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Abstract
In this work, quantum mechanical methods were used to predict the microscopic and macroscopic pKa values for a set of 24 
molecules as a part of the SAMPL6 blind challenge. The SMD solvation model was employed with M06-2X and different 
basis sets to evaluate three pKa calculation schemes (direct, vertical, and adiabatic). The adiabatic scheme is the most accurate 
approach (RMSE = 1.40 pKa units) and has high correlation  (R2 = 0.93), with respect to experiment. This approach can be 
improved by applying a linear correction to yield an RMSE of 0.73 pKa units. Additionally, we consider including explicit 
solvent representation and multiple lower-energy conformations to improve the predictions for outliers. Adding three water 
molecules explicitly can reduce the error by 2–4 pKa units, with respect to experiment, whereas including multiple local 
minima conformations does not necessarily improve the pKa prediction.

Keywords SAMPL6 · pKa · Implicit solvent · Quantum chemistry

Introduction

The use of in silico modelling in rational design has become 
a popular and valuable tool in current research and develop-
ment for agricultural, environmental, and pharmaceutical 
applications, as a multifaceted technique capable of provid-
ing rapid understanding to in situ phenomena that may be 
difficult to measure or study [1]. Computer-aided modeling 
is advantageous for forecasting how a molecule may react 
in different environments and is heavily utilized for virtual 
screening and lead optimization in drug discovery as a provi-
sional method for physicochemical and biophysical charac-
terization, including solubility, ionization, lipophilicity, etc. 
While there are many computational high-throughput mod-
els for predicting physicochemical properties, challenges 

persist for predictions of how molecules ionize in solution. 
The acid dissociation constant (Ka) or its corresponding 
logarithmic constant (pKa), is a quantitative measure of the 
strength of an acid in solution in the context of acid-base 
reactions related to the free energy (ΔGaq) of an acid losing 
a proton.

Many methods for predicting pKa have been designed, 
spanning across electronic structure theory, molecular 
mechanics, and machine learning approaches [2–4]. Popu-
lar QSAR-style methods have been implemented in software 
packages, such as ADMET Predictor (S + pKa method [5]), 
Epik [6], pKa Prospector [7], and ACD/pKa Percepta Plat-
form [8]. While these empirical methods can provide instan-
taneous predictions, inaccuracies arise for large and flexible 
molecules in which steric effects and microstate conforma-
tions surpass the Hammett–Taft approach [9].

A variety of semi-empirical and quantum chemical 
approaches have been developed—varying by not only 
the level of theory, but also by the solvation model and the 
reaction scheme [10–13]. For semi-empirical approaches, 
Jensen et al. considered several combinations of semi-empir-
ical methods and implicit solvation models to predict the 

(1)pKa =
ΔGaq

RT ln 10
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pKa of 48 druglike molecules using a relative pKa calcula-
tion scheme [14]. From the evaluation of six semi-empirical 
methods, the AM1 and PM3 methods provided predictions 
within 1.4–1.6 pH units. Another study comparing semi-
empirical approaches with ab initio methods for predicting 
pKa values on a set of molecules containing a variety of 
ionizable groups, including alcohols and carboxylic acids, 
showed that PM6-based methods can provide predictions 
close to the accuracy of CBS-4B3/SMD [15].

Various ab initio methods, including CBS [16], Gaussian-
n [17–20] and ccCA [21], have been applied with continuum 
solvation models to predict pKa values and are reported to 
predict pKa values as low as 0.5 pKa units from experiment, 
however, most of these approaches have only been employed 
on small molecule datasets [14, 15, 22–26]. Although wave-
function-based methods and composite ab initio methods 
provide high levels of accuracy, for larger molecules they 
are less attractive due to the computational expense, hence 
the interest in exploiting more approximate methods, such 
as electronic density-based approaches.

Density functional theory (DFT) methods are popular 
as they have been applied to an array of chemical appli-
cations, achieving desired accuracies for a broad range of 
gas phase reactions and properties [27, 28]. There are many 
DFT functionals and extensive assessments which illus-
trate that different functionals perform better for specific 
properties [29]. For calculations in the solution phase, DFT 
functionals are often used with implicit continuum models, 
such as CPCM [30], COSMO [31], and SMD [32] mod-
els, which are optimized for usage with modest levels of 
theory (smaller basis sets). Several studies employing hybrid 
functionals—including B3LYP, B97-1, BMK, B98, M06, 
and M06-2X—with the SMD model have shown that the 
M06-2X functional provides more accurate predictions than 
other functionals considered for main group element calcu-
lations, which would be expected as the SMD model was 
parametrized using M05-2X [26, 32]. The combination of 
the M06-2X density functional and the SMD model has been 
used in a recent pKa study that examined the effects of tuning 
the solvent-accessible surface describing the solute-solvent 
boundary and reported that mean unsigned errors of 0.9, 
0.4, and 0.5 pKa units for carboxylic acids, aliphatic amines, 
and thiols, respectively, could be obtained by scaling the 
solute radii; however, this approach only had a significant 
impact on thiols as the default radii yielded mean unsigned 
errors of 1.3, 1.0, and 4.9 pKa units respectively for carbox-
ylic acids, aliphatic amines, and thiols [33]. While different 
groups are evaluating their methods on different datasets, 
it is difficult to compare the various approaches. SAMPL 
blind challenges provide a unique platform for designing 
novel approaches and assessing current methods. The need 
for appropriate methods for the prediction of pKa was high-
lighted in the previous SAMPL5 challenge for predicting 

