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Abstract
In this work we have developed a hybrid QM and MM approach to predict pKa of small drug-like molecules in explicit 
solvent. The gas phase free energy of deprotonation is calculated using the M06-2X density functional theory level with 
Pople basis sets. The solvation free energy difference of the acid and its conjugate base is calculated at MD level using 
thermodynamic integration. We applied this method to the 24 drug-like molecules in the SAMPL6 blind pKa prediction 
challenge. We achieved an overall RMSE of 2.4 pKa units in our prediction. Our results show that further optimization of 
the protocol needs to be done before this method can be used as an alternative approach to the well established approaches 
of a full quantum level or empirical pKa prediction methods.

Keywords SAMPL6 · Hybrid QM and MM · Explicit solvent · pKa prediction

Introduction

Computational prediction of pKa values is of considerable 
interest for a number of fields including pharmaceutical 
and material sciences [1–3]. Even though several methods 
have been developed to predict this value, the problem still 
remains a challenge [4–6]. Most prediction methods can be 
divided into two broad categories—empirical and ab initio 
ones.

The first set of methods use a cheminformatics based 
approach [7–9]. In this approach the compound is repre-
sented as a vector of molecular descriptors including consti-
tutional, topological, electrostatic and quantum descriptors 

[10]. Machine learning models for specific functional groups 
are trained based on these descriptors [10]. Notably, these 
methods ignore the three dimensional conformation of 
the compound explicitly [11]. Although training the mod-
els might be expensive in terms of curating experimental 
pKa data for generating appropriate models, subsequent 
pKa prediction using trained models can be very fast and 
inexpensive.

Ab initio methods use a thermodynamic cycle combin-
ing with quantum mechanics (QM) calculations to compute 
the solvent-phase pKa [12–20] . It consists of the calcu-
lation of dissociation free energy in gas phase [21] along 
with solvation free energy of the acid and the conjugate base 
using dielectric continuum solvation models (DCSMs) [12, 
22–25]. These methods have been very successful in calcu-
lating pKa. However, DCSMs cannot model the hydrogen 
bonding between solute and water, which can be important 
in the protonation or deprotonation process [26]. Their accu-
racy in describing the short-range electrostatics of polar sol-
utes and ions is also limited [12]. Moreover, typically only 
one conformation is used for the estimation of free energy 
although an ensemble of conformations is required for a 
complete statistical mechanics treatment of the free energy 
[27]. Even if multiple low lying conformations are included 
in the calculation, the entropic variations associated with the 
deprotonation process still cannot be completely accounted 
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for without explicitly considering the solvent dynamics and 
extensively exploring the potential energy landscape of the 
solute–solvent systems.

Calculation of solvation free energy during pKa estima-
tion remains one of the bottlenecks in getting accurate val-
ues. An alternative way of calculating solvation free energy 
is to use molecular dynamics simulations with empirical 
force field [28–30]. Shirts et al. were able to do a very pre-
cise measurement of solvation free energy with 0.85 kcal/
mol RMSE [31]. Gilson and co-workers used double decou-
pling method and achieved 1.3 kcal/mol RMSE. König et al. 
[29] used the annihilation approach and obtained accuracy 
on par with the quantum calculations. Mobley et al. have 
created the FreeSolv [30] database to catalog molecules 
with known experimental solvation free energy and assist 
in development of new methods from these resources.

Given the large number of diverse methods available for 
predicting pKa, the Statistical Assessment of the Modeling 
of Proteins and Ligands (SAMPL) [32] blind prediction 
challenge was organized to assess the methods on a com-
mon set of small drug-like molecules. Previous iterations of 
the SAMPL competitions have focussed on assessing meth-
ods for solvation free energy calculations [33], distribution 
coefficient and other challenges [34–37]. We note that in the 
SAMPL5 distribution coefficient competition, Pickard and 
coworkers have calculated pKa values with QM methods, 
and used computed pKa to further correct their prediction 
of distribution coefficients [34].

