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Abstract
Here, we propose an in silico fragment-mapping method as a potential tool for fragment-based/structure-based drug discov-
ery (FBDD/SBDD). For this method, we created a database named Canonical Subsite–Fragment DataBase (CSFDB) and 
developed a knowledge-based fragment-mapping program, Fsubsite. CSFDB consists of various pairs of subsite–fragments 
derived from X-ray crystal structures of known protein–ligand complexes. Using three-dimensional similarity-matching 
between subsites on one protein and another, Fsubsite compares the surface of a target protein with all subsites in CSFDB. 
When a local topography similar to the subsite is found on the surface, Fsubsite places a fragment combined with the subsite 
in CSFDB on the target protein. For validation purposes, we applied the method to the apo-structure of cyclin-dependent 
kinase 2 (CDK2) and identified four compounds containing three mapped fragments that existed in the list of known inhibitors 
of CDK2. Next, the utility of our fragment-mapping method for fragment-growing was examined on the complex structure 
of tRNA-guanine transglycosylase with a small ligand. Fsubsite mapped appropriate fragments on the same position as the 
binding ligand or in the vicinity of the ligand. Finally, a 3D-pharmacophore model was constructed from the fragments 
mapped on the apo-structure of heat shock protein 90-α (HSP90α). Then, 3D pharmacophore-based virtual screening was 
carried out using a commercially available compound database. The resultant hit compounds were very similar to a known 
ligand of HSP90α. As a result of these findings, this in silico fragment-mapping method seems to be a useful tool for com-
putational FBDD and SBDD.

Keywords  Fragment mapping · Fragment-based drug discovery · Fragment growing · Virtual screening

Introduction

Fragment-based drug discovery (FBDD), which identifies 
low molecular weight ligands that bind to a target protein, 
is an increasingly popular method within the pharmaceuti-
cal industry [1–4]. The FBDD approach is based on bio-
physical screenings (NMR, X-ray, etc.) of a fragment library, 
which contains hundreds or thousands of small compounds 

(< 300 Da). The biophysical screening process has two 
aims; (i) detecting small ligands to a drug target and (ii) 
obtaining 3D information of the binders at the target site. 
In general, experimental fragment-based screening maps 
the position of each fragment to a chosen core as well as 
additional interactions on the protein surface. Subsequently, 
the various fragments can be linked or merged with each 
other (fragment-linking/fragment-merging). In addition, new 
functional groups can be added to the fragment (fragment-
growing). Finally, the fragments will be integrated into a 
lead. Because fragment hits contain few functional groups 
for interactions with the target protein, the corresponding 
affinities tend to be very weak. Consequently, it is not easy to 
identify these fragments clearly using a standard biological 
assay [5]. The affinity of the lead compounds can then be 
determined experimentally.

In computational chemistry, early programs to map small 
molecules on a target protein were developed as the proto-
types of docking programs before the appearance of FBDD 
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[6]. These programs detected interaction points around a 
protein by probe molecules using grid searching methods 
(GRID) [7] and a random searching method (MCSS) [8]. 
Today, there are many fragment-mapping approaches based 
on docking [9–14]. These procedures evaluate likelihoods of 
the positions of fragments by force field potentials or empiri-
cal functions that are based on fittings of experimental affini-
ties. Empirical functions, however, are less accurate because 
of small numbers of fragments available for fitting and 

less-diversity of their affinities. Force-field based approaches 
cannot distinguish between non-binders and weak-binders 
because the affinities of weak-binders (100 μM ~ 10 mM) 
are − 3 ~ − 6 kcal/mol of binding free energy, which is 
almost equal to the error (± 3 ~ 5 kcal/mol) for the compu-
tational methods employed to estimate the interaction [15, 
16]. Therefore, it is difficult for docking programs to rank 
many poses of fragments correctly. This may be the reason 

Fig. 1   Fragmentation of a 
ligand and extraction of subsites

Fig. 2   Property spheres on 
amino acids. The colors of the 
spheres indicate the following 
properties: hydrophobic (HP; 
white), aromatic (AR; yellow), 
hydrogen-bond donor (HD; 
cyan), hydrogen-bond acceptor 
(HA; red), and hydrogen-bond 
donor/acceptor (DA; vio-
let). Large and small spheres 
indicate radii of 1 Å and 0.5 Å, 
respectively
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why computer ligand-docking is unsuitable for identifying 
fragment-binding sites.

The another method is geometric pocket similarity search 
[17–19]. In a type of pocket similarity search, the positions 
of Cα (and Cβ) atoms of residues in the binding site of a 
target protein are compared to those of other proteins [18]. 
This procedure describes evolutional conservations [17] 
well but lacks for atomic level details. The another type 
represents only surface atoms of binding pockets as atom 
types or feature points and then compares the target pocket 
with the others using graph theory [19]. This pocket similar-
ity search keeps atomic level details, but doesn’t make full 
use of residue information since only interfacial atoms are 
considered. The advantage of those pocket similarity search 
methods is that they use experimental data of X-ray crystal-
lography well.