partition coefficients, as the ionization and tautomeriza-
tion states differed in the cyclohexane and water phase [34, 
35]. The SAMPL6 pKa challenge entails the prediction of 
microscopic and macroscopic pKa values divided into three 
sub-challenges: (1) the prediction of microscopic pKa values 
of associated microstates; (2) the prediction of microstate 
population as a function of pH ranging from 2 to 12; and (3) 
the prediction of the macroscopic pKa. The dataset is com-
posed of 24 drug-like fragments, each containing multiple 
ionization and tautomeric states (Fig. 1).

In this work for the SAMPL6 challenge, we explored 
several unique approaches to predict microscopic and mac-
roscopic pKa values. Absolute pKa values were predicted 
using three different calculation schemes: the direct scheme, 
the vertical scheme, and the adiabatic scheme. We consider 
multiple tactics in efforts to achieve more accurate predic-
tions. For each scheme, we tried to improve the accuracy by 
(1) single point energy corrections utilizing larger basis sets; 
(2) including multiple conformations per microstate in the 
pKa calculation; (3) including explicit water molecules to 
stabilize neutral and charged microstates; and (4) applying 
a linear correction to the calculated pKa values.

Methods

A source of error in pKa calculations arises from the reaction 
scheme used to approximate the solution phase free energy 
(ΔGaq). For a generic acid (HA) in water, the equilibrium 
of acid dissociation reaction (Ka) can be written symboli-
cally as:

which expresses the proton transfer from the acid to yield its 
conjugate base  (A−) and hydronium  (H3O+). For this expres-
sion, the direct thermodynamic cycle (Fig. 2) is used for 
calculating absolute pKa values. In concentrated aqueous 
solutions, the expression can be simplified to the dissocia-
tion of an acid into its conjugate base (Cycle B). Previous 
studies comparing thermodynamic cycles with continuum 
solvation models highlight that the simplified expression, 
Cycle B, tends to be more accurate than Cycle A [24]. In 
Cycle A, the solution phase free energy is computed using 
the gas phase (ΔGgas) and solvation free energies (ΔGS) . The 
solvation free energy of the proton, ΔG∗

S
(H+), used is 

− 265.9 kcal/mol [36] includes the standard state correction 
from 1  atm to 1  M. The proton gas phase free energy 
(G◦

gas
(H+) = −6.28 kcal/mol) comes from the Sackur–Tet-

rode equation [37].

(2)HA + H2O ⇌ A− + H3O
+; Ka =

[A−]
[
H3O

+
]

[HA]
[
H2O

]

(3a)ΔGaq = ΔGgas + ΔΔGS
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Here, we use the superscript “°” to denote the condition 
of 1 atm and “*” to denote the condition of 1 M.

Calculation schemes

In this challenge, three different schemes are used to com-
pute the free energy for each microstate pair. The notations 
�� and �� correspond to stationary points obtained from gas 
phase and solution phase optimizations, respectively [38].

Scheme D: direct scheme

The direct scheme (noted Scheme D) determines the solu-
tion phase free energy without use of thermodynamic cycle.

(3b)
ΔG∗

gas
= G◦

gas
(H+) + G◦

gas
(A−) − G◦

gas
(HA) + RT ln

(
RT

P

)

(3c)ΔG∗

S
= ΔG∗

S
(H+) + ΔG∗

S
(A−) − ΔG∗

S
(HA)

(4)GD = Eaq

(
��

)
+ Gcorr

aq

(
��

)

In this scheme, the reaction free energy is determined 
by solution phase geometries. Thermal corrections to the 
free energy Gcorrare added to the total energy to approximate 
ΔGaq . To note, all energy terms of the direct scheme are 
computed within the implicit solvent model. The approxima-
tion made in the direct scheme is that gas phase contribu-
tions are not needed, i.e. geometries.

