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Abstract
We have earlier reported the iMOLSDOCK technique to perform ‘induced-fit’ peptide–protein docking. iMOLSDOCK uses 
the mutually orthogonal Latin squares (MOLSs) technique to sample the conformation and the docking pose of the small 
molecule ligand and also the flexible residues of the receptor protein, and arrive at the optimum pose and conformation. 
In this paper we report the extension carried out in iMOLSDOCK to dock nonpeptide small molecule ligands to receptor 
proteins. We have benchmarked and validated iMOLSDOCK with a dataset of 34 protein–ligand complexes as well as with 
Astex Diverse dataset, with nonpeptide small molecules as ligands. We have also compared iMOLSDOCK with other flexible 
receptor docking tools GOLD v5.2.1 and AutoDock Vina. The results obtained show that the method works better than these 
two algorithms, though it consumes more computer time. The source code and binary of MOLS 2.0 (under a GNU Lesser 
General Public License) are freely available for download at https ://sourc eforg e.net/proje cts/mols2 -0/files /.

Keywords Molecular docking · Protein–ligand docking · Induced-fit docking · Side-chain flexibility · iMOLSDOCK · 
Mutually orthogonal Latin squares

Introduction

Molecular docking programs are used to find the best bind-
ing pose of a ligand in the protein binding site. Apart from 
protein–ligand interactions, they are also used to study 
protein–protein and protein–DNA interactions. In the past 
30 years, a large number of docking programs have been 
developed using various techniques [1]. Docking problems 
are computationally addressed by combining an accurate 
representation of the intermolecular interactions, an effi-
cient algorithm and a scoring function. The algorithm in the 
docking program searches for potential binding modes and 
the scoring function discriminates and ranks the predicted 
structures [2].

Initial docking methods treated the ligand and receptor 
both as fixed structures. The development progressed by 
including variations in the internal degrees of freedom of the 
ligand [3]. However, receptor proteins do not remain rigid, 
but change conformation to accommodate the ligand [4–6]. 
Active site plasticity of the receptor proteins was also estab-
lished by comparing the apo and holo forms of proteins. 
Though main-chain conformations are largely preserved, 
in most of the proteins significant differences in side-chain 
conformations occur upon ligand binding [7, 8]. Therefore, 
docking algorithms which allowed receptor flexibility have 
been developed [9, 10]. GOLD [11], GLIDE [12], AutoDock 
Vina [13] and RosettaLigand [2] are some of the docking 
programs with receptor flexibility. GOLD allows side-chain 
receptor flexibility and ensemble docking [11]. In GLIDE, 
a protein structure prediction technique called Prime is used 
for treating protein flexibility [12]. AutoDock Vina allows 
side-chain flexibility for the selected protein residues [13]. In 
RosettaLigand only side-chain conformational changes were 
initially allowed [2]. Recently, backbone flexibility has also 
been incorporated [14].

To address the problem of molecular docking, in our 
laboratory we have developed a docking program called 
MOLSDOCK [15, 16], which uses the mutually orthogonal 
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Latin squares (MOLSs) technique [17]. The MOLS sam-
pling algorithm identifies a small sample of the vast multi-
dimensional search space, which is nevertheless completely 
representative of this space. The energy values are calculated 
at each of the sampled points. A variant of the mean field 
method [18] analyses these energy values simultaneously 
to obtain the optimal conformation [19]. MOLSDOCK was 
tested for docking peptides [15], small molecules [16] and 
nucleotides [20]. In all the above cases, only the ligand was 
treated as flexible and the receptor was kept rigid. Later, we 
upgraded MOLSDOCK by incorporating receptor protein 
side-chain flexibility [21]. The upgraded version of MOLS-
DOCK, called iMOLSDOCK, was benchmarked and tested 
for docking peptides. However nonpeptide small organic 
molecules are most commonly used as drugs. Therefore we 
have further extended the ‘induced-fit’ docking in iMOLS-
DOCK to dock nonpeptide small molecule ligands, and in 
this paper we report this extension. We have benchmarked 
iMOLSDOCK with this extension using 34 protein–ligand 
complexes selected from the Protein Data Bank (PDB) as 
well as with Astex Diverse dataset [22]. We also have com-
pared the performance of iMOLSDOCK with two popular 
flexible receptor docking tools: AutoDock Vina [13] and 
GOLD v5.2.1 [11]. We present these results here.

Materials and methods

iMOLSDOCK is a ‘flexible receptor/flexible peptide’ dock-
ing method developed using the MOLS method [17]. The 
MOLS method has been described in detail elsewhere [17, 
23, 24]. For completeness, we give a brief description here. 
We will first explain the method by applying it to the pre-
diction of the minimum energy structure of a peptide. The 
MOLS method systematically searches the conformational 
energy space of the peptide to arrive at the optimum peptide 
structure. The conformational space of a peptide may be 
described as the set of all possible combinations of all values 
of all its variable torsion angles. Consider a peptide having 
‘m’ torsion angles, with each torsion angle taking up ‘n’ 
different values. Then, there are (n)mconformations for the 
peptide. The potential energy for any of these conformations 
of the peptide may be calculated using an energy function 
such as AMBER force field [25]. The next task is to locate 
the minimum energy conformation. Any attempt to search 
through all the possible (n)mconformations of the peptide 
will lead to combinatorial explosion. In MOLS method, the 
method of MOLSs [26] is used to systematically choose a 
set of (n)2 points (or conformations) from the (n)m overall 
conformational space of the peptide. After choosing the (n)2 
conformations, the potential energy for each of these chosen 
conformations is calculated. The (n)2 energy values are then 
analyzed using a variant of the mean field technique [18, 19] 

to arrive at the lowest energy conformation. The(n)2points 
could be selected in large number of ways [27], and each 
choice leads to either the same, or to a different low energy 
structure. We have shown repeatedly [15, 21, 28] that for 
small peptides of length up to about 10 residues, choosing 
the (n)2 points in 1500 different ways (which would yield 
1500 low energy conformations) is sufficient to identify all 
the unique, mutually dissimilar low energy structures.

