. psKa value is the apparent pKa value measured 
in the presence of a cosolvent.

The cosolvent spectrophotometric pKa measurement pro-
tocol was very similar to the standard aqueous UV-metric pKa 
measurement protocol, with the following differences: titra-
tions were performed in typically in 30%, 40%, and 50% mix-
tures of ISA methanol:ISA water by volume to measure appar-
ent pKa values (psKa) in these mixtures. Yasuda–Shedlovsky 
extrapolation [52, 53] was subsequently used to estimate the 
pKa value at 0% cosolvent (Fig. 5) [31, 54, 55].

Yasuda–Shedlovsky extrapolation relies on the linear corre-
lation between psKa + log[H2O] and the reciprocal dielectric 
constant of the cosolvent mixture ( 1∕� ). In Eq. 1, A and 

(1)psKa + log[H2O] = A∕� + B
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B are the slope and intercept of the line fitted to experi-
mental datapoints. Depending on the solubility require-
ments of the analyte, the methanol ratio of the cosolvent 
mixtures was adjusted. We designed the experiments to have 
at least 5% cosolvent ratio difference between datapoints 
and no more than 60% methanol content. Calculation of the 
Yasuda–Shedlovsky extrapolation was performed by the 
Sirius T3 software using at least 3 psKa values measured 
in different ratios of methanol:water. Addition of methanol 
(80%, 0.15  M KCl) was controlled by the instrument before 
each titration. Three consecutive pH titrations at different 
methanol concentrations were performed using the same 
sample solution. In addition, three replicate measurements 
with independent samples (prepared from the same DMSO 
stock) were collected.

Calculation of uncertainty in pKa measurements

Experimental uncertainties were reported as the standard 
error of the mean (SEM) of three replicate pKa measure-
ments. The standard error of the mean (SEM) was estimated 
as

where � denotes the sample standard deviation and � denotes 
the sample mean. xi are observations and N is the number 
of observations.

Since the Sirius T3 software reports pKa values to only 
two decimal places, we have reported the SEM as 0.01 in 
cases where SEM values calculated from three replicates 
were lower than 0.01. SEM calculated from replicate meas-
urements were found to be larger than non-linear fit error 
reported by the Sirius T3 Refine Software from UV-absorb-
ance model fit of a single experiment, thus leading us to 
believe that running replicate measurements and reporting 
mean and SEM of pKa measurements is better for capturing 
all sources of experimental uncertainty. Notably, for UV-
metric measurements, the measured pKa values should be 
insensitive to final analyte concentration and any uncertainty 
in the exact analyte concentration of the original DMSO 
stock solution, justifying the use of the same stock solu-
tion (rather than independently prepared stock solutions) for 
multiple replicates.

Quality control for chemicals

Compound purity was assessed by LC–MS using an Agi-
lent HPLC 1200 Series equipped with auto-sampler, UV 
diode array detector, and a Quadrupole MS detector 6140. 
ChemStation version C01.07SR2 was used to analyze LC & 
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Fig. 5   Determination of SM22 pKa values with cosolvent method and 
Yasuda–Shedlovsky extrapolation. a–c show psKa of SM22 determined 
at various methanol concentrations: 59.07%, 49.72%, 40.08% by weight. 
Purple solid lines indicate the derivative of the absorbance signal with 
respect to pH versus pH at multiple wavelengths. psKa values (green flags) 
were determined by Sirius T3 Refine Software. Blue, red, and green tri-
angles show relative populations of macroscopic protonation states with 
respect to pH calculated from the experimental data. Notice that as cosol-
vent concentration increases, psKa1 decreases from 1.90 to 1.47 and psKa2 
increases from 7.84 to 8.24. d Yasuda–Shedlovsky extrapolation plot for 
SM22. Red datapoints correspond to psKa determined at various cosolvent 
ratios. Based on linear fitting to psKa + log[H2O] versus 1∕� , pKa1 and 
pKa2 in 0% cosolvent (aqueous solution) was determined as 2.45 and 7.42, 
respectively. R2 values of linear fits are both 0.99. The slope of Yasuda–
Shedlovsky extrapolation shows if the observed titration has acidic (posi-
tive slope) or basic (negative slope) character dominantly, although this is 
an macroscopic observation and should not be relied on for annotation of 
pKas to functional groups (microscopic pKas)
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LC/MS. An Ascentis Express C18 column (3.0 × 100 mm, 
2.7 μm) was used, with column temperature set at 45 °C.

•	 Mobile phase A: 2 mM ammonium formate aqueous (pH 
3.5)

•	 Mobile phase B: 2 mM ammonium formate in 90:10 
acetonitrile:water  (pH 3.5)

•	 Flow rate: 0.75 mL/min
•	 Gradient: starting with 10% B to 95% B in 10 min then 

hold at 95% B for 5 min
•	 Post run length: 5 min
•	 Mass condition: ESI positive and negative mode
•	 Capillary voltage: 3000 V
•	 Drying gas flow: 12 mL/min
•	 Nebulizer pressure: 35 psi
•	 Drying temperature: 350 °C
•	 Mass range: 5–1350 Da; fragmentor: 70; threshold: 100

The percent area for the primary peak is calculated based 
on the area of the peak divided by the total area of all peaks. 
The percent area of the primary peak is reported as an esti-
mate of sample purity. The purity of primary LC peak was 
checked by ChemStation software with threshold 995, to 
check that there is no significant impurity underneath the 
main peak.