Scheme V: vertical scheme

In contrast, the vertical scheme (Scheme V) uses the gas 
phase geometry and assumes that free energy of the solute 
relaxing in solution phase is negligible.

In this expression, ΔGaq is calculated using the gas phase 
free energy and the solvation free energy (ΔGS), which is the 

(5a)GV = Egas

(
��

)
+ Gcorr

gas

(
��

)
+ ΔGS

(
��

)

(5b)ΔGS = Eaq

(
��

)
− Egas

(
��

)

Fig. 1  Structures of the 24 molecules in the SAMPL6 pKa challenge
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difference between the gas phase and solution phase total 
energies. Here, Eaq is determined by employing the contin-
uum solvation approach on the gas phase structure. Thermal 
corrections to the gas phase free energy Gcorr

gas
 are used in this 

representation, as it is assumed that the thermal contribu-
tions in both phases are similar.

Scheme A: adiabatic scheme

The adiabatic scheme (Scheme A) considers both the gas 
and solution phase geometries.

This scheme differs from the vertical scheme by the total 
energy contributions from the solute relaxed in solution, 
hence Eaq is determined by optimizing the molecule in solu-
tion phase. The difference between the thermal contributions 
in gas phase and solution phase (relaxed) can be approxi-
mated by the difference in the adiabatic and direct scheme.

Conventionally, the thermodynamic cycle is used to cal-
culate the solution phase free energy when using continuum 
solvation models. The primary reason is that continuum sol-
vation models are generally parameterized to produce accu-
rate solvation free energies using lower levels of theory (HF 

(6a)GA = Egas

(
��

)
+ Gcorr

gas
+ ΔGS

(6b)ΔGS = Eaq

(
��

)
− Egas

(
��

)

(7)(ΔΔGcorr
D→A

= ΔGcorr
gas

− ΔGcorr
aq

; ΔGD→A = GA − GD)

or DFT with double-� quality basis sets); however, by using 
the thermodynamic cycle the solution phase free energy can 
be determined at different levels of theory.

Inspired by the work of Ho [39], we consider modifi-
cations of each scheme in hopes to obtain more accurate 
energetics by including single point energy corrections 
(augmented by “+S”) using larger basis sets (denoted by a 
superscript, H). In the D + S Scheme, the total energy term 
in aqueous solution Eaq is replaced with the total energy 
obtained with a larger basis set.

For the vertical and adiabatic schemes, the solvation free 
energies (ΔGS) are calculated with larger basis sets,

As both approaches use thermodynamic cycle, the V + S 
and A + S Schemes differ by the geometry (��) in which the 
aqueous phase total energies are determined.

Microstate populations as a function of pH

To predict the fractional microstate populations at differ-
ent pH values, we consider the following acid-dissociation 
reaction in which a microstate with charge n is transformed 
to a microstate with charge m upon a loss of (n-m) protons, 
where m < n.

By expressing the free energy of each microstate indexed 
with its respective charge, the expression for the equilibrium 
constant can be written as

Using these two expressions for the equilibrium constant, 

(8)GD+S = EH
aq

(
��

)
+ Gcorr

aq

(
��

)

(9a)GV+S, A+S = Egas

(
��

)
+ Gcorr

gas

(
��

)
+ ΔGH

S

(9b)
ΔGH

S
= E

H
aq

(
��

)
− E

H
gas

(
��

)
, x = l for Scheme A,

x = g for Scheme V

(10)GA+S − GV+S = EH
aq

(
��

)
− EH

aq

(
��

)

(11a)

(H
n
A)n+

K
a
(n|m)

��������������������������→ (H
m
A)m+ + (n − m)H+

;

K
a
(n|m) ≡

[
(H

m
A)

m+
][
H

+
](n−m)

[
(H

n
A)

n+
]

(11b)Ka(n|m) = exp

(
−
G(m) + (n − m)G(H+) − G(n)

kT

)

(12)

[
(HmA)

m+
][
H+

](n−m)
[
(HnA)

n+
] = exp

(
−
G(m) + (n − m)G(H+) − G(n)

kT

)

Fig. 2  Thermodynamic cycles used for pKa calculation schemes
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By the separation of variables, we can define a expres-
sion for a microstate (here using microstate n of charge n), 
in which

Q(n) is the partition function at specified pH value and 
defined as

Therefore, the partition function for microstate A with 
charge nA is

Note that this partition function also holds when nA < 0.
As this generalized expression can be used for any micro-

state X with charge nX, the fractional population (PA) for 
microstate A with charge nA is obtained as

Macroscopic pKa values

To compute the macroscopic pKa values, we can use the 
expression for the microstate population to express the mac-
roscopic equilibrium constant,

where �i,j is the Kronecker delta function. The macro-
scopic pKa between the microstates with a charge of n + 1 
and the microstates with a charge of n is 