We have developed a new program, Fsubsite, to identify 
the similarity of local protein-surfaces between two pro-
teins based on the molecular-superposing algorithm that 
was previously reported by ourselves [20]. In addition, we 
have also created a database consisting of subsite–fragment 

pairs, which is named Canonical Subsite–Fragment Data-
Base (CSFDB). On the surface of a target protein, Fsubsite 
searches for similar topographies to the subsites in CSFDB. 
All the subsites in CSFDB are examined by scanning the 
surface of the target protein using Fsubsite. To speed-up 
the process, Fsubsite treats each amino acid residue as a set 
of physicochemical feature points. Similarity between the 
matched site on the target protein and one of the subsites 
in CSFDB is calculated as the sum of pre-defined scores 
of matched feature points. Finally, fragment binding to the 
subsite in CSFDB is placed on the matched target site with 
high similarity (i.e. fragment-mapping).

To verify the procedure, Fsubsite with CSFDB was per-
formed for fragment-mappings onto well-known target pro-
teins. The mapped fragments were compared with known 
ligands of CDK2. In addition, we attempted to use the 
mapped fragments for fragment-growing onto TGT and for 
building of a 3D-pharmacophore model on HSP90α.

Table 1   Scoring matrix

*If the planes of two rings cannot be superposed upon each other, a score of + 3 is given

HP AR HD HA DA HL

HP + 3 + 3 − 2 − 2 − 2 − 133
AR + 3 + 4* − 2 − 2 − 2 − 133
HD − 2 − 2 + 2 − 2 + 1 − 133
HA − 2 − 2 − 2 + 2 + 1 − 133
DA − 2 − 2 + 1 + 1 + 1 − 133
HL − 133 − 133 − 133 − 133 − 133 − 133

Fig. 3   Procedures for fragment 
mapping by Fsubsite
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Materials and methods

Extraction of subsite–fragment pairs from protein–
ligand complexes

To obtain a subsite–fragment database, we used the data-
base of 3D-structures of protein–ligand complexes (PDB-
bind v.2013) [21–23]. The core set of PDBbind is chosen 
from 38,918 complexes in PDB according to resolutions 
of X-ray crystal data (≤ 2.5  Å), clustering of proteins 
(sequence similarity cutoff ≥ 90%) and sampling of binding 
constants (the highest one, the lowest one, the one close to 
the mean value). The core set was composed of 195 pro-
tein–ligand complexes in 65 protein clusters. The diversity 
of the core set was considered to be suitable for this study. 
Ligands in the database were divided into fragments using 
Fragmenter of JChem 6.3.0 (ChemAxon Ltd., Budapest, 
Hungary, 2014). The RingChainRecap rule in Fragmenter 
was used for the fragmentation process (Fig. 1). This rule 
cuts non-ring single bonds starting from a ring atom, and 
thus splits a molecule into the ring systems and connecting 
chains. When cutting generates single heavy atoms, they 
are attached to the rings. A set of residues within 4 Å of 
each fragment was defined as the subsite using SYBYL-
X 2.1.1 (Certara, L.P., Princeton, NJ, USA, 2013). As a 
result, 644 subsite–fragment pairs were obtained as the 
subsite–fragment set.

Fragment mapping

The Fsubsite program superposes each subsite of the frag-
ment onto the mapping surface of a target protein using the 
SUPERPOSE algorithm [20]. The Fsubsite represents func-
tional groups of amino acids as spheres of five types based 
on their physicochemical properties: hydrophobic (HP); aro-
matic (AR); hydrogen-bond donors (HD); hydrogen-bond 
acceptors (HA); and hydrogen-bond donors/acceptors (DA). 
Each type is represented as a sphere with a predefined radius 
(1.0 or 0.5 Å) and is assigned to functional groups in an 
amino acid residue (Fig. 2). HD, HA and DA are placed 
on nitrogen, oxygen, and sulfur atoms, respectively, which 
are possibly involved in forming hydrogen bonds. HP and 
AR are placed at the center of an aliphatic and aromatic 
ring, respectively. For an extended aliphatic side chain, HP 
is placed at the center of the aliphatic atoms. Usually, the 
radii of the property spheres are 1.0 Å. However, a radius of 
0.5 Å is used for a donor and/or an acceptor atom (HD, HA, 
DA) in a ring that has a hydrophobic or an aromatic property 
sphere (HP or AR) at the center. In a carboxyl group and a 
guanidino group, the radii of HA and HD are 0.5 Å.

The superposition is performed based on the scoring 
matrix (Table 1). Matched property spheres give a positive 
score, whereas mismatched property spheres give a nega-
tive score. When the planes of two aromatic rings match 
well, the score between two ARs is 4 points. Otherwise, 
the score of AR–AR is 3 point as is that of HP–HP. In 
order to avoid mapping the outer region of the mapping 
surface, the optional property of a hidden layer (HL) can 
be used. HLs are placed onto the residues of the outer 
region of a target protein and/or the binding fragments of 
subsites in the database. HLs are also used to avoid colli-
sion between mapped fragments and a lead compound in 
the binding site. The radii of HLs for the outer residues 
are set in the same manner as ordinary properties for the 
inner residues of the mapping surface. HLs for fragments 
or lead compounds are placed onto the center or the heavy 
atoms. If HL overlaps with other properties, a large nega-
tive score is assigned.