NMR determination of protonation microstates

In general, the chemical shifts of nuclear species observed in 
NMR spectra report on and are very sensitive to the chemi-
cal environment. Consequently, small changes in chemical 
environment, such as the protonation events described in 
this work, are manifest as changes in the chemical shift(s) 
of the nuclei. If perturbation occurs at a rate which is fast 
on the NMR timescale (fast exchange), an average chemical 
shift is observed. This phenomena has been exploited and 
utilized as a probe for determining the order of protona-
tion for molecules with more than one titratable site [56]. 
In some cases, direct observation of the titrated nuclei can 
be difficult, for example nitrogen and oxygen, due to sample 
limitations and/or low natural abundance of the NMR active 
nuclei (0.37% for 15N and 0.038% for 17O)—amongst other 
factors. In these situations, chemical shifts changes of the so-
called “reporter” NMR nuclei—1H, 31P, or 13C nuclei, which 
are directly attached to or are a few bonds away from the 
titrated nuclei—have been utilized as the probe for NMR-pH 
titrations [21, 57, 58]. This approach is advantageous since 
the sensitive NMR nuclides (1H and 31P) are observed. In 
addition, 31P and 13C offer large spectral widths of ~300 ppm 
and ~200 ppm, respectively, which minimize peak overlap.

However, reporter nuclei chemical shifts provide indi-
rect information subject to interpretation. In complex sys-
tems with multiple titratable groups, such analysis will 

be complicated due to a cumulative effect of these groups 
on the reporter nuclide due to their close proximity or the 
resonance observed in aromatic systems. In contrast, direct 
observation of the titratable nuclide where possible, affords 
a more straight-forward approach to studying the protona-
tion events. In this study, the chemical shifts of the titrat-
able nitrogen nuclei were observed using the 1H–15N-HMBC 
(heteronuclear multiple-bond correlation) experiments — a 
method that affords the observation of 15N chemical shifts 
while leveraging the sensitivity accrued from the high abun-
dance 1H nuclide.

The structures of samples SM07 and SM14 were assigned 
via a suite of NMR experiments, which included 1H NMR, 
13C NMR, homonuclear correlated spectroscopy (1H–1H 
COSY), heteronuclear single quantum coherence (1H–13C 
HSQC), 13C heteronuclear multiple-bond correlation 
(1H–13C-HMBC) and 15N heteronuclear multiple-bond cor-
relation (1H–15N-HMBC)—see SI. All NMR data used in 
this analysis were acquired on a Bruker 500 MHz spectrom-
eter equipped with a 5 mm TCI CryoProbeTM Prodigy at 298 
K. The poor solubility of the analytes precluded analysis 
in water and thus water-d2/methanol-d4 mixture and ace-
tonitrile-d3 were used as solvents. The basic sites were then 
determined by titration of the appropriate solutions of the 
samples with equivalent amounts of deutero-trifluoroacetic 
acid (TFA-d) solution.

SM07

5.8 mg of SM07 was dissolved in 600 μL of methanol-
d4:water-d2 (2:1 v/v ratio). A 9% v/v TFA-d solution in 
water-d2 was prepared, such that each 20 μL volume con-
tained approximately 1 equivalent of TFA-d with respect 
to the base. The SM07 solution was then titrated with the 
TFA-d solution at 0.5, 1.0, 1.5, and 5.0 equivalents with 
1H–15N HMBC spectra (optimized for 5 Hz) acquired after 
each TFA addition. A reference 1H–15N HMBC experiment 
was first acquired on the SM07 solution prior to commence-
ment of the titration.

SM14

5.5 mg of SM14 was dissolved in 600 μL of acetonitrile-d3. 
A 10% v/v TFA-d solution in acetonitrile-d3 was prepared, 
20 μL of which corresponds to 1 equivalent of TFA-d with 
respect to the base. Further 1:10 dilution of the TFA-d solu-
tion in acetonitrile-d3, allowed measurement of 0.1 equiva-
lent of TFA-d per 20 μL of solution. The SM14 solution was 
then titrated with the TFA-d solutions at 0.0, 0.5, 1.0, 1.1, 
1.2, 1.3, 1.5, 1.8, 2.0, 2.1, 2.6, 5.1, and 10.1 equivalents. The 
chemical shift changes were monitored by the acquisition 
of 1H–15N HMBC spectra (optimized for 5 Hz) after each 
TFA addition.



1128	 Journal of Computer-Aided Molecular Design (2018) 32:1117–1138

1 3



1129Journal of Computer-Aided Molecular Design (2018) 32:1117–1138	

1 3

Results

Spectrophotometric pKa measurements

Spectrophotometrically-determined pKa values for all mol-
ecules from the SAMPL6 pKa challenge are shown in Fig. 6 
and Table 1. The protocol used—cosolvent or aqueous UV-
metric titration—is indicated in Table 1 together with SEM 
of each reported measurement. Out of 24 molecules suc-
cessfully assayed, five molecules have two resolvable pKa 
values, while one has three resolvable pKa values within the 
measurable pKa range of 2–12. The SEM of reported pKa 
measurements is low, with the largest uncertainty reported 
being 0.04 pKa units (pKa1 of SM06 and pKa3 of SM18). 
Individual replicate measurements can be found in Supple-
mentary Table 3. Reports generated for each pKa measure-
ment by the Sirius T3 Refine software can also be found in 
the Supplementary Information. Experimental pKa values 
for nearly all compounds with multiple resolvable pKas are 
well-separated (more than 4 pKa units), except for SM14 
and SM18. 