In this work we have presented a new method to com-
putationally predict the pKa of small drug-like molecules 
in explicit solvent. This is a hybrid QM and MM approach 
that allows ab initio prediction of absolute pKa values and 
supports any chemistry. Since calculation of pKa requires 
relative solvation free energy between the acid (protonated 
species) and the conjugate base (deprotonated species), our 
method calculates this quantity directly rather than comput-
ing the absolute solvation free energies of both by employing 
two thermodynamic cycles.

This paper is organized as follows. In “Theory” section, we 
describe the theory behind the prediction of the microscopic 
and macroscopic pKa values. “Method” section covers the 
details of the description of the QM and MM methods that we 
used to carry out calculations. Next in “Result and discussion” 
section, we present our results that submitted to the SAMPL6 
competition and analyze the accuracy of the results. Finally in 
“Conclusion” section, a brief conclusion is provided.

Theory

SAMPL6 pKa challenge involved blind computational pre-
diction of pKa of 24 small drug-like molecules (Fig. 1). 
These molecules were similar to kinase inhibitors and were 

chosen for experimental tractability. All the molecules were 
polyprotic in nature i.e. there were multiple sites on each 
molecule where the molecule could lose a proton. For fur-
ther details, please refer Isik et al. [38] where the organizers 
have described the rationale for choosing the molecules as 
well as the methods used for experimental pKa prediction.

In order to compare the computational and experimental 
pKa predictions, it is important to understand the difference 
between the microscopic and macroscopic pKa of a mol-
ecule. The chemical environment around a functional group 
(in this case, the protonation state of other titrable moieties) 
affect the propensity of the group to lose its proton. This is 
referred to as the microscopic pKa, i.e. pKa for deprotona-
tion at a site at a fixed protonation state of all other titrable 
sites in the molecule. This differs from the macroscopic 
pKa which is related to the dissociation constant of losing 
a proton from the molecule as a whole and can be experi-
mentally measured. Converting microscopic pKas to mac-
roscopic pKas or vice versa is complicated due to the large 
number of equilibrium processes involved [8, 39]. If, for a 
specific charge transition, the microscopic pKas are fairly 
well separated (ex. more than one pKa unit), the smallest 
pKa can be considered as the macroscopic pKa. However, 
if they are close, the macroscopic pKa is shifted as multi-
ple microscopic transitions contribute to the macroscopic 
value. Several studies [40, 41] discuss this in greater detail. 
In our method, we calculate microscopic pKa value for each 
acid–base pair of microscopic states. We then assign one 
dominant microscopic pKa as the macroscopic pKa for each 
titration process, which can be directly compared with the 
experimental observables.

To calculate the microscopic pKa of a particular 
acid–base pair, let us consider the dissociation of acid HA

Here the subscripts ‘’aq‘’ indicate that the species are 
solvated in water. The dissociation constant and pKa value 
for this dissociation are given by the following relations:

where

Here, G refers to the absolute Gibbs free energy of the 
solvated species. The superscript * implies that the standard 
state of 1 mol/L and 298.15 K have been used. R and T are 

HAaq ⇌ H+

aq
+ A−

aq

Ka =
[H+]aq[A

−]aq

[HA]aq

pKa =
�G∗

aq

RTln(10)

�G∗

aq
= G∗(H+

aq
) + G∗(A−

aq
) − G∗(HAaq)
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the gas constant and the absolute temperature respectively. 
Thus, to calculate pKa we need to calculate aqueous phase 
deprotation free energy �Gaq.

Rather than calculating the absolute free energies in the 
aqueous phase directly, the aqueous phase calculations are 
coupled with gas phase calculation using the following 
thermodynamic cycle (Fig. 2a). The two vertical lines in 
the figure refer to the solvation of the species into aqueous 
phase. Thus, the �Gaq can be calculated as

The absolute free energy for proton H+ in the gas phase 
at standard temperature and pressure is calculated by 
Sackur–Tetrode equation and has been previously calculated 
as − 6.28 kcal/mol [42]. Solavtion free energy of proton 
(− 264.5 kcal/mol) has been taken from Tissandier et al. 
[43]. The gas phase calculations are done at standard gas 

�G∗

aq
=�G∗

g
+ �G∗

solv
(H+) + �G∗

solv
(A−)

− �G∗

solv
(HA)

conditions i.e. one atmosphere of pressure. Converting them 
to 1 mol/L further involves a standard state correction of 
− 1.89 kcal/mol.