The MOLS method was extended to address the dock-
ing problem [15, 16, 20]. The docking tool, dubbed MOLS-
DOCK, performed ‘flexible ligand - rigid receptor’ dock-
ing. In MOLSDOCK, the variables specifying the position 
and orientation of the ligand were added to the set of vari-
able torsion angles of the ligand to define the search space. 
Accordingly, the scoring function for MOLSDOCK was also 
modified to include the interaction energy between the pro-
tein and the ligand, along with the intramolecular energy 
of the ligand. MOLSDOCK was developed as a program 
suitable for studying the docking of peptides, nonpeptide 
small organic molecules and nucleotides to protein receptors 
[15, 16, 20]. MOLSDOCK was upgraded to iMOLSDOCK 
[21] by including receptor flexibility. Two major changes 
were made in iMOLSDOCK. (a) The search space was fur-
ther increased to include the side-chain torsion angles of 
the receptor protein. (b) The intra-protein energy, to assess 
the receptor protein conformation, was added along to the 
intra-ligand energy and protein–ligand interaction energy.

Thus, we specify the conformation of the small molecule 
ligand by ‘s’ torsion angles ( θ

r
 , r = 1, s). Six additional 

parameters describe the ligand’s docking pose, i.e., three 
for the position and three for the orientation of the ligand in 
the receptor binding site. If there are ‘p’ torsion angles that 
describe the flexible residues in the receptor binding site, 
then we have a total of ‘s + 6 + p’ dimensions in the search 
space ( θ

r
 , r = 1, s + 6 + p). The volume of the search space 

is (n)s+6+p , if each dimension is sampled at ‘n’ intervals. 
Out of the (n)s+6+p points in the search space, the MOLS 
method calculates the values of the scoring function only at 
(n)

2 points, and analyzes them to simultaneously locate the 
optimum conformation of the ligand, its pose, and also the 
conformation of the side-chains of the receptor flexible resi-
dues. Since the search space is defined on a discrete grid of 
‘s + 6 + p’ points, the actual optimum may be off-grid and 
lie close to but not actually on the grid point. Therefore to 
identify the nearest off-grid optimum, we perform a gradient 
minimization [29] as the final step.

The ligand (any organic chemical compound) is speci-
fied in MDL Molfile (.mol) format. The rotatable bonds 
in the ligand are identified using findrotatable.pl which 
is available at http://www.ccl.net/cca/softw are/PERL/
Find_Rotat able_Bonds /. All the variable torsion angles 
of the ligand are sampled from 0° to 360° at intervals of 
10°. As described by Arun Prasad and Gautham [15], the 

http://www.ccl.net/cca/software/PERL/Find_Rotatable_Bonds/
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orientation of the ligand in the binding site is specified 
by three angles, two of which specify the position of a 
rotation axis for the ligand. The third angle is the angle of 
rotation about this axis. The ligand translates inside a 5 Å 
cubic box centered at the midpoint of the receptor bind-
ing site. To test successful docking in iMOLSDOCK, it 

is necessary to dock the ligands to a pre-defined binding 
site before blind docking [30]. Therefore, for all the test 
cases (Table 1), we defined the binding site of the ligand. 
The binding site information was extracted from the holo 
protein–ligand crystal structure. (If the binding site in the 
receptor protein is not known, then binding site may be 

Table 1  The 34 protein–ligand complex structure of the benchmarking dataset

a Root mean square deviation (RMSD) of the ligand docking pose (ligand conformation and ligand orientation) w.r.t. the native ligand docking 
pose
b RMSD of the ligand docking pose with the lowest RMSD with respect to the native ligand docking pose from iMOLSDOCK
c GAFF: results obtained with general AMBER force field as the intraligand energy function
d MMFF: results obtained with MMFF94 force field as the intraligand energy function

PDB ID of 
holo struc-
ture

Resolution of the 
crystal structure 
(Å)

PDB ID of 
apo struc-
ture

Resolution of the 
crystal structure 
(Å)

No. of ligand 
torsion angles

Name of protein RMSDa of best 
 sampledb structure 
(Å)

GAFFc MMFFd

1AI7 2.50 1PNK 1.90 1 Penicillin amidohydrolase 0.25 0.27
1TNH 1.80 5PTP 1.34 2 Serine protease inhibitors 1.29 1.67
1YDR 2.20 1J3H 2.90 2 C-AMP-dependent protein kinase 3.81 3.96
1AI5 2.36 1PNK 1.90 3 Penicillin amidohydrolase 2.50 2.47
1GHB 2.00 4CHA 1.68 3 Gamma-chymotrypsin 1.31 1.75
1OKL 2.10 3GZ0 1.26 3 Carbonic anhydrase II 1.06 1.06
1TNJ 1.80 1S0Q 1.02 3 Trypsin 2.23 2.26
1TPP 1.40 1S0Q 1.02 3 Beta-trypsin 2.95 2.85
3MTH 1.90 4INS 1.50 3 Methylparaben insulin 3.11 2.33
1AJN 2.36 1PNK 1.90 3 Penicillin amidohydrolase 2.90 2.98
1AJQ 2.05 1PNK 1.90 3 Penicillin amidohydrolase 0.72 1.09
1NGP 2.40 1NGQ 2.30 4 NIG9 1.71 1.86
1TNK 1.80 1S0Q 1.02 4 Trypsin 1.31 1.52
4EST 1.78 5AVD 0.86 4 Elastase 2.04 2.25
1AI6 2.55 1PNK 1.90 4 Penicillin amidohydrolase 2.27 2.31
1AJP 2.31 1PNK 1.90 4 Penicillin amidohydrolase 2.59 2.45
1EBG 2.10 3ENL 2.25 5 Enolase 1.97 2.08
1TNI 1.90 1S0Q 1.02 5 Trypsin 2.24 2.17
1XIE 1.70 3KBJ 2.00 5 d-Xylose isomerase 2.65 2.63
2CTC 1.40 1YME 1.53 5 Carboxypeptidase A 1.72 1.87
1AI4 2.35 1PNK 1.90 5 Penicillin amidohydrolase 2.99 3.03
1PDZ 2.20 3ENL 2.25 6 Enolase 2.62 2.60
1TPH 1.80 8TIM 2.50 6 Triosephosphate isomerase 2.71 2.79
1XID 1.70 3KBJ 2.00 6 d-Xylose isomerase 2.95 2.85
2YPI 2.50 7TIM 1.90 6 Triose phosphate isomerase 2.67 2.56
1BLH 2.30 3BLM 2.00 7 Beta-lactamase 2.62 2.70
1CBX 2.00 1YME 1.53 7 Carboxypeptidase A 2.10 2.03
2PK4 2.25 1PK4 1.90 7 Human plasminogen kringle 4 0.49 1.18
2CMD 1.87 3HHP 1.45 9 Malate dehydrogenase 2.71 2.43
2XIS 1.71 3KBJ 2.00 9 Xylose isomerase 2.68 2.80
2PRH 2.40 2PRM 3.00 12 Dihydroorotate dehydrogenase 4.84 4.71
1AEC 1.86 2ACT 1.70 14 Actinidin 4.98 5.09
1ICN 1.74 1IFB 1.96 16 Intestinal fatty acid binding protein 4.84 5.26
1AAQ 2.50 1G6L 1.90 19 HIV-1 protease 5.96 5.95
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automatically found in iMOLSDOCK using the Fpocket 
2.0 algorithm [31, 32].)