Impact of cosolvent to UV‑metric pKa measurements

For molecules with insufficient aqueous solubilities through-
out the titration range (pH 2–12), we resorted to cosolvent 
UV-metric pKa measurements, with methanol used as cosol-
vent. To confirm that cosolvent UV-metric pKa measure-
ments led to indistinguishable results compared to aqueous 
UV-metric measurements, we collected pKa values of 12 
highly soluble SAMPL6 compounds—as well as pyridox-
ine—using both cosolvent and aqueous methods. Correla-
tion analysis of pKa values determined with both methods 
demonstrated that using methanol as cosolvent and deter-
mining aqueous pKas via Yasuda–Shedlovsky extrapolation 
did not result in significant bias (Fig. 7), since 95% CI for 
mean deviation (MD) between two measurements includes 
zero. Means and standard errors of UV-metric pKa meas-
urements with and without cosolvent are provided in Sup-
plementary Table 5. pKa measurement results of individual 
replicate measurements with and without cosolvent can be 
found in Supplementary Table 4.

Purity of SAMPL6 compounds

LC–MS based purity measurements showed that powder 
stocks of 23 of the SAMPL6 pKa challenge compounds were 
>90% pure, while purity of SM22 was 87%—the lowest in 
the set (Supplementary Table 6). Additionally, molecular 
weights detected by LC–MS method were consistent with 
those reported in eMolecules, as well as supplier-reported 
molecular weights, when provided. It is recommended by 
Sirius/Pion technical specialists to use compounds with 
∼ 90% purity to minimize the impact on high-accuracy pKa 
measurements. Impurities with no UV-chromophore, or 
elute too late in LC may not be detected with this method, 
although chances are small. The peak purity check of pri-
mary peak can detect the presence of a large impurity under-
neath the main peak, but if the UV spectrum of the impurity 
is exactly same with analyte in the main peak, it may not 
be resolved. HPLC UV detector’s wavelength inaccuracy is 
< 1% . Mass inaccuracy of MS instrument is ~0.13 um within 
the calibrated mass range in the scan mode.

Characterization of SM07 microstates with NMR

15N Chemical shifts (ppm, referenced to external liquid 
ammonia at 0 ppm) for N-8, N-10 and N-12—measured 
from the 1H–15N HMBC experiments—were plotted against 
the titrated TFA-d equivalents (0.0, 0.5, 1.0, 1.5, and 5.0 
equivalents) (Fig. 8a). A large upfield shift of ~82 ppm is 
observed for N-12. The initial linear relationship between 
chemical shift and TFA equivalents, shown in Fig. 8a for 
N-12, is expected for strong monoprotic bases—as is the 
case for SM07. The large upfield chemical shift change 
(82 ppm) is consistent with a charge delocalization as shown 
in the resonance structures in Fig. 8a. Further evidence for 
this delocalization is observed for N-8, which exhibited a 
downfield chemical shift change of ~28 ppm compared to 
just ~1.5 ppm for N-10. Titration of SM07 with more than 
1 equivalent of TFA-d did not result in further significant 
chemical shift changes—establishing that SM07 is a mono-
protic base.

Characterization of SM14 microstates with NMR

Determining the protonation sites for SM14, which has 
pKa values of 2.58 and 5.30 (Table 1), was more challeng-
ing due to multiple possible resonance structures in the 
mono- and di-protonated states. We noticed that the water/
methanol co-solvent exhibited strong solvent effects, which 
complicated the data interpretation for SM14. For instance, 
titration of SM14 in methanol/water (Figs. SI 36) showed 
incomplete protonation of N-9 even after 5 equivalents of 
TFA-d were added. This observation is consistent with UV-
metric psKa measurements done in the presence of methanol 

Fig. 6   Molecules used in the SAMPL6 pKa challenge. Experimen-
tal UV-metric pKa measurements were performed for these 24 mol-
ecules and discernable macroscopic pKas are reported. Uncertainties 
are expressed as the standard error of the mean (SEM) of three inde-
pendent measurements. We depicted neutral states of the molecules 
as sites of protonation were not determined by UV-metric methods. 
2D structures were created with OpenEye OEDepict Toolkit  [59]. 
Canonical isomeric SMILES of molecules in this figure and pKa val-
ues measured in replicate experiments can be found in Table SI 1 and 
Table SI 3, respectively

◂
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as cosolvent, where both psKa values were decreasing as the 
percentage of methanol was increased, making observation 
of these protonation states more difficult. Thus the utiliza-
tion of an aprotic solvent was necessary for unambiguous 
interpretation of the data.

Due to the problem just delineated for the methanol/
water cosolvent, acetonitrile-d3 was selected as our solvent 
of choice. Titration of SM14 (5.5 mg) with up to 10 equiva-
lents of TFA-d in acetonitrile-d3 (0.0, 0.5, 1.0, 1.1, 1.2, 1.3, 
1.5, 1.8, 2.0, 2.1, 2.6, 5.1, and 10.1 equivalents), provided a 
much clearer picture of its protonation states (Fig. 8b). N-9, 
with the large upfield chemical shift change ~72 ppm at 1 
equivalent of TFA-d, clearly is the site of first protonation. 
Concurrently, the downfield chemical shift changes observed 
for N-7 ( Δ� ≈ 6.5 ) and N-16 ( Δ� ≈ 5 ) can be attributed to 
electronic effects rather than a direct protonation. The large 
upfield shift for N-9 indicates this to be the site of first pro-
tonation; complete protonation was attained at roughly 2.5 
equivalents of TFA-d, suggesting that SM14 is a weak base 

under these experimental conditions. Following the protona-
tion of N-9, a second protonation event occurs at N-16 nitrogen 
as evident by the upfield chemical shift change observed for 
N-16. However, a continuous change in the chemical shift of 
N-16 even after addition of ten equivalents of TFA-d indicates 
that this protonation event is incomplete but provides evidence 
for N-16 being the second protonation site. This observation 
is consistent with N-16 being even a weaker base than N-9, 
which is expected of the aniline-type amines. Other notable 
observations were the slight downfield chemical shift changes 
for N-7 and N-9, during the second protonation event. These 
changes were attributed to electronic effects from the protona-
tion of N-16.