(13)

[
(HmA)

m+
]

[
H+

]m
exp

(
−

G(m)−mG(H+)

kT

) =

[
(HnA)

n+
]

[
H+

]n
exp

(
−

G(n)−nG(H+)

kT

) ≡

[
(HnA)

n+
]

Q(n)

(14)Q(n) ≡
[
H+

]n
exp

(
−
G(n) − nG(H+)

kT

)

(15)QA(nA) = exp

(
−
GA(nA) − nAG(H

+)

kT
− nA ln(10)pH

)

(16)PA(nA) =
QA(nA)∑

X=⋯,A,⋯ QX(nX)

(17)

K
Macro
a

(n + 1�n) =
�
H+

�
P(n)

P(n + 1)
=

�
H+

�∑
X
Q

X
(n

X
)�

n,n
X∑

X
Q

X
(n

X
)�(n+1),n

X

=

exp
�
−

G(H+)

kT

�∑
X
exp

�
−

G
X
(n

X
)

kT

�
�
n,n

X

∑
X
exp

�
−

G
X
(n

X
)

kT

�
�(n+1),n

X

(18)

pKMacro
a

(n + 1�n) = − log

exp
�
−

G(H+)

kT

�∑
X exp

�
−

GX (nX )

kT

�
�n,nX

∑
X exp

�
−

GX (nX )

kT

�
�(n+1),nX

= − log

∑
X exp

�
−

GX (nX )

kT

�
�n,nX

∑
X exp

�
−

GX (nX )

kT

�
�(n+1),nX

+
G
�
H+

�

kT ln 10

QM calculations

The initial structures of the 352 microstates were generated 
from the SMILES strings provided by the SAMPL6 pKa 
challenge using Open Babel 2.4.1 [40]. Gas phase and solu-
tion phase geometry optimizations were performed using the 
M06-2X density functional [41]. As charged and uncharged 
species are represented in the molecule set, the 6-31G(d) 
basis set [42] is used for cationic species whereas additional 
diffuse functions (6-31+G(d) [43]) are included for the ani-
onic microstates. All QM optimizations were performed 
with “tight” wave function and geometry convergence crite-
ria, by using an “ultrafine” numerical quadrature as required 
by M06-2X functional.

To maintain consistency of the basis sets between micro-
state reaction pairs, duplicate calculations are carried out for 
neutral species using each basis set (Table 2).

Frequencies were examined to confirm stationary points 
and scaled by 0.9465 and 0.9500 for methods using the 
6-31G(d) and 6-31+G(d) basis sets, respectively [44]. 
Additional single point energy calculations for each micro-
state are performed using M06-2X in conjunction with 
6-311G(d,p) and 6-311++G(d,p) to serve as corrections to 
the respective double-� basis sets. Solution phase geometry 
optimizations and single point calculations were carried 
out using the SMD implicit solvation model [32]. All cal-
culations were performed in Gaussian 16 (Rev. A.03) [45] 
using an ultrafine integration grid. To improve conforma-
tional sampling, two different algorithms were considered. 
Per microstate, ten low-energy conformers were stochasti-
cally and systematically generated using the MOE software 
[46] and compared against the optimized structures of each 
microstate. For microstates in which there was a large dif-
ference in the conformation, the new conformers were sub-
jected to the aforementioned workflow.

Results and discussion

Our method of using two basis sets is similar to the method 
using mixed basis set where the diffuse functions are added 
at the reactive center to allow improved modeling of anionic 
species [47]. We do not adopt using mixed basis sets because 
the excess electron is assumed to be delocalized over the 
entire molecule instead of the deprotonated atom.

Table 1  SAMPL6 submission IDs for our approaches

Scheme D D + S V A A + S

Type I wexjs w4z0e arcko wcvnu ko8yx
Type II t28dq z0ima yzx8f gt0oq i5m8f
Type III y75vj xikp8 5byn6 w4iyd ryzue



1184 Journal of Computer-Aided Molecular Design (2018) 32:1179–1189

1 3

Errors in pKa calculations arise from the reaction scheme 
in which the aqueous free energy is approximated. In this 
challenge, we considered several approaches for predicting 
absolute pKa values that differ by how free energy contribu-
tions in gas phase and solution phase are determined. Our 
submissions for Type I, Type II, and Type III predictions, per 
scheme, are listed in Table 1. To note, the calculated pKa val-
ues are reported without standard error of the mean (SEM).