The three-dimensional structure of the receptor protein 
is specified in PDB format. In iMOLSDOCK, side-chain 
receptor flexibility is allowed [21]. The flexible residues may 
be specified explicitly. In case, the flexible residues are not 
known, then residues that are within 4.0 Å from each atom 
of the ligand are automatically selected. In iMOLSDOCK, 
a maximum of 50 protein residues may be allowed to be 
flexible. For the test cases (Table 1), we allowed the side-
chain torsion angles of the flexible residues to fluctuate in a 
range of 40° (i.e., − 20° to + 20° from their position in the 
crystal structure).

The scoring function in iMOLSDOCK is the weighted 
sum of intra-ligand energy, protein–ligand interaction energy 
and intra-protein energy. The intra-protein energy is calcu-
lated using the AMBER94 force field [25]. The intermo-
lecular interaction energy is calculated using the PLP scor-
ing function [33]. MMFF94 force field works efficiently for 
small molecule ligands [34]. General AMBER force field 
(GAFF) is a general force field where all the parameters are 
available and covers almost all the organic chemical spaces 
[35]. In iMOLSDOCK, the intra-ligand energy may be cal-
culated either using MMFF94 force field [36, 37] or GAFF 
[35]. We have tried both MMFF94 and GAFF as intra-ligand 
energy separately for our test cases. As stated earlier [21], 
we use the PLP force field [33] for the protein–ligand inter-
action energy, and AMBER force field [25] for the intra-
protein energy. The total energy is a weighted sum of these 
three terms. To fix the weights for each term, calculations 
were performed on a small subset of the structures. The 
optimum weights were chosen to yield maximum positive 
correlation between the energy and the root mean square 
deviation (RMSD) of the resulting docked structure with 
respect to the ‘native’ crystal structure. The AMBER force 
field [25], MMFF94 [36, 37] and GAFF [35] are expressed 
in units of kcal/mol, whereas the PLP force field is reported 
in dimensionless units [33]. Therefore the total potential 
energy is also reported in dimensionless units.

iMOLSDOCK is a command-line-only FORTRAN-based 
induced-fit protein–ligand docking tool. To make iMOLS-
DOCK easily accessible to the scientific community, we 
have developed a Java-based Graphical User Interface (GUI) 
and added it to MOLS 2.0 [32]. MOLS 2.0 is a software 
package developed in our laboratory. The software package 
is available free at https ://sourc eforg e.net/proje cts/mols2 -0/
files /.

We have used a set of 34 protein–ligand complexes for 
which the crystal structures of both apo and holo forms were 
available, taken from the PDB, to test the performance of 
iMOLSDOCK (Table 1). The binding sites in these proteins 
are not similar to each other, and the proteins belong to dif-
ferent families of the SCOP database [38]. The number of 

variable torsion angles in the ligands varies from 1 to 19. 
For all the test cases, the ligands were docked into the apo 
form of the receptor protein structure. Details of the apo and 
holo form of the receptor protein for all test cases are given 
in Table 1. We carried out induced-fit docking for all the 
cases, i.e., while docking in iMOLSDOCK, the conforma-
tion of the ligand, as well as conformation of the flexible 
residues lining the binding site in the receptor protein alter 
simultaneously.

Results and discussion

A total of 1500 structures were generated for all the 34 cases 
of the benchmarking dataset. Throughout the analysis, the 
crystal structure was considered as the native structure. In 
each case, out of the total 1500 structures, two structures 
were selected for our analysis. The first structure, called the 
‘best sampled’ structure, is the prediction that has the lowest 
RMSD with respect to the native structure. The best sampled 
structure is found by superimposing all the 1500 predicted 
protein–ligand complex structures on the respective native 
protein–ligand complex structure by least squares superpo-
sition of all the atoms, without altering either the structure 
of the ligand, or its position and orientation relative to the 
protein. The RMSD was then calculated on all the heavy 
(non-hydrogen) atoms of the ligand. This particular method 
measures the differences in the docking pose of the ligand 
with respect to the protein along with the difference in the 
ligand structure. The second structure we used in our analy-
sis is the prediction with the lowest energy of the total 1500 
predictions. This is the energetically top-ranked structure.

Results obtained with GAFF and MMFF94 as intra-ligand 
energy function are summarized in Supplementary Table 1. 
The RMSD and energy of the top-ranked structure and the 
best sampled structure are given in this table. In the results 
with GAFF as the intra-ligand energy function (hereafter, 
GAFF-results), the RMSD of the best sampled structure is 
less than or equal to 2.50 Å in 16 of the 34 cases. In the 
results with MMFF94 force field as the intra-ligand energy 
function (hereafter, MMFF-results), the RMSD of the best 
sampled structures is less than or equal to 2.50 Å in 19 of the 
34 cases. A brief summary of the overall results is given in 
Table 2. The best sampled structure of GAFF-results for all 
the cases is shown in Supplementary Fig. 1 and the best sam-
pled structure of MMFF-results for all the cases is shown in 
Supplementary Fig. 2.