The procedures of Fsubsite are shown in Fig. 3. During 
superposing, each subsite of the fragment is moved on the 
mapping site of a target protein. Firstly, the rotational copies 
of the subsite are generated. The rotational angle is deter-
mined automatically as the farthest sphere from the center of 
the moving subsite could not jump over the diameters of the 
property spheres of the target site. The translation is carried 
out as each property sphere of the moving subsite jumps 
onto the property spheres of the target site, which are able to 
generate positive scores. Finally, the overlaps are optimized 
using a simplex algorithm according to the Matching_Score 
as the objective function (Eq. 1),

where i and j are matched property spheres of the sub-
site of I and the target site of J, respectively, rij is the 
distance, σi and σj are the radii of the property spheres, n+ 
and n− are numbers of positive and negative overlaps, cij 
is the element of the scoring matrix. The first term is the 
sum of the scores according to Table 1, and the second 
term is the position adjuster that ranges from 0 to 1. The 
position adjuster acts to make more positive overlaps and 
move away from negative overlaps. The Subsite_Similar-
ity between the subsite and the target site is estimated as 
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the value of the Matching_Score divided by the maximum 
value, which is obtained by self-matching of the subsite 
(Eq. 2). When similar subsites within the cutoff value of 
similarity are found, the fragments binding to the subsites 
in CSFDB can be mapped on the mapping surface of a 
target protein according to the translational and rotational 
vectors for the subsites.

In the Fsubsite software package, core programs are 
written in Fortran 90/95 and utilities in Perl or Python. The 
supported operating systems (OSs) are Linux, and Apple 
Mac OS X. Molecular graphic software capable of reading/
writing the Tripos Mol2 file format (such as SYBYL-X) is 
required for input and visualization. The Fsubsite program 
can run on a distributed processing system as a Linux clus-
ter using Open Grid Scheduler/Grid Engine 2011.11 (http://
grids​chedu​ler.sourc​eforg​e.net, 2011).

Generating a Canonical Subsite–Fragment DataBase

In order to reduce computational costs of fragment-mapping, 
similar subsites of the subsite–fragment set were grouped 
into one representative subsite using sieve theory.

	 i.	 The largest subsite in the subsite–fragment list was 
chosen on the basis of the scores by self-matching of 
subsites.

	 ii.	 Similarities between the largest subsite and the 
remaining subsites in the list were evaluated.

	 iii.	 The largest subsite was adopted as the representative 
subsite, and then the subsites within the cutoff value 
of similarity were defined as similar subsites.

	 iv.	 Bound fragments were aligned into the representative 
subsite by superposing similar subsites.

	 v.	 The bound fragment of the representative subsite was 
chosen as the representative fragment and then the 
bound fragments of similar subsites were registered 
as members (Fig. 4).

	 vi.	 The largest and similar subsites were eliminated in the 
subsite–fragment list.

	vii.	 These processes were repeated until the list was emp-
tied.

Finally, we obtained 482 representative subsite–fragment 
pairs to be admitted to the Canonical Subsite–Fragment 
DataBase (CSFDB).

For comparison between subsite- and fragment-similari-
ties, chemical similarities of the fragments were calculated 
as Tanimoto similarities between 64-bit fingerprints of 3D 
distances of atom pairs using Canvas 2.4 in Small-molecule 
Drug Discovery Suite 2015-2 (Schrödinger, LLC., New 
York, NY, USA, 2015) [24, 25]. All atoms of fragments were 
represented as Carhart atom types: C, O, N, S, F, Cl, Br, I, P, 
Si, B, Se, As, and Y (any other) [26]. All atom pairs in each 
fragment were considered for calculations of distances. The 
distances were not 2D topological distances (bond paths) 
but 3D distances in the binding conformation of each frag-
ment in the X-ray structure of the original protein–ligand 
complex. Pearson correlation coefficient between subsite- 
and fragment-similarities were calculated. R 3.1.3 was used 
as a statistical software (The R Foundation for Statistical 
Computing, https​://www.r-proje​ct.org/, 2015).

Protein preparation for fragment mapping

The fragment-mapping method was tested using several pro-
teins; CDK2, TGT and HSP90α. The ligand-unbound (apo) 
structures of CDK2 (PDB ID: 4ek3) and HSP90α (PDB ID: 

Fig. 4   An example of a Canoni-
cal Subsite–Fragment Data-
Base. a Aligned fragments for a 
representative subsite (Canoni-
cal No. 106, 1o3f_subsite_1), 
b representative fragment, and 
c the member fragments. The 
colors indicate the follow-
ings: representative fragment 
(magenta), and member frag-
ments (cyan)

(b)

(c)

(a)

1o3f_fragment_1

1o5b_fragment_2

3kgp_fragment_2

1sqa_fragment_4

3gy4_fragment_2

http://gridscheduler.sourceforge.net
http://gridscheduler.sourceforge.net
https://www.r-project.org/
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1yer) were used in order to validate the influence of fluctua-
tions in target proteins. For fragment-growing, the complex 
structure of TGT with a small ligand was used (PDB ID: 
1s38).