Direct scheme

In the direct scheme, the aqueous free energy is determined 
only by solution phase calculations, avoiding the thermo-
dynamic cycle. This is an attractive approach as it requires 
only two calculations (of each microstate pair) and would 
already account for solvent-induced effects since the geom-
etries are optimized in the solution phase. From the results 
shown in Table 2, overall, the direct approach predicts pKa 
values within a mean absolute deviation (MAD) of 1.36 pKa 
units from experiment. Some of the major outliers include 
SM01, SM06, SM14, SM23. SM18 and SM23 suffer from 
the hydrogen bonding effect. These molecules can form 
stronger hydrogen bond interactions with their functional 
group (the hydroxyl group of phenol or the amino group of 
aniline) which is reflected in the macroscopic pKa, while 
other molecules can also suffer from the hydrogen bond-
ing effect but less significantly because the hydrogen bonds 
being formed are much weaker. Some of the conformations 
were biased as the implicit solvation model cannot account 
for the hydrogen bonding effectively.

A previous study comparing the accuracy of the direct 
scheme with a low (MP2) and high (G3) level of theory, 
reported that use of a higher-level of theory improves the 
MAD with respect to experiment for carboxylic, inorganic, 
and cationic acids using the direct scheme from 0.4 to 0.9 
pKa units [39]. Rather than using a different method, we 
consider improving the quality of the basis set to represent 
a better level of theory for this challenge. In most cases, 
adding additional basis functions yields poorer predictions, 
as great as 5.0 pKa units away from the direct scheme. This 
excludes SM04, SM07, SM20, SM22, and SM24, as we see 
that using a larger basis set yields predictions of an average 
of 0.5 pKa units closer to experiment (1.3 pKa units differ-
ence for SM20).

Vertical scheme

The vertical scheme utilizes gas phase geometries and 
the thermodynamic cycle to approximate the free energy of 
solvation. By contrasting the direct and vertical scheme, the 
difference in the gas phase contribution and solution phase 
contribution to the solvation free energy is highlighted. 
Overall, the vertical scheme provides overestimations of 
the pKa values, yielding a MAE of 1.74 pKa units. To note, 
this is greater than the MAE for the direct method (This 
corresponds to a difference of 0.38 pKa units or a 0.5 kcal/
mol free energy difference distributed in the difference of 
the geometries). Compared to the direct scheme, the verti-
cal scheme overestimates the pKa for SM06 and SM09. This 
poorer performance of the vertical scheme is surprising as 
this approach is similiar to the methods in which continuum 
solvation models are parameterized.

As the vertical scheme assumes the gas phase geometry, 
it works well for the small or rigid molecules (e.g. SM02, 
SM05, SM09, etc.), and we consider using larger basis sets 
for the solvation free energy term (Eq. 3c). In most cases, the 
inclusion of triple-� basis sets improves the predictions by 
an average of 0.1–0.2 pKa units with respect to experiment. 
Cases in which the trend does not follow (in which the larger 
basis set yields predictions greater than that predicted using 
smaller basis sets), occur for polyprotic molecules, such as 
SM15 and SM22.

Adiabatic scheme

Considering both optimized gas phase and solution phase 
structures is hypothesized to provide more accurate pKa 
predictions as it includes the energetic compensation for 
relaxing in solvent. Using the adiabatic scheme, this yields 
pKa values with a MAE of 1.26 pKa units. Comparing the 
two thermodynamic cycle-based approaches, the adiabatic 
scheme provides more accurate pKa values than the vertical 
scheme for 64% of the molecules. This highlights that the 
structures determined in both gas phase and solution phase 
are significant for determining pKa values.

Similar to the direct and vertical schemes, we exam-
ine how using a larger basis set impacts the solvation free 
energy. The results indicate that using a triple-�-level basis 
set for the solvation free energy term improves the pKa pre-
dictions by an average of 0.2 pKa units.

Table 2  Basis sets selection per 
sub-challenge

6-31+G(d)/6-311++G(d,p) 6-31G(d)/6-311G(d,p)

Type I Anionic species in the pair Cationic species in the pair
Type II pH > pK

Macro
a

(−1|0) pH < pK
Macro
a

(−1|0)
Type III Between anions or anion/neutral Between cations or cation/neutral
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Comparison of the schemes

Overall, the results in Table 3 illustrate a hierarchy of the 
different reaction schemes. Contrasting the three schemes, 
pKa values determined via the direct scheme and adiabatic 
scheme are closer to experiment than those predicted using 
the vertical scheme. However, this relationship only holds 
to the level of theory employed for each reaction scheme (in 
this case, using M06-2X with a double-� level basis set). 

When applying a larger basis set to the solvation free energy 
term, the adiabatic and vertical scheme have less error (MAE 
is 1.10 and 1.48, respectively) with respect to experiment 
than the direct scheme (MAE is 1.95).