The above equation involves the calculation of solva-
tion free energies of the deprotonated �G∗

solv
(A−) and of 

the protonated species �G∗
solv

(HA) , respectively. Most 
ab initio pKa prediction methods compute them in implicit 
solvent using quantum chemistry and continuum solvent 
approaches. We note that, however, the only relevant quan-
tity for pKa prediction is the difference of solvation free 
energies

In the present work, we directly compute this solvation free 
energy difference in explicit solvent. The calculation is done 
at the force field level in order to be computationally trac-
table. Furthermore we consider a second thermodynamic 
cycle (Fig. 2b) that alchemically change HA into A− in the 
gas and the aqueous phases. As we are interested in only 
the free energy difference between the two species HAand 

��G∗

solv
= �G∗

solv
(A−) − �G∗

solv
(HA)

Fig. 1  Molecules in the SAMPL6 prediction challenge
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A− and free energy is a state function so that its sum over a 
thermodynamic cycle equals zero, we can rewrite ��G∗

solv
 as

where �G∗
deprot

(HA) can be calculated using free energy per-

turbation (FEP) methods such as the thermodynamics inte-
gration (TI) method. By introducing a number intermediate 
� states that alchemically connecting two states 0 and 1, the 
free energy difference between the two end state is computed 
by TI as

It’s worth pointing that for each acid–base pair only one 
relative free energy in the aqueous phase is computed, rather 
than two absolute solvation free energies. It has previously 

��G∗

solv
=�G∗

solv
(A−) − �G∗

solv
(HA)

=�G∗

deprot,aq
(HA) − �G∗

deprot,g
(HA)

,

ΔG =

1

∫
0

⟨

dU

d�

⟩

�
d�

been shown by Jorgensen et al. [44] that this allows the can-
cellation of errors in MM calculations such as inaccuracy 
of force field parameters and inadequate conformational 
samplings. In their work they calculated the relative solva-
tion free energy of methanol and ethane using alchemical 
transformation of methanol to ethane and vice versa and got 
results close to experimental relative solvation free energy 
value. The major advantage of using such a secondary ther-
modynamic cycle (Fig. 2b) is that the alchemical FEP only 
involves changing HA into A− in the gas and the aqueous 
phase, instead of annihilating whole molecules in the aque-
ous phase. This greatly improves the efficiency, accuracy and 
the throughput of our calculations.

In summary, we calculate the �G∗
aq

 by the following 
equation

where �G∗
g
 is calculated in the gas phase at the QM level, 

�G∗(H+) is obtained from experimental value reported in 
literature, �G∗

deprot,aq
(HA) is calculated using FEP in con-

densed phase at the MM level and �G∗
deprot,g

(HA) in gas 

phase at the MM level.

Method

The work flow for the complete method is shown in Fig. 3. 
First the geometry of each microstate was optimized in gas 
phase. Then for each acid (protonated)–base (deprotonated) 
pair, �G for deprotonation in gas phase was calculated at 
the QM level. To carry out the MM simulations, force field 
parameters were generated for each of the microstates. Next, 
the gas phase and aqueous phase alchemical free energy dif-
ference between each acid–base pair were computed using 
FEP and MD simulations. All the QM calculations were 
performed with Gaussian16 [45] , while all the MD simula-
tions were done with CHARMM [46, 47].

Geometry optimization and gas phase QM 
calculation

SAMPL6 pKa challenge had 24 molecules, each with dif-
ferent number of microstates. SMILES [48] string of the 
microstates were converted to PDB files using OpenBabel 
[49]. Geometry optimization and gas phase deprotonation 
energy �G∗

g
 was calculated with the M06-2X density func-

tional theory [50] and 6-31G* basis set for neutral–cationic 
microstate pairs and 6-31+G* for neutral–anionic microstate 
pairs. “Ultrafine grid” and “Tight” convergence criteria were 
used in all calculations.