Table 1   Experimental pKas of 
SAMPL6 compounds

Spectrophotometric pKa measurements were performed with two assay types based on aqueous solubility 
of analytes. “UV-metric pKa” assay indicates spectrophotometric pKa measurements done with Sirius T3 
in ISA water. “UV-metric pKa with cosolvent” assay refers to pKa determination by Yasuda–Shedlovsky 
extrapolation from psKa measurements in various ratios of ISA methanol:water mixtures. Triplicate meas-
urements were performed at 25.0 ± 0.5  °C and in the presence of approximately 150 mM KCl to adjust 
ionic strength
pKa values are reported as mean ± SEM of three replicates

Molecule ID pKa1 pKa2 pKa3 Assay type

SM01 9.53 ± 0.01 UV-metric pKa

SM02 5.03 ± 0.01 UV-metric pKa with cosolvent
SM03 7.02 ± 0.01 UV-metric pKa with cosolvent
SM04 6.02 ± 0.01 UV-metric pKa

SM05 4.59 ± 0.01 UV-metric pKa with cosolvent
SM06 3.03 ± 0.04 11.74 ± 0.01 UV-metric pKa

SM07 6.08 ± 0.01 UV-metric pKa

SM08 4.22 ± 0.01 UV-metric pKa

SM09 5.37 ± 0.01 UV-metric pKa with cosolvent
SM10 9.02 ± 0.01 UV-metric pKa with cosolvent
SM11 3.89 ± 0.01 UV-metric pKa

SM12 5.28 ± 0.01 UV-metric pKa

SM13 5.77 ± 0.01 UV-metric pKa

SM14 2.58 ± 0.01 5.30 ± 0.01 UV-metric pKa

SM15 4.70 ± 0.01 8.94 ± 0.01 UV-metric pKa

SM16 5.37 ± 0.01 10.65 ± 0.01 UV-metric pKa

SM17 3.16 ± 0.01 UV-metric pKa

SM18 2.15 ± 0.02 9.58 ± 0.03 11.02 ± 0.04 UV-metric pKa with cosolvent
SM19 9.56 ± 0.02 UV-metric pKa with cosolvent
SM20 5.70 ± 0.03 UV-metric pKa with cosolvent
SM21 4.10 ± 0.01 UV-metric pKa with cosolvent
SM22 2.40 ± 0.02 7.43 ± 0.01 UV-metric pKa with cosolvent
SM23 5.45 ± 0.01 UV-metric pKa with cosolvent
SM24 2.60 ± 0.01 UV-metric pKa with cosolvent
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Discussion

Effect of sample preparation and cosolvents 
in UV‑metric measurements

Samples for UV-metric pKa measurements were prepared 
by dilution of up to 5 μL DMSO stock solution of analyte in 
1.5 mL ISA water, which results in the presence of ∼ 0.3% 
DMSO during titration, which is presumed to have a negligi-
ble effect on pKa measurements. For UV-metric or pH-met-
ric measurements, it is possible to prepare samples without 
DMSO, but it is difficult to prepare samples by weigh-
ing extremely low amounts of solid stocks (in the order of 
0.01–0.10 mg) to target 50 μM analyte concentrations, even 
with an analytical balance. For experimental throughput, we 
therefore preferred using DMSO stock solutions. Another 
advantage of starting from DMSO stock solutions is that it 
helps to overcome kinetic solubility problems of analytes.

A lower analyte concentration is needed for spectrophoto-
metric pKa measurement than potentiometric method. With 
spectrophotometric method, very dilute analyte solutions as 
low as 10−5–10−6 M can be used [28] with strength of the 
UV signal as limiting factor. In this study we used analyte 

concentrations around  50 μM, which is 2 orders of mag-
nitude lower than the minimum concentration required for 
typical potentiometric pKa measurements. Theoretically, low 
analyte concentrations lead to more accurate pKa measure-
ments by minimizing the potential for the solute to influ-
ence solvent properties. In the extreme, if it were possible 
to measure the pKa at the infinite dilution of the analyte that 
would be the best. But of course, in practice the minimum 
analyte concentration is limited by the detection strength 
of the UV signal. The higher the analyte concentration the 
more it affects the solvent properties such as ionic strength 
and dielectric constant. Also, the risk of analyte aggregation 
or precipitation increases with higher concentration.

In UV-metric measurements, both water and methanol 
(when used as cosolvent) stock solutions were ionic strength 
adjusted with 150 mM KCl, but acid and base solutions were 
not. This means that throughout pH titration ionic strength 
slightly fluctuates, but on average ionic strength of samples 
were staying around 150–180 mM. By using ISA solutions 
the effect of salt concentration change on pKa measurements 
was minimized.