Our submissions to the SAMPL6 challenge (Table 1), did 
not include the standard state correction (which made a dif-
ference in 1.39 pKa units) and also used another value for 
the free energy of solvation of a proton not recommended (a 
difference of 0.22 pKa units); this has been corrected. These 

Table 3  Absolute macroscopic 
pKa values via the direct (D), 
vertical (V), and adiabatic (A) 
schemes

a pKa,2
b pKa,3

Molecule ID Experiment Scheme

D D + S V V + S A A + S

SM01 9.53 ± 0.01 12.53 14.51 13.41 13.11 12.03 11.78
SM02 5.03 ± 0.01 5.12 4.60 4.24 4.66 4.27 4.67
SM03 7.02 ± 0.01 7.39 8.66 8.32 8.17 7.46 7.30
SM04 6.02 ± 0.01 6.40 5.86 7.54 7.71 6.78 6.89
SM05 4.59 ± 0.01 3.28 2.56 4.85 4.97 2.42 2.38
SM06 3.03 ± 0.04 0.66 − 0.06 0.32 0.48 1.17 1.38
SM06a 11.74 ± 0.01 15.33 16.65 16.92 16.75 14.56 14.60
SM07 6.08 ± 0.01 7.19 6.61 7.01 7.17 6.35 6.42
SM08 4.22 ± 0.01 4.34 6.29 5.83 5.77 3.33 3.33
SM09 5.37 ± 0.01 5.31 4.80 4.89 5.08 5.10 5.31
SM10 9.02 ± 0.01 9.53 10.75 7.69 7.62 8.00 8.00
SM11 3.89 ± 0.01 2.60 2.37 2.99 3.29 2.90 3.16
SM12 5.28 ± 0.01 4.74 4.25 4.46 4.67 4.48 4.69
SM13 5.77 ± 0.01 4.69 4.19 5.47 5.62 5.58 5.66
SM14 2.58 ± 0.01 − 1.07 − 1.67 − 0.37 − 0.26 − 0.43 − 0.13
SM14a 5.30 ± 0.01 4.91 4.42 4.64 4.84 5.09 5.20
SM15 4.70 ± 0.01 3.74 3.23 3.57 3.73 3.79 3.94
SM15a 8.94 ± 0.01 11.02 13.07 11.80 11.39 10.73 10.38
SM16 5.37 ± 0.01 3.60 3.30 3.62 3.80 4.49 4.79
SM16a 10.65 ± 0.01 12.35 13.32 12.45 12.27 11.71 11.41
SM17 3.16 ± 0.01 1.38 1.28 1.51 1.55 2.17 2.39
SM18 2.15 ± 0.02 1.84 1.27 2.04 2.27 2.28 2.58
SM18a 9.58 ± 0.03 10.11 11.73 11.29 11.21 10.76 10.68
SM18b 11.02 ± 0.04 13.78 14.62 13.04 13.05 15.21 15.02
SM19 9.56 ± 0.02 10.41 11.69 11.87 11.80 10.09 10.14
SM20 5.70 ± 0.03 3.84 5.17 5.14 5.26 3.99 4.35
SM21 4.10 ± 0.01 1.87 1.36 1.65 2.14 1.99 2.55
SM22 2.40 ± 0.02 3.19 2.66 3.00 2.82 3.03 2.83
SM22a 7.43 ± 0.01 9.30 9.90 9.89 9.79 9.03 8.73
SM23 5.45 ± 0.01 3.08 2.85 2.69 2.95 5.75 5.99
SM24 2.60 ± 0.01 3.55 2.97 2.85 2.99 3.74 3.36
MSE − 0.08 0.16 0.24 0.30 0.04 0.07
MAE 1.36 1.95 1.61 1.48 1.26 1.10
MaxD 3.59 4.98 5.18 5.01 4.19 4.00
RMSE 1.70 2.38 1.98 1.85 1.55 1.40
R2 0.92 0.91 0.89 0.90 0.92 0.93
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results are encouraging as the pKa predictions via the adi-
abatic and direct schemes correlate well with experiment, 
having a correlation coefficient greater than 0.9.