�G∗

aq
=�G∗

g
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Fig. 2  Thermodynamic cycles used in the pKa calculations a chemi-
cal reaction of acid dissociation. This relates the free energy of dis-
sociation in the aqueous phhase as with the gas phase free energy of 
dissociation and solvation free energies of the acid, base and proton. 
b Alchemical cycle for deprotonation. This cycle relates the solav-
tion free energy difference of the HA and  A−  with difference in free 
energy for deprotonation in the aqueous and gas phases
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We would like to point out that as the computed pKa are 
directly related to the calculated electronic energies, higher-
level methods such as MP2 and larger basis sets such as cc-
pVTZ would improve calculation results. These, however, 
have not been pursued in this study. We also did not test other 
functionals, which might potentially lead to better pKa predic-
tion results.

Parameterization of microstates

In order to carry out molecular dynamics simulations, we first 
generated force field parameters for the microstates based on 
the fixed-charge molecular mechanics potential energy func-
tions used in CHARMM [51]. The potential energy is given 
by a sum of bonded and non-bonded components:

where,
U = Ubonded + Unon-bonded

Ubonded = ΣbondKb(rij − r0)
2 + ΣangleK�(�ij − �0)

2

+ ΣdihedralsK� (1 + cos(n� − �)) + ΣimproperKimp(� − �0)
2

Unon−bonded = Σ
qiqj

4��0rij
+ �ij

[

(

Rmin

rij

)12

− 2

(

Rmin

rij

)6
]

Here, Kb and r0 are bond force constant and equilibrium 
bond-length for each atom type pair. K� and �0 are angle 
force constant and equilibrium angle for each angle type 
triplet. Kimp and �0 are improper angle force constant and 
equilibrium improper angle for each improper angle. K� , 
n, and � are the force constant, periodicity, and phase for 
each torsional degree of freedom. The non-bonded potential 
energy terms involve Coulombic interactions between partial 
charge qi and qj , and the van der Waals (VdW) interactions 
modeled by the �ij and Rmin parameters.

We used Antechamber to generate GAFF parameters. 
Single point calculation was done on the optimized geom-
etry mentioned above using Gaussian16 at MP2 level of 
theory with 6-31G* basis set. RESP charges were calculated 
using the protocol mentioned in Jakalian et al. [52]. Elec-
trostatic potential was written in a data file using the option 
IOp(6/33=2) in Gaussian, and the RESP charges were fitted. 
Other parameters—bonded (bond, angle and torsion) and 
non-bonded (van der Waals) were assigned as per the Gen-
eral Amber Force Field (GAFF) [53] using the Antechamber 
[52] program in the AmberTools16 software. CHARMM 
formatted parameter and topology files were produced. 
These parameters were modified by in-house scripts to make 
the formats compatible with CHARMM molecular dynam-
ics package. If the residues did not have an integer charge in 

Fig. 3  Workflow for the hybrid 
QM and MM pKa prediction 
approach

Generate the 
microstates for a 
molecule (provided 
by the organizers)

For each pair acid-
base pair, op�mize 
the geometry

Calculate gas phase 
dissocia�on free 
energy at QM level

Calculate gas phase 
phase deprotona�on 
free energy at MM 
level

Calculate aqueous 
phase deprotona�on 
free energy at MM 
level

Calculate G and 
pKa
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the generated topology file (typically off by ±0.0 − 0.003 ), 
an ad-hoc fix was done by adjusting the charge on a random 
non-hydrogen atom to round up the total charge of residue.

Free energy simulations

All molecular dynamics simulations were carried out with 
CHARMM [47] and parameter sets mentioned in the pre-
vious subsection. Thermodynamic Integration calculations 
were carried out using the PERT module of CHARMM. 
12 � windows were used (0.0. 0.075, 0.15, 0.25, 0.35, 0.45, 
0.55, 0.65, 0.75, 0.85, 0.95, 1.00) for transforming the partial 
charges of the acid into those of the conjugate base, with the 
charge on the dissociating proton transforming to zero. Each 
� window was equilibrated for 1 ps followed by 10 ps MD 
simulations for sampling.