For CDK2 and HSP90α, the residues within 4 Å from the 
ligand bound to the holo structure was defined as the map-
ping surface for the apo structure. The ligands of the holo 
structures of PDB IDs (CDK2: 2vtq, HSP90α: 2xjx) were 
used. The mapping surface of TGT was defined using our 

HBOP program [27, 28] for binding site detection. HBOP 
detected additional binding space around the bound small 
ligand on the basis of hydrophobicity. The mapping surface 
for TGT was defined as residues within 4 Å from the grid 
points of the detected hydrophobic site.

In order to avoid mapping on the outer region, the prop-
erty spheres of HL were put on residues from 4 to 8 Å of 
the grid points or the ligand. For TGT, additional HLs were 
placed onto the heavy atoms of the lead compound in order 
to avoid collision between mapped fragments and the lead 
compound.

Examination of mapped fragments

To verify the effectivity of our mapping procedure, we 
examined whether a 3D-database search using information 
of mapped fragments obtained from our method was able 
to retrieve known active compounds for the target protein. 
Fsubsite was first carried out on CDK2, which is a popular 
target for FBDD. In this case study, we assumed CDK2 to 
be an unknown kinase. All fragments in the CSFDB except 
for the fragments derived from CDK2-ligand complexes 
were mapped onto the apo structure of CDK2 to obtain a 
set of mapped fragments. All combinations of the three in 
the mapped fragments without obstructing each other were 

(a)

(d)

Val45

Val282

Leu68

Leu100

(b)

(c)

Fig. 5   Procedures for fragment-growing. a Fragment mapping, b 
clustering, c choice of a target fragment, and d bridging and re-
docking. The colors indicate the followings: lead compound (brown), 
mapped fragments (green), and generated candidates (white)
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generated using the FAS program (produced by Dr. H. 
Yamasaki and Dr. Y. Nishibata). Then, the CDK2 ligands 
in the general-PL set of PDBbind v.2013 were three-dimen-
sionally compared with the obtained triplet fragments using 
UNITY in SYBYL-X 2.1.1. The UNITY flex search was 
used for treatment of ligand flexibility and then Lipinski’s 
rule of 5 was turned off. The spatial point constraint was put 
on the center of each fragment with a tolerance of 1.0 Å. 
As the representation of the inside of the target protein, the 
heavy atoms of the mapping and exclusive residues for Fsub-
site used as the excluded volume constraint with a van der 
Waals radii scale factor of 0.2 was applied in order to treat 
induced fits.

Table 2   Mapped fragments and these positions as 3D-queries for CDK2

No. of frag-
ments

No. of posi-
tions

Mapped fragments EC numbers Complexed proteins Matching scores 
of subsite

Subsite 
similari-
ties

1 i 3myg_fragment_1 2.7.11.1 Serine/threonine-protein kinase 6 39.491 0.940
ii 39.416 0.938
iii 37.462 0.892
iv 33.416 0.796

2 i 1q8t_fragment_4 2.7.1.37 cAMP-dependent protein kinase 38.551 0.771
3 i 2brb_fragment_1 2.7.11.1 Serine/threonine-protein kinase Chk1 37.618 0.940
4 i 3uo4_fragment_4 2.7.11.1 Serine/threonine-protein kinase 6 32.455 0.927

ii 30.545 0.873
iii 30.543 0.873

5 i 2brb_fragment_2 2.7.11.1 Serine/threonine-protein kinase Chk1 27.586 0.920
ii 24.179 0.806

6 i 3e93_fragment_6 2.7.11.24 Mitogen-activated protein kinase 14 27.347 0.943
ii 25.391 0.876
iii 25.277 0.872
iv 24.402 0.841
v 24.387 0.841
vi 24.171 0.833

7 i 3pe2_fragment_3 2.7.1.37 Casein kinase II, α subunit 26.215 0.819
ii 26.209 0.819
iii 24.310 0.760
iv 24.289 0.759
v 24.289 0.759
vi 24.207 0.756
vii 24.155 0.755

8 i 3pww_fragment_5 3.4.23.22 Endothiapepsin 26.192 0.770
9 i 3gcs_fragment_4 2.7.11.24 Mitogen-activated protein kinase 14 25.155 0.811
10 i 2xb8_fragment_2 4.2.1.10 3-Dehydroquinate dehydratase 24.324 0.785
11 i 4gid_fragment_5 3.4.23.46 β-Secretase 1 24.279 0.759

ii 24.223 0.757

Fig. 7   Mapped fragments on apo CDK2
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Additional fragments for fragment‑growing

TGT is known to be a good target for computational de novo 
design [29] and virtual screening [30], and so we chose the 
complex structure of TGT with a small ligand and mapped 
additional fragments around the small ligand using Fsubsite 
(Fig. 5a) [31, 32]. The reduced type of CSFDB eliminating 
the subsite–fragment pairs derived from TGT-ligand com-
plexes was used for the mapping. The mapped fragments 
were grouped according to their chemical structures and then 
their center positions were clustered using a clustering radius 
of 3 Å. In each cluster, the fragment with the most neighbors 
was chosen as the representative (Fig. 5b).