Ranking efficiency

An ideal scoring function in a docking tool is expected 
to top-score the best sampled (near-native) structure. A 
solution for which the best sampled structure is the same 

https://sourceforge.net/projects/mols2-0/files/
https://sourceforge.net/projects/mols2-0/files/
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as the top-ranked structure is defined as an exact solution. 
In GAFF-results, exact solution was found for case 2YPI. 
In both GAFF-results and MMFF-results, for 7 of the 34 
cases the best sampled structure is among the top 10% 
energy-ranked solutions. The top-ranked solution of 1NGP 
and 2PK4 have RMSD ≤ 2.00 Å from the native structure 
in GAFF-results. In MMFF-results, the top-ranked solu-
tions of 1TNK, 2PK4 and 1AJQ have RMSD ≤ 2.00 Å 
from the native structure. It has been observed that in 8 of 
the 34 cases, in both GAFF-results and MMFF-results, at 
least one structure with RMSD ≤ 2.00 Å is among the top 
10% ranked solutions.

Hydrogen bond interactions

The hydrogen bond interactions between the protein and 
the ligand were found using HBPLUS [39]. A comparison 
of these interactions in the native complex and in the top-
ranked complex determined by iMOLSDOCK is shown 
in Fig. 1. Hydrogen bond prediction in GAFF-results is 
better than MMFF-results for 25 of the 34 cases. In 10 of 
the 34 cases, the top-rank structure predicted using GAFF 
has more hydrogen bond interactions than observed in 
the native structure. In six cases using MMFF94 resulted 
in more hydrogen bonds than the native structure. For the 
cases 4EST and 1BLH, no hydrogen bond interactions were 
predicted by MMFF94 in the top-ranked structure, while 
GAFF predicted two hydrogen bonds in the top-ranked 
structure of 4EST and four hydrogen bonds in the top-ranked 
structure of 1BLH respectively. In many cases the hydro-
gen bond interactions seen in the native structure are also 
predicted by iMOLSDOCK in the top-ranked solutions. In 
cases 1NGP and 2PRH, all the hydrogen bond interactions 
predicted by MMFF94 as the top-ranked solution are also 
seen in the native crystal structure (Fig. 2). The RMSD of 
the top-ranked solution of 1NGP from the native structure 
is 2.08 Å. The RMSD of the top-ranked structure of 2PRH 
from the native structure is 5.37 Å.

Alternate binding modes

Alternate solutions that have a lower energy value than 
the native structure are often detected by algorithms [40]. 

Table 2  Comparison between GAFF and MMFF94 results in 
iMOLSDOCK for the 34 test cases

a GAFF: results obtained with general AMBER force field as the 
intraligand energy function
b MMFF: results obtained with MMFF94 force field as the intraligand 
energy function
c Solutions for which the best sampled is the top-ranked structure

Description GAFFa MMFFb

RMSD of best sampled structures ≤ 1.00 3 1
RMSD of best sampled structures ≤ 2.00 10 9
RMSD of best sampled structures ≤ 2.50 16 19
RMSD of top-ranked structures ≤ 2.50 4 5
Exact  solutionsc 1 Nil
Best sampled structure within top 10% energy 
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Fig. 1  Comparison of hydrogen bond interactions in the top-ranked iMOLSDOCK structure (with GAFF and MMFF94 force field as intra-
ligand energy function) with the hydrogen bond interactions found in the native structure
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iMOLSDOCK does not converge to just a single solution 
but generates hundreds of low-energy possibilities. In cer-
tain cases, the native structure, the best sampled structure 
and the lowest energy structure (which is the top-ranked 
structure) are iso-energetic, i.e., they are energetically 
indistinguishable [41]. In GAFF-results, for 6 of the 34 
test cases, the lowest energy structure shows an equally 
favourable alternate binding mode (Fig. 3a). In MMFF-
results, for 9 of the 34 test cases, the lowest energy struc-
ture shows an equally favourable alternate binding mode 
(Fig. 3b). These alternate binding modes are character-
ized by energy values lower than native energy, but with 
larger values of RMSD as compared to the native complex. 
Alternate binding modes are important in the study of the 
possible toxicity of putative drugs [42].

Comparison studies between Vina, GOLD 
and iMOLSDOCK

We chose AutoDock Vina [13]—a free and open-source 
docking tool—and GOLD [11]—a commercial and widely 
used docking tool—for the comparison. The key aspects 
that are taken into consideration during the comparison are 
sampling efficiency, ranking efficiency, prediction of non-
bonded interactions and computation time of iMOLSDOCK, 
Vina and GOLD. The iMOLSDOCK results obtained with 
GAFF [35] as the intra-ligand energy are considered for the 
comparison studies.

We carried out small molecule docking in Vina for 
all the 34 protein–ligand complexes (Table 1). The input 
structure of ligand and protein were prepared using 

Fig. 2  A Case: 1NGP—a 
hydrogen bond interactions 
in the native protein–ligand 
complex. b Conserved hydro-
gen bonds in the top-ranked 
structure of iMOLSDOCK 
with MMFF94 force field 
as the intra-ligand energy 
function. The RMSD of the 
top-ranked solution w.r.t. the 
native structure is 2.08 Å. B 
Case: 2PRH—a hydrogen 
bond interactions in the native 
protein–ligand complex. b 
Conserved hydrogen bonds 
in the top-ranked structure of 
iMOLSDOCK with MMFF94 
force field as the intra-ligand 
energy function. The RMSD of 
the top-ranked structure w.r.t. 
the native structure is 5.37 Å
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AutoDock Tools (ADT; [43]). The input structure of the 
ligand was taken from the bound complex crystal avail-
able in the PDB. We used ADT to randomize the starting 
conformation, position and orientation of the ligand. The 
apo protein structure taken from the PDB (see Table 1) 
was used as the receptor protein structure for all the cases. 
The binding site was predefined for all the test cases. On 
an average, 10 residues lining the binding site in the recep-
tor protein were selected to be flexible. We set the search 
space to 22.5 Å, the maximum dimension suggested by the 
authors [13], in all the three axes. The other parameters 
(exhaustiveness, number of modes, etc.) were fixed to the 
default values.