MD simulations in the gas phase were carried out with 
Langevin dynamics at a temperature of 298 K and using a 
time step of 2 fs with a friction coefficient of 5 ps−1 on all 
the atoms. No cutoffs were used in calculation of nonbonded 
interactions for gas phase simulations. For aqueous phase 
simulations, we used 2022 water molecules to solvate the 
solute molecule, consituting a 38 Å cubic water box to start 
with. 50 ps NPT simulations were run at 298 K and 1 atm, 
after which NVT simulations at 298 K were carried out for 
TI calculations. A Nosé-Hoover thermostat [54] was used to 
maintain the microcanonical ensemble. Particle mesh ewald 
[55] was used to calculate the long range electrostatic inter-
actions with a direct space cutoff of 10 Å. Charge was spread 
on a grid of 48 × 48 × 48 for reciprocal space calculation 
using 6th order B-spline interpolation method [56]. A cutoff 
of 12 Å was applied for van der Waals interactions, and the 
integration time step is 1 fs.

Result and discussion

The results discussed in this report are the ones that we sub-
mitted for the SAMPL6 competition [submission id: 0wfzo]. 
We submitted only the microscopic pKas for all acid–base 
pairs of all the 24 molecules. These results were compared to 
macroscopic pKas using two different approaches—closest 
and Hungarian. This analysis was done with the assumption 
that experimentally observed pKas with only one observed 
pKa or fairly-distant pKas (separated by more than 3 units) 
are equal to the microscopic pKa of the corresponding 
microscopic pKa. Only two molecules—SM14 and SM18—
did not satisfy this criterion and hence they were excluded 
from this analysis. Detailed analysis of the results can be 
found at https ://githu b.com/Moble yLab/SAMPL 6/tree/maste 
r/physi cal_prope rties /pKa/analy sis/analy sis_of_typeI _predi 
ction s.

In the closest analysis approach, the experimentally 
observed pKa is matched with the microscopic pKa which 
minimizes the absolute error i.e. the one that is closest to the 
observed pKa (Table 1). We achieved a root mean squared 
error (RMSE) of 2.42 pKa units with respect to the experi-
mental values. The mean absolute error (MAE) was 1.61 
pKa units. The corresponding R2 for regression fit was 0.53 
and the slope of line was 1.08.

In the hungarian approach [57], an optimum global match 
between experimentally observed pKa and predicted set of 
pKas is found by minimizing the linear sum of squared 

Table 1  Statistics of the performance of the method using Hungarian 
and closest schemes

RMSE root mean square error, MAE maximum absolute error, r2 cor-
relation coefficient of determination, m slope of the linear regression 
line

Evaluation scheme RMSE MAE r
2 m

Hungarian 2.89 1.88 0.48 0.99
Closest 2.42 1.61 0.53 1.08

Table 2  Comparison of experimental and calculated values using the 
closest scheme

Molecule Exp. value Calculated value

SM01 9.53 ± 0.01 10.5
SM02 5.03 ± 0.01 8.68
SM03 7.02 ± 0.01 8.81
SM04 6.02 ± 0.01 5.23
SM05 4.59 ± 0.01 1.31
SM06(1) 3.03 ± 0.04 4.84
SM06(2) 11.74 ± 0.01 10.96
SM07 6.08 ± 0.01 4.52
SM08 4.22 ± 0.01 5.85
SM09 5.37 ± 0.01 4.89
SM10 9.02 ± 0.01 8.83
SM11 3.89 ± 0.01 5.52
SM12 5.28 ± 0.01 5.78
SM13 5.77 ± 0.01 5.48
SM15(1) 4.7 ± 0.01 − 4.16
SM15(2) 8.94 ± 0.01 12.46
SM16 5.37 ± 0.01 2.86
SM17 3.16 ± 0.01 1.22
SM19 9.56 ± 0.01 9.6
SM20 5.7 ± 0.03 5.03
SM21 4.1 ± 0.01 4.12
SM22(1) 2.4 ± 0.02 3.79
SM22(2) 7.43 ± 0.01 6.29
SM23 5.45 ± 0.01 4.78
SM24 2.6 ± 0.01 2.74

https://github.com/MobleyLab/SAMPL6/tree/master/physical_properties/pKa/analysis/analysis_of_typeI_predictions
https://github.com/MobleyLab/SAMPL6/tree/master/physical_properties/pKa/analysis/analysis_of_typeI_predictions
https://github.com/MobleyLab/SAMPL6/tree/master/physical_properties/pKa/analysis/analysis_of_typeI_predictions
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errors of the paired match (Table 1). We achieved a RMSE 
of 2.89 pKa units with respect to the experimental values. 
The MAE was 1.88 pKa units. The corresponding R2 for 
regression fit was 0.48 and the slope of line was 0.99.