To confirm if the approach predicts the proper chemis-
try, we evaluate the different schemes on a small subset of 
molecules that share a similar scaffold, differing by elec-
tron donation or withdrawing groups. The molecules SM02, 
SM04, SM07, SM09, SM12, and SM13 share the 4-amino-
quinazoline scaffold. Ranked by acidity, SM02, SM12, and 
SM09 differ by substituents on the phenyl ring spanning a 
variance of 0.35 pKa units. The direct schemes are unable to 
properly determine the trend, as the predictions indicate that 
SM12 is more acidic than SM02 (SM12 has a Ph-Cl whereas 
SM02 has a Ph-CF3). In contrast, the vertical schemes rank 
the acidities of SM02 and SM12 correctly, however, over-
estimate the acidity of the SM09. This is believed to result 
from using the gas phase geometry, as only one low energy 
conformation was considered and the more probable repre-
sentations that more closely resemble the structure in the 
solution phase were neglected. SM13 has a larger pKa and 
is different as it contains electronic donating groups on the 
quinazoline as opposed to the amino group. The direct and 
vertical schemes overestimate the acidity relative to SM02, 
SM12, and SM09. The difference between SM04 and SM07 
is small, quantitatively and qualitatively (0.04 pKa units). 
Interestingly, only the direct scheme was able to properly 
rank the acidities for these molecules. We also compare the 
microscopic pKa values with respect to experiment for these 
molecules and observe the same trends (Table S6).

Room for improvement

Aside of the chosen level of theory employed, another 
source of error arises from the lack of explicit interactions 
between the solute and water, which are not accounted for in 
continuum solvation models. For example, functional groups 
such as alcohol and phenols have ionic states that may be 
stabilized in solution by hydrogen bonding. Including 
explicit water molecules with continuum solvation models, 
also termed microsolvation or cluster-continuum modeling, 
has been shown to improve pKa predictions for such issues 
[48]. In general, this could result in overestimation or under-
estimation of pKa values for acids and bases.

For example, the pKa values for molecules SM01, SM15, 
and SM22, which may undergo deprotonation at the phenol 
group, were overestimated by 1.3–5.0 pKa units. As a proof 
of concept, we tried to improve pKa predictions for SM01 
by adding water molecules near the hydroxyl group. Adding 
one water molecule improves the prediction of the pKa by an 
average of 1.3 pKa units (Fig. 3). By saturating the hydroxyl 
group with three water molecules, the pKa improves by an 
average of 3.0 pKa units (Table S3).

Relative schemes

When employing the different calculation schemes for this 
challenge, we only considered predicting absolute pKa val-
ues as opposed to relative pKa values. Relative schemes for 
calculating pKa use empirical parameters to scale or offset 
the solute phase free energy.

Using a relative scheme as an offset (A = 1) to the free 
energy entails identifying and applying (subjectively) good 
reference models, which relies on chemical intuition. As 
this challenge includes 620 unique acid–base pairs, iden-
tifying the proper reference models proved difficult since 
the molecules had multiple protonation sites. Alternatively, 
a linear regression fit can be applied to the calculated solu-
tion phase free energy to correct for systematic errors (e.g. 
concentration of water, proton solvation free energy, model 
chemistry, etc.). As this is a popular approach for calculating 
pKa [47, 49], we consider applying a linear regression cor-
rection to each scheme. To determine the parameters A and 
B, two training sets, consisting of 63 acids (Table S2) and 
56 bases (Table S3), were used. The linear fitting parameters 
determined for each scheme can be found in the Support-
ing Information (Table S4). For each scheme, while apply-
ing a linear regression fit does not improve the correlation 
(ΔR2 = ±0.01), this approach does improve the pKa predic-
tions, with a lower MAE and RMSE than the respective 
absolute calculation pKa schemes (Table 4).

We believe the reason that the slope of the experimental 
pKa vs calculated pKa is not the expected value of 1 is due 
to the hydrogen bonding effect. Since hydrogen bond inter-
actions can stabilize the charged species while having little 
effect on the neutral species, the pKa values for the bases are 
usually underestimated while those for the acids are usually 
overestimated when explicit considerations of the hydrogen 
bonds between the solvent and solute are absent. The slope 

(19)pKa = A
ΔGaq

RT ln 10
+ B

Fig. 3  Effect of microsolvation on pKa calculations schemes for 
SM01
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can approach the expected value of 1 by including explicit 
waters [48].

Multiple minima consideration

All pKa values have been determined using one conforma-
tion per microstate pair. The molecules within the SAMPL6 
pKa data set are not rigid (excluding SM01 and SM22) and 
can adopt multiple conformations that satisfy local minima. 