If an analyte is soluble enough, UV-metric pKa meas-
urements in water should be preferred over cosolvent 
methods, since pKa measurement in water is more direct. 
For pKa determination via cosolvent extrapolation using 
methanol, the apparent pKas (psKa) in at least three different 
methanol:water ratios must be measured, and the pKa in 0% 
cosolvent computed by Yasuda–Shedlovsky extrapolation. 
The number and spread of psKa measurements and error in 
linear fit extrapolation influences the accuracy of pKas deter-
mined by this approach. To test that UV-metric methods 
with or without cosolvent have indistinguishable perfor-
mance, we collected pKa values for 17 SAMPL6 compounds 
and pyridoxine with both methods. Figure 7 shows there is 
good correlation between both methods and the mean abso-
lute deviation between two methods is 0.12 (95% CI [0.07, 
0.18]). The mean deviation between the two sets is − 0.04 
(95% CI [− 0.12, 0.03]), showing there is no significant bias 
in cosolvent measurements as the 95% CI includes zero. The 
largest absolute deviation observed was 0.41 for SM06.

Impact of impurities to UV‑metric pKa 
measurements

Precisely how much the presence of small amounts of impu-
rities impact UV-metric pKa measurements is unpredictable. 
For an impurity to alter UV-metric pKa measurements, it 
must possess a UV-chromophore and a titratable group in 
the vicinity of the chromophore—otherwise, it would not 
interfere with absorbance signal of the analyte. If a titratable 
impurity does possess a UV-chromophore, UV multiwave-
length absorbance from the analyte and impurity will be con-
voluted. How much the presence of impurity will impact the 

Fig. 7   pKa measurements with UV-metric method with cosolvent 
and UV-metric method in water show good correlation. 17 pKa val-
ues (blue marks) of 13 chemicals were measured with both UV-met-
ric pKa method in water and UV-metric pKa method with methanol 
as cosolvent (Yasuda–Shedlovsky extrapolation to 0% methanol). 
Dashed black line has slope of 1, representing perfect correlation. 
Dark and light green shaded areas indicate ± 0.5 and ± 1.0 pKa unit 
difference regions, respectively. Error bars are plotted as the SEM of 
replicate measurements, although they are not visible since the larg-
est SEM is 0.04.  Mean difference (MD),   mean absolute deviation 
(MAD), root-mean-square deviation (RMSD) are reported. Confi-
dence intervals (reported in brackets) report the 95% CI calculated 
over 10,000 bootstrap samples. Experimental data used in this plot is 
reported in Supplementary Table 4
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multiwavelength absorbance spectra and pKa determination 
depends on the strength of the impurity’s molar absorption 
coefficient and concentration, relative to the analyte’s. In the 
worst case scenario, an impurity with high concentration 
or strong UV absorbance can shift the measured pKa value 
or create the appearance of an extra pKa. As a result, it is 
important to use analytes with high purities to obtain high 

accuracy pKa measurements. Therefore, we confirmed the 
purities of SAMPL6 compounds with LC–MS.

Interpretation of UV‑metric pKa measurements

Multiwavelength absorbance analysis on the Sirius T3 
allows for good resolution of pKas based on UV-absorbance 
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Fig. 8   Dominant protonation microstates of SM07 and SM14 char-
acterized by NMR. a Sequence of protonation sites of SM07 were 
determined by 1H–15N HMBC experiments in 1:2 water:methanol 
mixture. Left: the plot of 15N chemical shifts of the N-10, N-12, and 
N-8 resonances of SM07 versus titrated TFA-d equivalents, show-
ing the mono-protonation of N-12 as evidenced by its large upfield 
chemical shifts change. Acidity of the medium increased as more 
equivalents of TFA-d were added. Electronic effects due to protona-
tion of N-12 caused downfield chemical shift change of N-10 and N-8 
between 0 and 1 equivalents of TFA-d. Right: NMR-based model of 
the order of dominant protonation states for SM07. The protonation 
event was only observed at N-12. Microstates shown in the figure are 
the most likely contributors to the UV-metric pKa of 6.08 ± 0.01 . b 
Sequence of protonation sites of SM14 were determined by 1H–15N 
HMBC experiments in acetonitrile. Left: the plot of 15N chemi-
cal shifts of N-9, N-7, and N-16 of SM14 versus titrations of TFA-
d equivalents, showing two sequential protonation events. The first 

protonation occurred at N-9; a large upfield chemical shift change 
of 71.6 ppm was seen between 0 and 1 equivalents of TFA-d. Down-
field chemical shift changes observed for N-7 and N-19 in this region 
were due the electronic effect from the protonation of N-9. N-16 also 
exhibited a small upfield chemical shift change of 4.4 ppm between 
2.5 and 10 equivalents of TFA-d, which indicated N-16 as the second 
site of protonation. Right: NMR based model of the order of domi-
nant protonation states for SM14, showing two sequential protona-
tion events. Also, two pKa values were detected with UV-metric pKa 
measurements for SM14. Assuming that the sequence of protonation 
events will be conserved between water and acetonitrile solvents, 
SM140 and SM14+1 microstates shown in the figure are the major 
contributors to the UV-metric pKa value 5.30 ± 0.01 . SM14+1 and 
SM14+2 microstates shown in the figure are the major pair of micro-
states contributing to the UV-metric pKa value 2.58 ± 0.01 . There 
could be minor microstates with very low populations that could not 
be distinguished in these NMR experiments
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change with respect to pH, but it is important to note that 
pKa values determined from this method are often difficult 
to assign as either microscopic or macroscopic in nature. 
This method potentially produces macroscopic pKas for 
polyprotic compounds. If multiple microscopic pKas have 
close pKa values and overlapping changes in UV absorb-
ance spectra associated with protonation/deprotonation, the 
spectral analysis could produce a single macroscopic pKa 
that represents an aggregation of multiple microscopic pKas. 
An extreme example of such case is demonstrated in the 
simulated macrostate populations of cetirizine that would 
be observed with UV-metric titration (Fig. 1).