Out of the 22 molecules whose results were compared to 
experimental results, 3 of the molecules (SM06, SM15 and 
SM22) had 2 macroscopic pKas in the 2–12 pKa range while 
the other molecules had just 1 pKa in this range. Among 
these 25 comparisons, only five predictions were more than 
2 pKa units away from the experimental values (Table 2). 
The most erroneous one concerns SM15, of which the fist 
predicted pKa underestimated the experimental measure-
ment by 8.86 pKa units, and the second pKa overestimated 
by 3.52 pKa units (Fig. 4).

In general, our results compare less favorably to some of 
the more-established methods of pKa prediction, as used by 
other submissions in the SAMPL6 challenge. By carefully 
examining our calculations after the submission, a few mis-
takes were spotted, which are further analyzed and discussed 
here.

One major error is that the standard state correction 
was missed in our submission. The QM level gas phase 

calculation are done at standard state of gas while the aque-
ous phase species are at 1M concentration. This standard 
state correction needs to be applied while calculation of the 
overall free energy difference. This contribution is equal to 
− 1.89 kcal/mol, i.e. 1.4 pKa units.

Another source of error comes from the inconsistency 
with GAFF protocol. Standard AMBER and GAFF force 
fields scale the electrostatic interaction between third-neigh-
bors (1–4 interactions) by 0.833, while CHARMM force 
fields on the other hand do not scale the electrostatic 1–4 
interactions. In the CHARMM program, an option e14fac 
(electrostatic 1–4 interaction scaling factor) should be set to 
0.833 to use GAFF force fields, however its default value of 
1.0 was used in our simulations by mistake. Furthermore, the 
CHARMM modified TIP3P parameter were used for water 
molecules which place a small � value on the water hydrogen 
atom. These deviations to the standard GAFF practice render 
the force field parameters used in this work less optimal.

Other methods to generate more CHARMM-like force 
field parameters for the microstates have been attempted. 
The Paramchem server [58], which generates CGENFF 
force field parameters, was found to report error messages 

Fig. 4  Plot of the closest analy-
sis scheme and experimental 
pKa values. Plot courtesy of the 
organizers https ://githu b.com/
Moble yLab/SAMPL 6/blob/
maste r/physi cal_prope rties /
pKa/analy sis/analy sis_of_typeI 
_predi ction s/analy sis_outpu 
ts_close st/pKaCo rrela tionP 
lots/0wfzo .pdf

https://github.com/MobleyLab/SAMPL6/blob/master/physical_properties/pKa/analysis/analysis_of_typeI_predictions/analysis_outputs_closest/pKaCorrelationPlots/0wfzo.pdf
https://github.com/MobleyLab/SAMPL6/blob/master/physical_properties/pKa/analysis/analysis_of_typeI_predictions/analysis_outputs_closest/pKaCorrelationPlots/0wfzo.pdf
https://github.com/MobleyLab/SAMPL6/blob/master/physical_properties/pKa/analysis/analysis_of_typeI_predictions/analysis_outputs_closest/pKaCorrelationPlots/0wfzo.pdf
https://github.com/MobleyLab/SAMPL6/blob/master/physical_properties/pKa/analysis/analysis_of_typeI_predictions/analysis_outputs_closest/pKaCorrelationPlots/0wfzo.pdf
https://github.com/MobleyLab/SAMPL6/blob/master/physical_properties/pKa/analysis/analysis_of_typeI_predictions/analysis_outputs_closest/pKaCorrelationPlots/0wfzo.pdf
https://github.com/MobleyLab/SAMPL6/blob/master/physical_properties/pKa/analysis/analysis_of_typeI_predictions/analysis_outputs_closest/pKaCorrelationPlots/0wfzo.pdf
https://github.com/MobleyLab/SAMPL6/blob/master/physical_properties/pKa/analysis/analysis_of_typeI_predictions/analysis_outputs_closest/pKaCorrelationPlots/0wfzo.pdf
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when parametrizing several charged species. The force field 
ToolKit (ffTK) [59], which is a plugin in VMD that gen-
erates CHARMM parameters, was found to be difficult in 
automatically generating parameters for all the microstates. 
Since we needed a method that could parameterize all the 
microstates in a high throughput fashion, we instead opted 
for using for Antechamber from AmberTools package.