The crystal structure of the ligand was taken from the 
protein–ligand complex and was used as the input ligand 
structure. We defined the binding site for all the cases. To 
allow receptor flexibility, we allowed 10 flexible residues 
in the binding site to be flexible. GOLD allows partial pro-
tein flexibility in the neighbourhood of the protein active 
site. We chose the ‘Crystal’ option under ‘Rotamer Library 
Operations’ for protein side-chain flexibility. GoldScore 
was selected as the fitness function for all the cases. Gold-
Score is formulated in such a way that, the larger the score, 
the better the docking result is likely to be. GoldScore is 
dimensionless. Throughout the small molecule docking, 
the parameters of the fitness function were fixed to their 

Fig. 3  a Alternate binding 
modes predicted by iMOLS-
DOCK top-ranked structures 
with GAFF as the intra-ligand 
energy function. The top-ranked 
structure of iMOLSDOCK is 
shown in blue and the native 
structure is shown in green. LE 
is the lowest energy struc-
ture. BS is the best sampled 
structure. Refer text for more 
information. b Alternate bind-
ing modes predicted by iMOLS-
DOCK top-ranked structures 
with MMFF94 force field as 
the intra-ligand energy func-
tion. The top-ranked structure 
of iMOLSDOCK is shown in 
blue and the native structure is 
shown in green. LE is the lowest 
energy structure. BS is the best 
sampled structure. Refer text for 
more information
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default values. A total of 150 GA runs were performed 
for each test case. All the other operations were set to 
‘automatic’.

Sampling efficiency

Supplementary Table 2 shows a comparison of the results 
obtained from the three programs. Out of all the docked 
structures for each test case, we chose the best sampled 
structure and the top-ranked structure for our analyses. 
The best sampled structure is the structure with the low-
est RMSD with respect to the native complex. The lowest 
energy structure is the top-ranked structure.

With Vina, the best sampled solutions of all the cases 
except 1TNH are 2.00 Å or more away from the crystal 
structure. With GOLD, in 11 of the 34 cases, the best sam-
pled structures are within 2.00 Å from the native structure. 
With iMOLSDOCK, in 10 of the 34 cases, the best sampled 
structures are within 2.00 Å from the native structure.

With Vina, the top-ranked structure of 1TNH is within 
2.00 Å from the crystal structure. With GOLD the top-
ranked solution in four cases (1TPP, 1NGP, 1AEC, and 
1AJQ) are within the RMSD of 2.00 Å from the native 
structure. With iMOLSDOCK the top-ranked solution in two 
cases (1NGP and 2PK4) are within the RMSD of 2.00 Å 
from the native structure.

Thus, both in terms of the best sampled solutions, as well 
as the top-ranked structures, iMOLSDOCK performs almost 
as well as, if not better than, the other two algorithms.

Scoring efficiency

With Vina, we generated the default number of binding 
modes, 9 in each of the 34 cases. Vina is able to identify 
exact solutions—the lowest RMSD structure is also the top-
ranked structure—in four cases (2PRH, 2YPI, 2XIS, and 
1AAQ). GOLD predicted exact solutions in seven cases 
(1NGP, 4EST, 1PDZ, 1BLH, 1AEC, 1AI4, and 1AJQ). Of 
these, three cases are within 2.00 Å from the native struc-
ture. iMOLSDOCK identified exact solution in one case 
(2YPI).

With Vina, except for the exact solutions, none of the 
cases have the best sampled structure among the top 10% 
energy-ranked solutions. With GOLD, in 27 out of the 34 
cases the best sampled structure is among the top 10% of 
the ranked structures. With iMOLSDOCK, the best sampled 
structures in 8 of the 34 cases are among the top 10% of the 
energy-ranked solutions.

Clearly GOLD performs the best in this measure, but 
iMOLSDOCK results are comparable to those obtained 
with Vina.

Hydrogen bond prediction

The number of hydrogen bond interactions in the top-ranked 
structures of Vina and GOLD and iMOLSDOCK are shown 
in Fig. 4. iMOLSDOCK predicted more hydrogen bonds in 
the top-ranked structures than Vina or GOLD in 15 and 11, 
respectively, of the 34 cases. In five cases (1TNH, 1NGP, 
1TPH, 1CBX, and 1AI7), the number of hydrogen bonds in 
the top-ranked structure are the same in both iMOLSDOCK 
and Vina. In seven cases (1TPP, 3MTH, 4EST, 1EBG, 
2PRH, 2YPI, and 1BLH), the number of hydrogen bonds in 
the top-ranked structure are equal in both iMOLSDOCK and 
GOLD. Overall, GOLD predicts a larger number of hydro-
gen bonds for each structure than iMOLSDOCK.

Computation time comparison 
between iMOLSDOCK, Vina and GOLD

The computation time of Vina, GOLD, and iMOLSDOCK 
with respect to the number of torsion angles (ligand torsion 
angles + protein torsion angles) are shown in Fig. 5 (see also 
Supplementary Table 3). The average computation time for 
one run in Vina is 3.1 m. In GOLD it is 1.8 m. Both these 
values are much smaller than for iMOLSDOCK (1.3 h per 
structure). iMOLSDOCK however handles more variable 
parameters (torsion angles) than Vina or GOLD. In our test 
cases, we allowed 20 flexible residues in iMOLSDOCK, 10 
flexible residues in Vina and in GOLD.