The position of the methyl group of the lead com-
pound was chosen as the starting point for fragment-
growing (Fig. 5c). In the vicinity of the starting point, 
the nearest and most clustered fragment was selected 
for the fragment-growing process. To bridge between 
the starting point and the fragment, a de novo design 
program, RACHEL (SYBYL-X 1.3, Certara, L.P., 
2011), was used with CHARLIE mode (Fig. 5d). This 
procedure generated 50 compounds. In CHARLIE 
mode, the enrichment of generated ligand diversity 

(SEARCH_DIVERSITY) = 0.25 and the maximum splice 
atom overlap error (SEARCH_SP_ERROR) = 2.5 Å were 
used for generating more compounds and looser links, 
respectively. The used chemical building blocks were 
derived from the approved drugs found in DrugBank 5.0.5 
[33–36].

In order to validate the adaptability of the obtained 
compounds, these compounds were docked into the pro-
tein. The compounds and the protein were prepared by 
LigPrep 4.1 and Protein Preparation Wizard, respec-
tively, in Small-molecule Drug Discovery Suite 2017-1 
(Schrödinger, LLC., 2017). The docking calculations 
were performed using Glide 7.4 in SP mode [37, 38]. 
When the fragment part of the docked compound held 
on the position of the mapped fragment, we adopted the 
compound as a candidate ligand (Fig. 5d).

Using mapped fragments for virtual screening

We demonstrated a virtual screening using the obtained 
fragment map by Fsubsite. Because we assumed HSP90α 
to be an unknown protein, the fragments derived from 

(a)

(b)

(c)

Ligand of 2vu3
IC50 = 47 nM[44]

Ligand of 2xch
IC50 = 12 nM[45]

Ligand of 2vtq
IC50 = 140 nM[44]

Ligand of 2vtt
IC50 = 44 nM[44]

1_ii

5_ii

6_i

4_i

5_ii

6_vi

Fig. 8   Chemical structures and aligned poses of known CDK2 ligands. a The aligned pose of the ligand 2vtt, b aligned pose of the ligand 2xch, 
and c chemical structures



1237Journal of Computer-Aided Molecular Design (2018) 32:1229–1245	

1 3

HSP90α-ligand complexes were excluded from the 
CSFDB and only the apo structure of HSP90α was used 
for mapping. 3D pharmacophores were generated from all 
mapped fragments using DISCOtech in SYBYL-X 2.1.1. 
DISCOtech, DONOR_ATOM, ACCEPTOR_ATOM, 
HYDROPHOBIC, AROMATIC, POSITIVE_N, and 
NEGATIVE_CENTER were used as pharmacophore 
points with tolerances for matching of 1.0 Å and for con-
straint of 1.0 Å. We modified the dialog menu of DIS-
COtech to set ‘% of Molecules Allowed to Miss’ at 0, 
i.e. generating all pharmacophore points on the largest 
fragment and then clustering. The virtual screening was 
performed using UNITY flex search without Lipinski’s 
rule of 5. The excluded volume constraints were put on 
the heavy atoms of the mapping and exclusive residues 
for Fsubsite with a van der Waals radii scale factor of 1.0. 
The HSP90α ligands in the general-PL set of PDBbind 
v.2013 were used for validation. The Enamine Kinase 
Hinge Region directed Library (18,020 compounds, 
Enamine Ltd, Ukraine, 2016) was used as the compound 
database for the virtual screening because kinases utilize 
the same substrate as ATP for HSP90α.

Computational hardware

The making of the subsite–fragment set was performed 
on a Mac Pro (Apple Inc., Cupertino, CA, USA; Intel 
Xeon Processor 5160; 2 Cores; 3 GHz; 2 central pro-
cessing units [CPUs]). The UNITY flex searches and the 
RACHEL calculation were carried on an hp Z600 worksta-
tion (HP inc., Palo Alto, CA, USA; Intel Xeon Processor 
X5570; 4 Cores; 2.93 GHz; 2 CPUs). The reduction of 
the subsite–fragment set into the canonical database, the 
fragment-mapping calculations and the Glide re-docking 
were performed using two Linux clusters, 13 nodes of 
an HPC5000-XH2UTwin-D24 (HPC SYSTEMS Inc., 
Tokyo, Japan; Intel Xeon Processor E5-2690 v3; 12 Cores; 
2.6 GHz; 26 CPUs in total) and 30 nodes of a Dell Pow-
erEdge 1950 III (Dell Inc., Round Rock, TX, USA; Intel 
Xeon Processor X5460; 4 Cores; 3.16 GHz; 60 CPUs in 
total). The computation time for fragment-mapping was 
about 1 day on our Linux clusters.