If protonation state populations observed via UV-met-
ric titrations (such as in Fig. 3b) are composed of a sin-
gle microstate, experimentally measured pKas are indeed 
microscopic pKas. Unfortunately, judging the composition 
of experimental populations is not possible by just using 
UV-metric or pH-metric titration. Molecules in the SAMPL6 
pKa challenge dataset with only one pKa value measured in 
the 2–12 range could therefore be monoprotic (possessing 
a single titratable group that changes protonation state by 
gain or loss of a single proton over this pH range) or poly-
protic (gaining or losing multiple protons from one or more 
sites with overlapping microscopic pKa values). Similarly, 
titration curves of molecules with multiple experimental 
pKas may show well-separated microscopic pKas or mac-
roscopic experimental pKas that are really composites of 
microscopic pKas with similar values. Therefore, without 
additional experimental evidence, UV-metric pKas should 
not be assigned to individual titratable groups.

Sometimes it can be possible to assign pKas to ionizable 
groups if they produce different UV-absorbance shifts upon 
ionization, but it is not a straight-forward analysis and it is 
not a part of the analysis pipeline of Sirius T3 Refine Soft-
ware. Such an analysis would require fragmentation of the 
molecule and determining how UV-spectra of each chromo-
phore changes upon ionization in isolation.

UV-metric pKa values for nearly all compounds in our 
dataset with multiple resolvable pKas are well-separated 
(more than 4 pKa units), except for SM14 and SM18. Tam 
et al. states that spectrophotometric pKa values of multiprotic 
molecules can be unambiguously assigned to the functional 
groups as microscopic pKas “if the pKa values are at least 
4 pH units apart (i.e. pKa,2 − pKa,1 ≥ 4 )” based on general 
knowledge of functional groups and consideration of elec-
tronic and inductive effects [28]. In this study, we refrained 
from reporting such a knowledge-based assignment of pKa 
values to functional groups without experimental evidence.

Determination of the exact microstates populated at dif-
ferent pH values via NMR can provide a complementary 
means of differentiating between microscopic and macro-
scopic pKas in cases where there is ambiguity. As determina-
tion of protonation microstates via NMR is very laborious, 

we were only able to characterize microstates of two mol-
ecules: SM07 and SM14.

In UV-metric pKa measurements with cosolvent, the slope 
of the Yasuda–Shedlovsky extrapolation can be interpreted 
to understand if the pKa has dominantly acidic or basic char-
acter. As the methanol ratio is increased, psKa values of acids 
increase, while psKa values for bases decrease. However, it 
is important to remember that if the measured pKa is mac-
roscopic, acid/base assignment from cosolvent psKa trends 
is also a macroscopic property, and should not be used as 
a guide for assigning pKa values to functional groups [60].

NMR microstate characterization

The goal of NMR characterization was to collect infor-
mation on microscopic states related to experimental pKa 
measurements, i.e., determine exact sites of protonation. pKa 
measurements performed with spectrophotometric method 
provide macroscopic pKa values, but do not provide infor-
mation on the specific site(s) of protonation. Conversely, 
most computational prediction methods primarily predict 
microscopic pKa values. Protonation sites can be determined 
by NMR methods, although these measurements are very 
laborious in terms of data collection and interpretation 
compared to pKa measurements with the automated Sirius 
T3. Moreover, not all SAMPL6 molecules were suitable for 
NMR measurements due to the high sample concentration 
requirements (for methods other than proton NMR, such as 
13C and 15N based 2D experiments) and limiting analyte 
solubility. Heavy atom spectra that rely on natural isotope 
abundance require high sample concentrations (preferably 
in the order of 100 mM). It is possible that drug or drug-
fragment-like compounds, such as the compounds used in 
this study, have insufficient aqueous solubility, limiting the 
choice of solvent and pH. It may be necessary to use organic 
cosolvents to prepare these high concentration solutions or 
only prepare samples at pH values that correspond to high 
solubility states (e.g., when the charged state of the com-
pound is populated).

We performed NMR based microstate characterization 
only for SM07 and SM14. We were able to identify the order 
of dominant protonation microstates, as shown in Fig. 8. 
These pairs of microstates and the order of microscopic tran-
sitions can be associated with experimental pKas determined 
by UV-metric titrations, under the assumption that different 
organic solvents used in NMR measurements will have neg-
ligible effect on the sequence of microstates observed as the 
medium was titrated with acid, although shift in pKa values 
is expected. NMR measurements for SM07 and SM14 were 
done in water:methanol [1:2 (v/v)] and acetonitrile solu-
tions, respectively. On the other hand, pKa values of these 
two compounds were determined by UV-metric titrations 
in ISA water. Additional UV-metric pKa measurements of 
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these compounds with methanol as a cosolvent showed that 
their psKa values decreased as the cosolvent ratio increased 
(i.e., dielectric constant decreased) as expected from base 
titration sites. Identification of SM07 and SM14 titratable 
sites type as base is consistent between NMR based models 
and UV-metric cosolvent titrations. The order of microstates 
observed in the titration of NMR samples are very likely 
to corresponds to the dominant microstates associated with 
UV-metric pKa measurements. N-12 of SM07 was observed 
as the only protonation site of SM07 during TFA-d titration 
up to 5 equivalents which supports that SM07 is mono-protic 
and UV-metric pKa value 6.08 ± 0.01 corresponds to micro-
scopic protonation of N-12. For SM14, two protonation sites 
were observed (N-16 and N-9, in the order of increasing 
psKa). Microstate pairs shown in Fig. 8b were determined 
as dominant contributors to UV-metric pKas 2.58 ± 0.01 
and 5.30 ± 0.01 , although minor microspecies with very 
low populations (undetected in NMR experiments) could 
be contributing to the macroscopic pKa values observed by 
the UV-metric method.