iMOLSDOCK performance against the Astex Diverse 
set of protein–ligand complex

Of the 85 cases of the Astex Diverse set [43], we selected 
55 protein–ligand complexes that had no ligand–metal ion 
interaction. We tested the performance of iMOLSDOCK 
for 55 cases of the Astex Diverse set taken from the Cam-
bridge Crystallographic Data Centre and then compared the 
performance of iMOLSDOCK with other docking tools: 
GOLD [11] and AutoDock Vina [13]. The overall compari-
son results are shown in Supplementary Table 4. For all the 
55 cases, 1500 models were generated as discussed in the 
Methods section. In 27 of the 55 cases the best sampled 
structure has an RMSD less than 2.00 Å. In 10 of the 55 
cases, the best sampled structure has an RMSD less than 
1.00 Å. For one case (1s3v), iMOLSDOCK predicted the 
best sampled structure as the lowest energy structure, i.e., 
the top-ranked structure. However, for 30 of the 55 cases the 
best sampled solution is within the top 10% when ranked in 
terms of energy. The top-ranked structure is within 2.00 Å 
from the native structure in 13 of the 55 cases. Of the 55 
cases, GOLD predicted exact solutions, i.e., the best sampled 
structure is the top-ranked structure, for 32 cases and Vina 
predicted exact solutions for 38 cases respectively. Of the 
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55 cases, the best sampled structure predicted by GOLD 
and Vina is within 2.00 Å for 40 and 43 cases, respectively.

Cross‑docking

Cross-docking experiment is carried out in situations where 
a crystal structure of the protein with a ligand bound in the 
binding site is known. During drug discovery, the binding of 

different ligands to the same protein needs to be evaluated 
accounting for potential changes in the protein side-chain or 
backbone conformation [2]. Firstly, for our cross-docking 
experiment, we randomly selected the crystal structure of Peni-
cillin acylase enzyme bound with 10 different ligands from the 
Astex non-native dataset [44]. The ligand was cross-docked to 
the non-native conformer of the same protein using iMOLS-
DOCK. The results are shown in Supplementary Table 5. For 
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Fig. 4  a Number of hydrogen bond interactions (HB) found in the 
top-ranked structures of Vina and iMOLSDOCK. HB in the top-
ranked iMOLSDOCK structure is shown in blue color. HB in the 
top-ranked structure of Vina is shown in gray colour. b Number of 

hydrogen bond interactions (HB) found in the top-ranked structures 
of GOLD and iMOLSDOCK. HB in the top-ranked structure of 
iMOLSDOCK is shown in blue color. HB in the top-ranked structure 
of GOLD is shown in gray colour
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all the 10 cases, the best sampled structure of the ligand is 
within 2.01 Å from the native structure. Secondly, for our 
cross-docking experiment, we randomly selected 10 cases from 
the SEQ17 dataset [45] which contains apo and holo pairs for a 
diverse set of receptors [45]. This cross-docking experiment is 
carried to check whether iMOLSDOCK is able to perform the 
protein side-chain conformational change that is required for 
ligand binding as rigid docking is likely to fail for these cases. 
The results obtained were compared with the results obtained 
from GOLD docking tool. RMSD of the best sampled solution 
of iMOLSDOCK and GOLD are shown in Supplementary 
Table 6. Except for one case (1it8), iMOLSDOCK was not 
able to bind the ligand at least within 2.00 Å from the native 
structure. In case 1it8, the ligand could approach the active 

site, as iMOLSDOCK modified the side-chain torsion angle 
of the active site residue Phe229 from 99.4° (apo form which 
is the starting structure) to 60.0° (native = 68.8°) thereby ena-
bling the ligand to bind with RMSD = 1.43 Å from the native 
ligand. However, for case 1k4h, iMOLSDOCK was not able 
to alter the conformation of Tyr106, the active site residue 
blocking the entry of the ligand into the active site. Whereas 
GOLD, using the ‘rotamer’ option for receptor flexibility, was 
able to give a rotameric shift to Tyr106 enabling ligand bind-
ing with RMSD = 0.85 Å from the native structure. Side-chain 
torsion angle difference between the apo and the holo form 
of the active site residue Tyr106 is 109.2°. iMOLSDOCK is 
currently equipped to provide small side-chain fluctuations to 
the flexible residues in the receptor active site.

The aim of the current paper is to improve iMOLSDOCK 
by enabling small molecule-protein docking with induced-fit 
receptor flexibility. The docking failures observed has shown 
us areas where iMOLSDOCK and the scoring function may 
be improved. Especially, the addition of rotameric side-
chain flexibility along with ring-flipping [11, 46] algorithm 
might enhance iMOLSDOCK especially for cross-docking 
experiments.

Conclusion

We have extended the ‘induced-fit’ docking feature in iMOLS-
DOCK, from docking peptide ligands to dock drug-like small 
molecule ligands. Test runs using 34 protein–ligand complexes 
from the PDB show that the method performs well. We have 
tested iMOLSDOCK with two different force fields (GAFF 
and MMFF94) for calculating the intra-ligand energy of the 
scoring function. Comparison of iMOLSDOCK with Auto-
Dock Vina and GOLD shows that sampling in iMOLSDOCK 
is better than the other two tools. The search space in iMOLS-
DOCK is much greater than in Vina or GOLD as it allows for 
more flexible residues than Vina and GOLD. iMOLSDOCK 
is also able to predict alternate binding modes.

Acknowledgements We thank the Department of Science and Tech-
nology, Government of India, for financial support. We also thank the 
University Grants Commission for support under the CAS Program.

Compliance with ethical standards 

Conflict of interest The authors declare no conflict of interest.