To probe if the exclusion of multiple minima was a source 
of error in our pKa calculations, we generate 6 to 32 dif-
ferent conformations for each microstate of SM06 and re-
calculate the macroscopic pKa by sequentially including the 
lowest energy conformations per microstate. As shown in 
Table 5, including multiple minima has little impact to the 
pKa prediction (0.1–0.6 pKa units). By applying the linear 
regression fit, the pKa predictions are closer to experiment 
using one conformation per microstate. Including additional 

Table 4  Comparison of linear 
regression fit macroscopic pKa 
values via direct (D), vertical 
(V), and adiabatic (A) schemes 
with experiment

a pKa,2
b pKa,3

Molecule ID pKa expt. Scheme

D D + S V V + S A A + S

SM01 9.53 ± 0.01 9.79 9.89 8.96 10.07 9.75 9.73
SM02 5.03 ± 0.01 5.50 5.41 5.55 5.21 4.96 5.16
SM03 7.02 ± 0.01 7.12 6.81 6.76 7.39 7.35 7.36
SM04 6.02 ± 0.01 6.29 6.21 7.00 7.11 6.53 6.57
SM05 4.59 ± 0.01 4.35 4.12 5.84 5.41 3.81 3.71
SM06 3.03 ± 0.04 2.73 2.46 2.59 2.62 3.04 3.08
SM06a 11.74 ± 0.01 11.26 11.01 11.89 11.94 11.08 11.22
SM07 6.08 ± 0.01 6.79 6.68 7.08 6.77 6.26 6.27
SM08 4.22 ± 0.01 5.52 5.56 5.22 6.30 5.17 5.25
SM09 5.37 ± 0.01 5.62 5.53 5.38 5.47 5.48 5.57
SM10 9.02 ± 0.01 8.23 7.91 6.56 7.25 7.63 7.72
SM11 3.89 ± 0.01 3.93 4.00 4.52 4.36 4.11 4.20
SM12 5.28 ± 0.01 5.26 5.19 5.54 5.22 5.09 5.18
SM13 5.77 ± 0.01 5.23 5.15 5.74 5.81 5.78 5.79
SM14 2.58 ± 0.01 1.65 1.44 2.16 2.16 2.04 2.13
SM14a 5.30 ± 0.01 5.37 5.30 5.23 5.33 5.48 5.50
SM15 4.70 ± 0.01 4.64 4.54 4.98 4.64 4.66 4.70
SM15a 8.94 ± 0.01 9.00 9.13 8.05 9.18 9.07 8.99
SM16 5.37 ± 0.01 4.55 4.58 4.97 4.68 5.10 5.24
SM16a 10.65 ± 0.01 9.70 9.26 8.95 9.64 9.58 9.53
SM17 3.16 ± 0.01 3.17 3.31 3.5 3.28 3.66 3.72
SM18 2.15 ± 0.02 3.46 3.30 4.22 3.73 3.72 3.84
SM18a 9.58 ± 0.03 8.53 8.42 8.13 9.09 9.08 9.14
SM18b 11.02 ± 0.04 10.44 9.94 9.08 10.04 11.42 11.44
SM19 9.56 ± 0.02 8.68 8.40 8.68 9.40 8.73 8.86
SM20 5.70 ± 0.03 5.26 4.98 5.37 6.03 5.52 5.79
SM21 4.10 ± 0.01 3.48 3.36 4.05 3.65 3.55 3.82
SM22 2.40 ± 0.02 4.30 4.18 4.43 4.07 4.19 4.00
SM22a 7.43 ± 0.01 8.11 7.46 7.83 8.36 8.17 8.11
SM23 5.45 ± 0.01 4.23 4.30 4.33 4.15 5.88 6.00
SM24 2.60 ± 0.01 4.47 4.43 4.27 4.18 4.56 4.37
MSE − 0.04 − 0.18 − 0.06 0.17 0.11 0.15
MAE 0.64 0.71 0.90 0.67 0.57 0.54
MaxD 1.90 1.83 2.46 2.08 1.96 1.77
RMSE 0.82 0.89 1.11 0.89 0.76 0.73
R2 0.91 0.90 0.85 0.90 0.93 0.93
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conformations per microstate yields a maximum difference 
of 0.3 pKa units (Table S5).

Conclusion

In this study, three calculations schemes were used to predict 
the pKa of molecules as a part of the SAMPL6 challenge. 
The adiabatic scheme yields more accurate pKa predictions 
than the direct and vertical schemes. Using a larger basis 
set with the adiabatic scheme yields the best results among 
the other schemes, yielding an RMSE of 1.40 pKa units. A 
combination of popular and inexpensive methods (M06-2X/
Pople basis sets (6-31G(d)/6-311G(d,p) or 6-31+G(d)/6-
311++G(d,p))//SMD) was used in our approach, which 
means that this approach can be carried out in most popular 
software packages. Without additional parameterization, we 
have a very encouraging result with an R2 of 0.93 by using 
different basis sets for different charged species. However, 
if a linear regression fit is applied, the pKa predictions are 
improved (RMSE of 0.73 and  R2 of 0.94). This approach 
can be further improved as there are still multiple sources 
of error from the electronic structure method, basis set, and 
solvation model.
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