Results

Canonical Subsite–Fragment DataBase

Firstly, we performed the calculations for redaction of 
644 subsite–fragment pairs using 75% of the cutoff of 

Subsite_Similarity. However, in some cases the adjacent 
subsite–fragment pairs in the same protein–ligand com-
plexes were grouped into the same clusters. Therefore, 
90% of the similarity cutoff was used in cases of self-
scores below 40 for the representative subsites. Using this 
procedure we obtained 482 representatives of the Canoni-
cal Subsite–Fragment DataBase (Table S1).

(a)

(b)

(c)

Val45

Val282

Leu100

Leu68

Val45

Val282

Leu100

Leu68

Val45

Val282

Leu100

Leu68

Fig. 9   Comparison of the docked candidate with the known ligand of 
TGT: a the benzene fragment in the vicinity of the lead compound 
(PDB ID: 1s38), b docking pose of candidate No. 707, and c X-ray 
pose of a similar known ligand of TGT (PDB ID: 1q66). The colors 
indicate the following: lead compound (brown), target fragment 
(green), candidate (white), and known ligand (purple)
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The molecular weights and numbers of heavy atoms of 
fragments in the CSFDB are shown in Fig. 6. The molecu-
lar weights ranged from 26 to 712 and the average was 
106.6. Nineteen fragments had a molecular weight of more 
than 300, i.e. upper limit for lead-like molecules [39]. The 

range and average of numbers of heavy atoms were 2–50 
and 7.4, respectively. Twenty-four fragments comprised 
20 or more heavy atoms. In these cases, any increase in 
fragment size was not expected to enhance potency [40]. 

Fig. 10   Generated candidates 
by fragment-growing and 
similar known ligands of TGT. 
a Lead compound, b candidates, 
and c known ligands

(a)

(b)

(c)
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These larger fragments consisted of peptides, macrocyclic 
or polycyclic compounds, and a long-chain fatty acid.

The Pearson correlation coefficient between subsite- 
and fragment-similarities was very good when the Match-
ing_Score between subsites was 30 and over, i.e. between 
larger subsites (n = 2736, r = 0.902). Using Matching_
Score ≥ 20, the Pearson correlation coefficient was mod-
erate (n = 38,883, r = 0.603).

Mapped fragment on CDK2

In this case study, we assumed CDK2 to be an unknown 
kinase. When Matching_Score ≥ 24 and Subsite_Similar-
ity ≥ 75% were used as cutoff for mapping, we obtained 
a total of 11 mapped fragments using the reduced type 
of CSFDB eliminating fragments derived from CDK2-
ligand complexes. In order to identify CDK2 ligands 
that comprise mapped fragments, the obtained fragments 
were used as 3D-queries in a UNITY flex search (Table 2; 
Fig. 7). The FAS program generated 74 combinations of 
the three fragments that did not interfere with each other. 
Due to each other’s steric hindrance it was not possible to 
select combinations of four or more fragments from the 
mapped fragment. For each combination, the chemical 
structures of the fragments and their centers were used 
as 3D-queries with the excluded volume constraint of 
the protein surface. The three CDK2 ligands in PDBbind 
(PDB IDs: 2vtq, 2vtt, and 2vu3) were composed of a tri-
plet of fragments (Fig. 8a). Moreover, one ligand of the 

other kinase (PDB ID: 2xch) was matched with another 
triplet (Fig. 8b).

Fragment‑growing on TGT​

In this case study, similar subsites of other proteins were 
found and their binding fragments mapped on the complex 
of TGT with the lead compound. Using cutoff values for 
smaller subsites (Matching_Score ≥ 10 and Subsite_Simi-
larity ≥ 80%), 46 fragments were obtained as the result. 46 
fragments were mapped to 1242 locations at different fre-
quencies. For example, benzene was mapped to 206 loca-
tions (Fig. 5a), and naphthalene was 1 location (Fig. 14a). 
The adjacent fragments were grouped into representatives by 
clustering (Fig. 5b). Because benzene was the most mapped 
fragment and one of the benzene clusters was close to the 
starting point of the lead compound, this moiety was chosen 
as the additional fragment (Fig. 5c).

The de novo design program of RACHEL built bridges 
between the benzene fragment and the lead compound 
(Fig. 5d), and then 50 compounds were generated. The 
obtained compounds were docked into TGT using the dock-
ing program of Glide (Fig. 9). The fragment parts of the 
docked compounds were compared with the position of the 
mapped fragment. Based on this analysis, we adopted 42 of 
the 50 compounds as candidate ligands because the frag-
ment parts were located in the vicinity of the mapped frag-
ment. Three of the 42 candidates were very similar to known 
ligands of TGT (Fig. 10) [31, 32, 41, 42].