References

 1. Sousa SF, Ribeiro AJM, Coimbra JTS et al (2013) Protein–ligand 
docking in the new millennium—a retrospective of 10 years in the 
field. Curr Med Chem 20:2296–2314

 2. Meiler J, Baker D (2006) ROSETTALIGAND: protein–small 
molecule docking with full side-chain flexibility. Proteins Struct 
Funct Bioinform 65:538–548. https ://doi.org/10.1002/prot.21086 

0
1000
2000
3000
4000
5000
6000
7000
8000

0 5 10 15 20 25 30 35iM
O

LS
D

O
C

K
 C

PU
 ti

m
e 

(h
rs

)

Test cases  (arranged according to increasing numbers of 
torsion angles)

iMOLSDOCK Computation time

0

20

40

60

80

100

0 5 10 15 20 25 30 35

A
ut

oD
oc

k 
V

in
a 

C
PU

 ti
m

e 
(m

in
)

Test cases  (arranged according to increasing numbers of 
torsion angles)

AutoDock Vina Computation time

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 5 10 15 20 25 30 35

G
O

LD
 C

PU
 ti

m
e 

(h
rs

)

Test cases  (arranged according to increasing numbers of 
torsion angles)

GOLD Computation time

Fig. 5  Computation time comparison between iMOLSDOCK, Vina 
and GOLD

https://doi.org/10.1002/prot.21086


899Journal of Computer-Aided Molecular Design (2018) 32:889–900 

1 3

 3. DesJarlais RL, Sheridan RP, Seibel GL et al (1988) Using shape 
complementarity as an initial screen in designing ligands for a 
receptor binding site of known three-dimensional structure. J 
Med Chem 31:722–729

 4. Koshland DE (1958) Application of a theory of enzyme speci-
ficity to protein synthesis. Proc Natl Acad Sci USA 44:98–104

 5. Monod J, Changeux J-P, Jacob F (1963) Allosteric proteins and 
cellular control systems. J Mol Biol 6:306–329. https ://doi.
org/10.1016/S0022 -2836(63)80091 -1

 6. Monod J, Wyman J, Changeux J-P (1965) On the nature of allos-
teric transitions: a plausible model. J Mol Biol 12:88–118. https 
://doi.org/10.1016/S0022 -2836(65)80285 -6

 7. Najmanovich R, Kuttner J, Sobolev V, Edelman M (2000) 
Side-chain flexibility in proteins upon ligand binding. Proteins 
Struct Funct Bioinform 39:261–268. https ://doi.org/10.1002/
(SICI)1097-0134(20000 515)39:3%3C261 ::AID-PROT9 
0%3E3.0.CO;2-4

 8. Zavodszky MI (2005) Side-chain flexibility in protein–ligand 
binding: the minimal rotation hypothesis. Protein Sci 14:1104–
1114. https ://doi.org/10.1110/ps.04115 3605

 9. Kuntz ID (1992) Structure-based strategies for drug design and 
discovery. Science 257:1078–1082

 10. Morris GM, Goodsell DS, Halliday RS et al (1998) Automated 
docking using a Lamarckian genetic algorithm and an empirical 
binding free energy function. J Comput Chem 19:1639–1662

 11. Jones G, Willett P, Glen RC et al (1997) Development and vali-
dation of a genetic algorithm for flexible docking. J Mol Biol 
267:727–748. https ://doi.org/10.1006/jmbi.1996.0897

 12. Sherman W, Day T, Jacobson MP et al (2006) Novel procedure 
for modeling ligand/receptor induced fit effects. J Med Chem 
49:534–553

 13. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed 
and accuracy of docking with a new scoring function, efficient 
optimization, and multithreading. J Comput Chem 31:455–461. 
https ://doi.org/10.1002/jcc.21334 

 14. Lemmon G, Meiler J (2012) Rosetta Ligand docking with flexi-
ble XML protocols. Methods Mol Biol Clifton NJ 819:143–155. 
https ://doi.org/10.1007/978-1-61779 -465-0_10

 15. Arun Prasad P, Gautham N (2008) A new peptide docking 
strategy using a mean field technique with mutually orthogonal 
Latin square sampling. J Comput Aided Mol Des 22:815–829

 16. Viji SN, Prasad PA, Gautham N (2009) Protein–ligand dock-
ing using mutually orthogonal Latin squares (MOLSDOCK). J 
Chem Inf Model 49:2687–2694

 17. Vengadesan K, Gautham N (2003) Enhanced sampling of the 
molecular potential energy surface using mutually orthogo-
nal Latin squares: application to peptide structures. Biophys J 
84:2897

 18. Koehl P, Delarue M (1996) Mean-field minimization methods 
for biological macromolecules. Curr Opin Struct Biol 6:222–
226. https ://doi.org/10.1016/S0959 -440X(96)80078 -9

 19. Kanagasabai V, Arunachalam J, Arun Prasad P, Gautham N 
(2007) Exploring the conformational space of protein loops 
using a mean field technique with MOLS sampling. Proteins 
Struct Funct Bioinform 67:908–921

 20. Viji SN, Balaji N, Gautham N (2012) Molecular docking studies 
of protein–nucleotide complexes using MOLSDOCK (mutually 
orthogonal Latin squares DOCK). J Mol Model 18:1–18

 21. Paul DS, Gautham N (2017) iMOLSDOCK: induced-fit docking 
using mutually orthogonal Latin squares (MOLS). J Mol Graph 
Model 74:89–99. https ://doi.org/10.1016/j.jmgm.2017.03.008

 22. Hartshorn MJ, Verdonk ML, Chessari G et al (2007) Diverse, 
high-quality test set for the validation of protein–ligand docking 
performance. J Med Chem 50:726–741. https ://doi.org/10.1021/
jm061 277y

 23. Vengadesan K (2004) Sampling the molecular potential energy 
surface using mutually orthogonal Latin squares and application 
to peptide structures. Dissertation, University of Madras

 24. Vengadesan K, Gautham N (2005) A new conformational search 
technique and its applications. Curr Sci 88:1759–1770

 25. Cornell WD, Cieplak P, Bayly CI et al (1995) A second genera-
tion force field for the simulation of proteins, nucleic acids, and 
organic molecules. J Am Chem Soc 117:5179–5197

 26. Ito K (1987) Encyclopedic dictionary of mathematics. MIT 
Press, Cambridge

 27. Liu CL (1968) Introduction to combinatorial mathematics. 
McGraw-Hill Book Co., New York

 28. Vengadesan K, Gautham N (2004) Energy landscape of Met-
enkephalin and Leu-enkephalin drawn using mutually orthogo-
nal Latin squares sampling. J Phys Chem B 108:11196–11205

 29. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1993) 
Numerical recipes in FORTRAN; the art of scientific comput-
ing, 2nd edn. Cambridge University Press, New York

 30. Ben-Shimon A, Niv MY (2015) AnchorDock: blind and flexible 
anchor-driven peptide docking. Structure 23:929–940. https ://
doi.org/10.1016/j.str.2015.03.010