In addition to SM07, there were five other 4-aminoquina-
zoline derivatives in the SAMPL6 set: SM02, SM04. SM09, 
SM12, and SM13. For this series, all the potential titratable 
sites are located in 4-aminoquinazoline scaffold and there 
are no other additional titratable sites present in these com-
pounds compared to SM07. Therefore, based on structural 
similarity, it is reasonable to predict that N-12 is the micro-
scopic protonation site for all of these compounds. We can 
infer that UV-metric pKa values measured for the 4-amino-
quinazoline series are also microscopic pKas and they are 
related to the protonation of the same quinazoline nitrogen 
with the same neutral background protonation states as 
shown for SM07 in Fig. 8a.

Recommendations for future pKa prediction 
challenges

Most high-throughput pKa measurement methods measure 
macroscopic pKas. One way to circumvent this problem is 
to confine our interest in future pKa challenges to experi-
mental datasets containing only monoprotic compounds if 
UV-metric or pH-metric pKa measurements are the method 
of choice, allowing unambiguous assignment of pKa values 
to underlying protonation states. However, it is important to 
consider that multiprotic compounds are common in phar-
maceutically interesting molecules, necessitating the ability 
to model them reliably. It might also be interesting to select 
a series of a polyprotic compounds and their monoprotic 
fragments, to see if they can be used to disambiguate the 
pKa values.

Although relatively efficient, UV-metric pKa measure-
ments with the Sirius T3 do not provide structural informa-
tion about microstates. Even the acid–base assignment based 

on direction of psKa shift with cosolvent is not a reliable 
indicator for assigning experimental pKa values to individual 
functional groups in multiprotic compounds. On the other 
hand, most computational pKa prediction methods output 
microscopic pKas. It is therefore difficult to use experimen-
tal macroscopic pKa values to assess and train microscopic 
pKa prediction methods directly without further means of 
annotating macroscopic-microscopic correspondence. It is 
not straight-forward to infer the underlying microscopic pKa 
values from macroscopic measurements of a polyprotic com-
pound without complementary experiments that can provide 
structural information. Therefore, for future data collection 
efforts for evaluation of pKa predictions, if measurement 
of pKas via NMR is not possible, we advise supplement-
ing UV-metric measurements with NMR characterization 
of microstates to show if observed pKas are microscopic 
(related to a single group) or macroscopic (related to dis-
sociation of multiple groups), as performed for SM07 and 
SM14 in this study.

Another source of complexity in interpreting macro-
scopic pKa values is how the composition of macroscopic 
pKas can change between different experimental methods 
as illustrated in Fig. 1. Different subsets of microstates can 
become indistinguishable based on the type of signal the 
experimental method is constructed on. In potentiometric 
titrations, microstates with the same total charge are indis-
tinguishable and are observed as one macroscopic popula-
tion. In spectrophotometric pKa measurements, the factor 
that determine if microstates can be resolved is not charge. 
Instead, microstates whose populations, and therefore UV-
absorbance spectra, change around the same pH value 
become indistinguishable.

The “macroscopic” label is commonly ascribed to transi-
tions between different ionization states of a molecule (all 
microstates that have the same total charge form one mac-
rostate), but this definition only applies to potentiometric 
methods. In UV-absorbance based methods, the principle 
that determines which microstates will be distinguishable 
is not charge or number of bound protons, but molecular 
absorbance changes, and how closely underlying micro-
scopic pKa values overlap. To compare experimental mac-
roscopic pKa and microscopic computational predictions on 
common ground, the best solution is to compute “predicted” 
macroscopic pKa values from microscopic pKas based on the 
detection limitations of the experiment. A disadvantage of 
this approach is that experimental data cannot provide direct 
guidance on microscopic pKa resolution for improving pKa 
prediction methods.

Since analyte purity is critical for accuracy, necessary 
quality control experiments must be performed to ensure 
at least 90% purity for UV-metric pKa measurements. 
Higher purities may be necessary for other methods. For 
potentiometric methods, knowing the stoichiometry of any 
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counterions present in the original powder stocks is also 
necessary. Identity of counterions also needs to be known 
to incorporate titratable counterions, e.g. ammonia, in the 
titration model.

For the set of SAMPL6 pKa challenge compounds, we 
could not use potentiometric pKa measurements due to the 
low aqueous solubility of many of these compounds. The 
lowest solubility observed somewhere in the experimental 
pH range of titration is the limiting factor, since for accurate 
measurements the analyte must stay in the solution phase 
throughout the entire titration. Since the titration pH range 
is determined with the goal of capturing all ionization states, 
the analyte is inevitably exposed to pH values that corre-
spond to low solubility. Neutral and zwitterionic species can 
be orders of magnitude less soluble than ionic species. If a 
compound has a significantly insoluble ionization state, the 
pH range of titration could be narrowed to avoid precipita-
tion, but it would limit the range of pKa values that could be 
accurately measured.