From the absolute error analysis (Supplementary Fig. 2) 
we can assume that SM15 parameters are not optimal as the 
errors for both pKa are very high for this molecule. Force 
field parameterization for small molecules is indeed difficult 
due to the very large chemical space of these molecules as 
compared to the amino acids [60]. The latter have seen sev-
eral decades of work for a very limited number of species. 
The general strategy of optimization of parameters of mol-
ecules involves the use experimental hydration free energy 
data [61]. Optimization with this parameter would also be 
helpful as we indeed need to predict the solvation free energy 
difference. However, many of microstates of these molecules 
are charged species and getting high accuracy experimental 
hydration free energy data would be difficult. Even Self-Con-
sistent Reaction Field based implcit solvent model calcula-
tions have one order of magnitude higher error as compared 
to neutral species [23, 62]. One way to study the SM15 errors 
would be to generate parameters with a different force field 
and compare their relative performance. While Antechamber 
generates GAFF-based parameters, ffTK can be used to used 
to generate CHARMM-based parameters.

Our simulation runs also suffered from inadequate sam-
pling of the phase space in the aqueous phase simulation. 
For the calculation of hydration free energy in SAMPL4 
competition with similar system sizes, Gilson and co-work-
ers [28] had simulated each λ point for 5 ns. König et al. [29] 
for the same set of molecules had used a 0.5–1 ns simulation 
for each λ state in aqueous phase. In principle much less 
sampling time would be required in our FEP calculations 
as relative free energies instead of absolute solvation free 
energies were being computed. However, the MD simulation 
time used in this study was still too short (10 ps per λ state), 
not allowing full water reorganization upon solute deproto-
nation. The number of simulations that we were performing 
was much larger (~ 650 in SAMPL6 vs. 24 in SAMPL4) 
and hence we performed only 0.12 ns simulations for each 
acid–base pair. Achieving proper sampling is an area of 
active research in the molecular dynamics field. Indeed, one 
of the competitions in the SAMPL6 challenge focused on 
benchmarking this quantity especially in a blind setup. The 
results from that study would be able to set community-wide 
guidelines for benchmarking. A heuristic that we should 
have used to reduce the number of microstate pairs should 
have been to exclude all microstates that had charges more 
than 1 or less than − 1 i.e. consider only neutral and singly-
charged microstates. Some of the other submissions, have 

used this strategy to limit the number of microstate pairs that 
needs to be considered without loss in accuracy.

The FEP scheme we used for alchemical transformation 
included only the transformation of charges on all atoms 
from the protonated acid to the its deprotonated conjugate 
base. This was similar in principle to the strategy used by 
Lee et al. in their enveloping distribution sampling (EDS) 
based constant-pH simulations [63], where each state differed 
from the reference state in only the charges on the residue 
of deprotonation. The changes in the parameters for VdW 
interactions as well as the internal degrees of freedom during 
the solute deprotonation process will also contribute to free 
energy difference, which is not captured in our FEP calcula-
tions. We note that it’s feasible to include these effects by 
interpolating all force field parameters, although the bonded 
interactions might need to be carefully handled [64].