 31. Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open 
source platform for ligand pocket detection. BMC Bioinform 
10:168

 32. Paul DS, Gautham N (2016) MOLS 2.0: software package for 
peptide modeling and protein–ligand docking. J Mol Model 
22:1–9. https ://doi.org/10.1007/s0089 4-016-3106-x

 33. Gehlhaar DK, Verkhivker GM, Rejto PA et al (1995) Molecular 
recognition of the inhibitor AG-1343 by HIV-1 protease: con-
formationally flexible docking by evolutionary programming. 
Chem Biol 2:317–324

 34. Gundertofte K, Liljefors T, Norrby P, Pettersson I (1996) A 
comparison of conformational energies calculated by several 
molecular mechanics methods. J Comput Chem 17:429–449. 
https ://doi.org/10.1002/(SICI)1096-987X(19960 3)17:4%3C429 
::AID-JCC5%3E3.0.CO;2-W

 35. Wang J, Wolf RM, Caldwell JW et  al (2004) Development 
and testing of a general AMBER force field. J Comput Chem 
25:1157–1174. https ://doi.org/10.1002/jcc.20035 

 36. Halgren TA (1996) Merck molecular force field. I. Basis, form, 
scope, parameterization, and performance of MMFF94. J Com-
put Chem 17:490–519

 37. Halgren TA (1996) Merck molecular force field. II. MMFF94 
van der Waals and electrostatic parameters for intermo-
lecular interactions. J Comput Chem 17:520–552. https ://
doi.org/10.1002/(SICI)1096-987X(19960 4)17:5/6%3C520 
::AID-JCC2%3E3.0.CO;2-W

 38. Hubbard TJ, Murzin AG, Brenner SE, Chothia C (1997) SCOP: 
a structural classification of proteins database. Nucleic Acids 
Res 25:236–239

 39. McDonald IK, Thornton JM (1994) Satisfying hydrogen bond-
ing potential in proteins. J Mol Biol 238:777–793. https ://doi.
org/10.1006/jmbi.1994.1334

 40. Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein–
small molecule docking methods. J Comput Aided Mol Des 
16:151–166

 41. Taylor RD, Jewsbury PJ, Essex JW (2003) FDS: flexible ligand 
and receptor docking with a continuum solvent model and soft-
core energy function. J Comput Chem 24:1637–1656

 42. Guengerich FP (2011) Mechanisms of drug toxicity and rel-
evance to pharmaceutical development. Drug Metab Pharma-
cokinet 26:3–14

 43. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 
and AutoDockTools4: automated docking with selective recep-
tor flexibility. J Comput Chem 30:2785–2791. https ://doi.
org/10.1002/jcc.21256 

https://doi.org/10.1016/S0022-2836(63)80091-1
https://doi.org/10.1016/S0022-2836(63)80091-1
https://doi.org/10.1016/S0022-2836(65)80285-6
https://doi.org/10.1016/S0022-2836(65)80285-6
https://doi.org/10.1002/(SICI)1097-0134(20000515)39:3%3C261::AID-PROT90%3E3.0.CO;2-4
https://doi.org/10.1002/(SICI)1097-0134(20000515)39:3%3C261::AID-PROT90%3E3.0.CO;2-4
https://doi.org/10.1002/(SICI)1097-0134(20000515)39:3%3C261::AID-PROT90%3E3.0.CO;2-4
https://doi.org/10.1110/ps.041153605
https://doi.org/10.1006/jmbi.1996.0897
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1007/978-1-61779-465-0_10
https://doi.org/10.1016/S0959-440X(96)80078-9
https://doi.org/10.1016/j.jmgm.2017.03.008
https://doi.org/10.1021/jm061277y
https://doi.org/10.1021/jm061277y
https://doi.org/10.1016/j.str.2015.03.010
https://doi.org/10.1016/j.str.2015.03.010
https://doi.org/10.1007/s00894-016-3106-x
https://doi.org/10.1002/(SICI)1096-987X(199603)17:4%3C429::AID-JCC5%3E3.0.CO;2-W
https://doi.org/10.1002/(SICI)1096-987X(199603)17:4%3C429::AID-JCC5%3E3.0.CO;2-W
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3C520::AID-JCC2%3E3.0.CO;2-W
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3C520::AID-JCC2%3E3.0.CO;2-W
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3C520::AID-JCC2%3E3.0.CO;2-W
https://doi.org/10.1006/jmbi.1994.1334
https://doi.org/10.1006/jmbi.1994.1334
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1002/jcc.21256


900 Journal of Computer-Aided Molecular Design (2018) 32:889–900

1 3

 44. Verdonk ML, Mortenson PN, Hall RJ et al (2008) Protein–
ligand docking against non-native protein conformers. J Chem 
Inf Model 48:2214–2225. https ://doi.org/10.1021/ci800 2254

 45. Ravindranath PA, Forli S, Goodsell DS et al (2015) AutoDockFR: 
advances in protein–ligand docking with explicitly specified 

binding site flexibility. PLoS Comput Biol 11:e1004586. https ://
doi.org/10.1371/journ al.pcbi.10045 86

 46. Verdonk ML, Cole JC, Hartshorn MJ et al (2003) Improved pro-
tein–ligand docking using GOLD. Proteins Struct Funct Bioin-
form 52:609–623

https://doi.org/10.1021/ci8002254
https://doi.org/10.1371/journal.pcbi.1004586
https://doi.org/10.1371/journal.pcbi.1004586

	Protein–small molecule docking with receptor flexibility in iMOLSDOCK
	Abstract
	Introduction
	Materials and methods
	Results and discussion
	Ranking efficiency
	Hydrogen bond interactions
	Alternate binding modes
	Comparison studies between Vina, GOLD and iMOLSDOCK
	Sampling efficiency
	Scoring efficiency
	Hydrogen bond prediction
	Computation time comparison between iMOLSDOCK, Vina and GOLD
	iMOLSDOCK performance against the Astex Diverse set of protein–ligand complex
	Cross-docking

	Conclusion
	Acknowledgements 
	References