For future pKa challenges with multiprotic compounds, 
if sufficient time and effort can be spared, it would be ideal 
to construct an experimental pKa dataset using experimental 
methods that can measure microscopic pKas directly, such 
as NMR. In the present study, we were only able to perform 
follow up NMR microstate characterization of two com-
pounds because we relied on intrinsically low-sensitivity 
and time-consuming 1H–15N HMBC experiment at natural 
abundance of 15N nuclei. 1H–15N HMBC experiments of 
SM07 and SM14 required high analyte concentrations and 
thus the use of organic solvents for solubility. Alternatively, 
it might be possible to determine microstates with 1H NMR 
by analyzing chemical shift changes of reporter protons [21] 
in aqueous solutions with lower analyte concentrations and 
with much higher throughput than 15N-based experiments. 
However, it should be noted that 1H NMR titration data may 
not always be sufficient for unambiguous microstate char-
acterization. In this case, other reporter nuclei such as 13C, 
19F and 31P can be used where appropriate to supplement 
1H data To prepare sample solutions for NMR at specific 
pH conditions, the Sirius T3 can be used to automate the 
pH adjustment of samples. Another advantage of using the 
Sirius T3 for NMR sample preparation includes prepar-
ing ionic strength adjusted NMR samples and minimizing 
consumption of the analyte since small volumes (as low as 
1.5 mL) of pH adjusted solutions can be prepared.

In the future pKa challenges, it would be especially inter-
esting to expand this exercise to larger and more flexible 
drug-like molecules. pKa values are environment depend-
ent and it would be useful to be able to predict pKa shifts 
based on on ionic strength, temperature, lipophilic content, 
with cosolvents or in organic solvents. Measuring the pKa 
of molecules in organic solvents would be useful for guid-
ing process chemistry. To test such predictions, special pKa 

experiments would need to be designed to measure pKas 
under different conditions.

The next iteration of the SAMPL log P/log D prediction 
challenge will include a subset of compounds from pKa chal-
lenge. We therefore envision that the collected dataset of pKa 
measurements will also be of use for this challenge. Experi-
mental pKa values will be provided as an input to separate 
the pKa prediction issue from other problems related to log D 
predictions. We expect that the experimental pKas can be 
used as an indication if protonation states need to be taken 
into account for a log D prediction at a certain pH and for the 
validation of protonation state population predictions in the 
aqueous phase. Even for compounds for which microstates 
were not experimentally determined, macroscopic pKa value 
can serve as an indicator of how likely it is that protonation 
states will have a significant effect on the log D of a mol-
ecule. Additionally, the information from NMR experiments 
in this study provided the site of protonation for six 4-ami-
noquinazoline compounds, which could be incorporated as 
microstate information for log D predictions. For predicting 
log D we suggest as a rule of thumb to include protonation 
state effects for pKa values at least within 2 units of the pH of 
the log D experiment. pKa values of six 4-aminoquinazoline 
compounds in this study were determined to be within 2 pKa 
units from 7.

Conclusion

This study reports the collection of experimental data for 
the SAMPL6 pKa prediction challenge. Collection of experi-
mental pKa data was performed with the goal of evaluating 
computational pKa predictions, therefore necessary quality 
control and uncertainty propagation measures were incorpo-
rated. The challenge was constructed for a set of fragment-
like and drug-like small molecules, selected from kinase-
targeted chemical libraries, resulting in a set of compounds 
containing heterocycles frequently found in FDA-approved 
kinase inhibitors. We collected pKa values for 24 compounds 
with the Sirius T3 UV-metric titration method, which were 
then used as the experimental reference dataset for the 
SAMPL6 pKa challenge. For compounds with poor aque-
ous solubilities we were able to use the Yasuda–Shedlovsky 
extrapolation method to measure pKa values in the presence 
of methanol, and extrapolate to a purely aqueous phase.

In our work, we highlighted the distinction between 
microscopic and macroscopic pKas which is based on the 
experimental method used, especially how underlying 
microstate composition can be different for macroscopic pKa 
values measured with UV-metric versus pH-metric titration 
methods. We discuss how macroscopic pKa values, deter-
mined by UV, introduce an identifiability problem when 
comparing to microscopic computational predictions. For 
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two compounds (SM07 and SM14) we were able to alleviate 
this problem by determining the sequence of microscopic 
protonation states using 1H–15N HMBC experiments. Micro-
states of five other compounds with 4-aminoquinazoline 
scaffold were inferred based on the NMR characterization 
of SM07 microstates which showed that it is monoprotic.

The collected experimental data constitute a potentially 
useful dataset for future evaluation of small molecule pKa 
predictions, even outside of SAMPL challenges. We expect 
that this data will also be useful for participants in the 
next SAMPL challenge on small molecule lipophilicity 
predictions.

Code and data availability

•	 SAMPL6 pKa challenge instructions, submissions, exper-
imental data and analysis is available at https​://githu​
b.com/Moble​yLab/SAMPL​6

•	 Python scripts used for compound selection are available 
at compound_selection directory of https​://githu​b.com/
chode​ralab​/sampl​6-physi​coche​mical​-prope​rties​
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