Table 3   Mapped fragments on HSP90α and these positions for 3D-pharmacophore points

No. of frag-
ments

No. of posi-
tions

Mapped fragments EC numbers Complexed proteins Matching scores 
of subsite

Subsite 
similari-
ties

1 i 2iwx_fragment_1 -.-.-.- Heat shock protein HSP82 64.439 0.871
ii 62.309 0.842
iii 61.405 0.830
iv 59.426 0.803
v 58.474 0.790
iv 56.431 0.763

2 i 2vw5_fragment_3 -.-.-.- Heat shock protein HSP82 26.679 0.920
ii 26.674 0.920

3 i 2xb8_fragment_2 4.2.1.10 3-Dehydroquinate dehydratase 23.269 0.751
4 i 1sqa_fragment_6 3.4.21.73 Urokinase-type plasminogen activator 21.219 0.816

ii 20.289 0.780
iii 20.257 0.779

5 i 3zso_fragment_5 2.7.7.0 HIV-1 integrase 21.189 0.785
6 i 4gid_fragment_3 3.4.23.46 β-Secretase 1 20.293 0.922
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Virtual screening for HSP90α

On the assumption that HSP90α is an unknown target, we 
obtained a total of 6 mapped fragments using the reduced 
type of CSFDB eliminating fragments derived from 
HSP90α-ligand complexes (Table 3; Fig. 11a). Matching_
Score ≥ 20 and Subsite_Similarity ≥ 75% were used as cutoff 
for mapping. Because the smaller fragments overlapped into 
the larger fragments, the fragment-combination approach 
was not used. Therefore, a total of 15 points as the 3D-phar-
macophore were generated from all mapped fragments using 
DISCOtech (Fig. 11b). In the validation, the two compounds 
of HSP90α ligands in PDBbind (PDB IDs: 2yi0 and 2yi7) 
satisfied 8 points, which is more than half of the 3D-pharma-
cophore (Figs. 11c, 12a). Only four hits were obtained in the 
virtual screening of the commercially available compound 
database using the same conditions (Figs. 11d, 12b).

Discussion

Bioisosteres in subsite

In CSFDB, representative fragments as well as frag-
ment members belong to a representative subsite (Fig. 4, 
Table S1). This arrangement means that these fragments are 
able to be replaced by one another [19, 43]. As shown in 
Fig. 4, the hydrophobic subsite of the S1 cleft in the trypsin 
family of proteins may be able to accept various aromatic 
rings (Canonical No. 106 in Table S1). Using the Fsubsite 
program, medicinal and computational chemists are read-
ily able to obtain poses of the fragment members using the 
translational and rotational vector for the representative frag-
ments mapped onto the target protein.

Matching_Score and Subsite_Similarity

When Matching_Score ≥ 30, Subsite_Similarity strongly 
correlated with similarity between fragments. These results 
implied that similar fragments bind to similar subsites if 
the subsites are relatively large. However, most cases where 
Matching_Score ≥ 30 involved the same proteins or homol-
ogous proteins (Table S1). We considered that situations 
where the Matching_Score ≥ 20 would be suitable for choos-
ing fragments for drug design or virtual screening because 
correlation between the Subsite_Similarity and the fragment 
similarity was moderate.

Validity of mapped fragments on CDK2

As seen in Fig. 8 and Table 2, four of the 11 mapped frag-
ments were used as part of known CDK2 ligands (fragments 

of Nos. 1, 4, 5, and 6). These three ligands came from the 
CDK2-ligand complexes (PDB IDs: 2vtq, 2vtt, and 2vu3) 
[44] (Fig. 8a). Furthermore, the ligand of 3-phosphoinos-
titide-dependent protein kinase-1 (PDB ID: 2xch) can also 
inhibit CDK2 [45] (Fig. 8b).

12

3

6

4

5

(a)

(d)

(b)

(c)

Fig. 11   3D-pharmacophore model from mapped fragments on 
apo HSP90α. a Mapped fragments, b 3D-pharmacophore model, 
c aligned pose of the known ligand of 2yi7, and d aligned pose of 
the virtual hit Z990826384. The colors of the pharmacophore points 
indicate the following properties: DONOR_ATOM (violet), ACCEP-
TOR_ATOM (green), HYDROPHOBIC (cyan), AROMATIC (yel-
low), POSITIVE_N (red), and NEGATIVE_CENTER (blue)
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As seen in Fig. S3, the fragments of Nos. 1 and 6 were in 
good agreement with the known ligand, but the position of 
the fragment of No. 5 was different due to induced fit. Since 
the X-ray structure of the complex of 2xch’s ligand with 
CDK2 is not available, the agreement with the fragment of 
No. 4 is unknown.

Ability for fragment‑growing on TGT​

The benzene fragment in the vicinity of the starting point of 
the lead compound was located in the hydrophobic pocket 
of Val45, Leu68, Leu100 and Val282, which was targeted 
by Meyer et al. (Fig. 9a) [42]. The benzene fragments of the 
docked compounds were retained in the hydrophobic pocket 
(Fig. 9b). The docking poses of the three candidates resem-
bled the X-ray poses of similar known ligands (Fig. 9c).