Another possible source of error comes from the value of 
�G∗(H+) . Solvation free energy of proton is a contentious 
value and a range of values from − 259 to − 264 kcal/mol 
are available in the literature. This can lead to large errors 
in the absolute prediction of pKa as just an difference of 
1.36 kcal/mol is equivalent to 1 pKa unit. One way to handle 
this error is to use isodesmic reactions with another acid 
with known experimental pKa and couple two thermody-
namic cycles together such that the solvation free energy of 
proton cancels out. The second acid chosen should also be 
similar to the original acid that we are interested in. Essen-
tially, the pKa shift is calculated with respect to a simpler 
model compound with known experiemental pKa values, 
as being done in most constant pH simulation methods [63, 
65, 66]. Our approach instead aims at prediciting the abso-
lute pKa, and a fixed value of − 264.5 kcal/mol is used for 
�G∗(H+) as derived from cluster-ion solvation data by Tis-
sandier et al. [43]. An alternative way to handle this issue, 
as well as other systematic errors in absolute pKa calcula-
tions, is to perform a linear free energy regression against 
molecules with known experimental pKa, i.e., to consider 
�G∗(H+) as a variable whose value is fitted to best repro-
duce a set of known pKa values. The empirical correction 
has been shown to improve the results although the slope of 
the regression still remains a debatable issue [12]. We have 
also used the assumption that only one microscopic pKa 
contributes to the macroscopic pKa if the former are fairly 
well separated. However, this is an approximation as for a 
given charge transition, multiple protonated–deprotonated 
pairs of microstates contribute to the macroscopic pKa [41].

In our approach the �G∗
g
 is computed using QM calcula-

tions at the M06-2X level using 6-31G* basis set (6-31+G* 
for microstate pairs involving anionic species). Higher level of 
ab initio methods, larger basis set, and including counterpoise 
correction should improve our results. Although our method 
allows the sampling of the phase space during the calculation 
of the solvation free energy difference, only one conformation 
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(the energy minimized one) is considered for the calculation 
of �G∗

g
 by QM in the gas phase. This is again an approxima-

tion as previous work by Bochevarov et al. [11] have shown 
that multiple low lying conformations do contribute to the 
deprotonation free energy. There can be a couple of different 
strategies to handle this phenomenon. Multiple low lying con-
formations can be sampled and the deprotonation energy of 
each important conformation can be calculated separately and 
combined together in a Boltzmann weighted sum. Another 
solution for this problem is to use reweighting as used by Tao 
et al. [67]. Free energy of constraining the geometry to the 
ones used the calculation of gas-phase QM step, can be cal-
culated separately and will have to be added for the protonated 
microstate and subtracted for the deprotonated microstate.

One of the key physics behind the free energy of deproto-
nation and hence pKa is the water reorganization when the 
solute is protonated or deprotonated, which involves water 
response to the sudden changes of charge distributions. In 
this case, polarizable force fields should in principle provide 
higher accuracy in our approach as fixed charge force-fields 
are limited in their ability to account for the change in charges 
during the course of the simulation. A theoretically-promising 
method to handle this effect is to use polarizable force fields 
such as AMOEBA [68, 69], Drude [70] or a recently formu-
lated multipole and induced dipole (MPID) model [71]. Any 
of these polarizable models should improve the pKa predic-
tion results of our method, given high quality polarizable force 
field parameters for general drug-like molecules are available.

Conclusion

This work reports our submission for the SAMPL6 pKa 
prediction challenge, where we have attempted to calculate 
pKa of small drug-like molecules in explicit solvent using 
a hybrid QM and MM approach. While including multiple 
solvation shells is difficult in pure ab initio (QM) methods, 
modeling the dissociation of a proton is difficult at the MM 
level using conventional force fields. The novel contribution 
of this work is devising a method to allow the calculation of 
� G in explicit solvent while limiting the cost of the calcu-
lations. This is important for a high throughput prediction 
where a large number of microstates need to be considered.

However, traditional limitations in molecular dynamics 
simulation approaches limits its competitiveness as com-
pared to a machine learning approach or a full-quantum level 
implicit solvent approach. At the same time we committed a 
few avoidable mistakes in carrying out the simulations. Due 
to these results from the present version of our method did 
not do very well in the SAMPL6 pKa challenge. More work 
needs to be done to optimize and automate the protocols.

We are currently working on improving the method. 
We need to improve force field parameters for the small 

molecules, ensure proper sampling of the intermediate 
lambda points during free energy calculations and utilize 
a higher level of theory for the gas phase QM calculations. 
Our new version of the method is an open source tool where 
we can use test the method easily for each of these factors. It 
will allow the method to be used for not just pKa calculation 
of small molecules but for larger proteins of interest as well. 
The open source tool, currently in development, is available 
at https ://githu b.com/samar jeet/hpka.
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