Grädler group identified interaction sites of hydrogen-
bond donors around Asp102 and Asp280 using the de novo 
design program, LUDI [29, 46]. Our Fsubsite mapped the 
ethylamine fragment with an amino group in the vicinity of 
Asp102 and Asp280 (Fig. 13a). Indeed, the docking pose 
of a generated ligand by RACHEL and Glide was in good 
agreement with the X-ray structure of a known similar ligand 
with an amino group (Fig. 13b, c) [32, 41].

Interestingly, the naphthalene fragment was mapped 
to a position somewhat distant from the lead compound 
(Fig. 14a). This naphthalene fragment was hydrophobic 
interacting with Val282. In the X-ray pose of a known 
ligand with a naphthalene group, the naphthalene group of 
the ligand interacts with Val282, the same as the mapped 
fragment does (Fig. 14b, c) [47].

3D‑pharmacophore model for HSP90α

We generated a 3D-pharmacophore model using all the 
mapped fragments on the apo surface of HSP90α. Virtual 
screening successfully identified the two known ligands of 
HSP90α (i.e. PDB IDs of 2yi0 and 2yi7; see Figs. 11c, 12a) 
[48]. Moreover, these aligned poses on the 3D-pharmaco-
phore were consistent with the binding poses of the X-ray 
crystal structures (Fig. 15). The root-mean-square distances 
between the aligned and X-ray poses were 1.13 Å for 2yi0 
and 1.12 Å for 2yi7.

As shown in Figs. 11d and 12b, four compounds were 
identified by virtual screening that satisfied 8 points of 
the 3D-pharmacophore as described above for the known 
ligands. Instead of carrying out an assay, a similarity 
search was performed using SciFinder (American Chemi-
cal Society, 2017). A similar compound HDI4-04 (CAS 
ID: 1031565-15-7) was identified displaying 80% structural 
similarity that exhibited inhibitory activity against HSP90α 
with an IC50 of 0.35 μM [49]. HDI4-04 satisfied 6 points of 
our 3D-pharmacophore (Fig. 16). Therefore, we concluded 
that the mapped fragments were successfully converted to 
the appropriate 3D-pharmacore model for the given target 
protein.

Induced fit

The overall differences between the apo and holo back-
bones were rmsd = 0.50, 1.49 Å for CDK2 and HSP90α, 
respectively. Comparison of the ligands suggests the mapped 
fragments on apo proteins are adequate (Supporting Infor-
mation). Thus, in some cases Fsubsite is able to identify 

Fig. 12   Chemical structures of 
known ligands and virtual hits 
for HSP90α. a Known ligands, 
and b virtual hits

Z990826384 Z990826412 Z990826430 Z990872184

(b)

(a)

Ligand of 2yi0
Kd = 7.5 nM[48]

Ligand of 2yi7
Kd = 4.8 nM[48]
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credible fragments on the apo surface of a given target pro-
tein. However, if the target protein undergoes a significant 
induced fit, additional protein structures obtained from 
X-ray crystal studies or by molecular dynamics need to be 
analyzed.

Conclusion

We have developed a new knowledge-based fragment-
mapping method that utilizes a subsite-similarity search. 
Our method was validated using the apo surface of CDK2 
and the analysis identified appropriate fragments that were 
mapped onto the target protein. For fragment-growing, we 
mapped fragments around the lead compound in the com-
plex of TGT. The mapped fragment was linked to the lead 
compound and the generated products were very similar to 
known ligands of TGT. We then tested the ability of the 
mapped fragments to generate a 3D-pharmacophore model 
on the apo HSP90α. Using the obtained 3D-pharmacophore 
model, virtual screening of a commercially available com-
pound database was performed, which generated hits that 
closely resembled a known ligand of HSP90α. Thus, the in 
silico fragment-mapping method developed here will be a 
useful tool for computational FBDD and SBDD.

Fsubsite is freely available for academic use. For more 
information, please contact us by e-mail.

Asp102

Asp280

Asp102

Asp280

Asp102

Asp280

Mapped fragment

Ligand of 1q65
Ki = 3.5 µM[32,41]

Generated ligand

(a)

(b)

(c)

Fig. 13   Comparison of the generated ligand with the known ligand of 
TGT targeting Asp102 and Asp280: a the ethylamine fragment in the 
vicinity of the lead compound (PDB ID: 1s38), b docking pose of a 
generated ligand, and c X-ray pose of a similar known ligand of TGT 
(PDB ID: 1q65). The colors indicate the following: lead compound 
(brown), target fragment (green), candidate (white), and known 
ligand (purple)

(a)

(b)

Mapped fragment

Ligand of 2qzr
Ki = 55 nM[47]

Val282

Val282

Fig. 14   Comparison of the mapped fragment with the known ligand 
of TGT targeting Val282: a the naphthalene fragment in the vicinity 
of the lead compound (PDB ID: 1s38), and b X-ray pose of a known 
ligand of TGT (PDB ID: 2zqr) with a naphthalene group. The colors 
indicate the following: lead compound (brown), target fragment 
(green), and known ligand (purple)
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