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Abstract
Enzymes with a high selectivity are desirable for improving economics of chemical synthesis of enantiopure compounds. To 
improve enzyme selectivity mutations are often introduced near the catalytic active site. In this compact environment epistatic 
interactions between residues, where contributions to selectivity are non-additive, play a significant role in determining the 
degree of selectivity. Using support vector machine regression models we map mutations to the experimentally character-
ised enantioselectivities for a set of 136 variants of the epoxide hydrolase from the fungus Aspergillus niger (AnEH). We 
investigate whether the influence a mutation has on enzyme selectivity can be accurately predicted through linear models, 
and whether prediction accuracy can be improved using higher-order counterparts. Comparing linear and polynomial degree 
= 2 models, mean Pearson coefficients (r) from 50× 5-fold cross-validation increase from 0.84 to 0.91 respectively. Equiva-
lent models tested on interaction-minimised sequences achieve values of r = 0.90 and r = 0.93 . As expected, testing on a 
simulated control data set with no interactions results in no significant improvements from higher-order models. Additional 
experimentally derived AnEH mutants are tested with linear and polynomial degree = 2 models, with values increasing 
from r = 0.51 to r = 0.87 respectively. The study demonstrates that linear models perform well, however the representation 
of epistatic interactions in predictive models improves identification of selectivity-enhancing mutations. The improvement 
is attributed to higher-order kernel functions that represent epistatic interactions between residues.

Keywords  Epoxide hydrolase · Aspergillus niger · Support vector machine · Non-additive · Fitness · Bioinformatics · 
Machine learning

Introduction

Enzymes with high selectivity are desirable to the bio-
chemical and pharmaceutical industry for their potential to 
increase yields of enantiopure chemical and drug products, 
improve efficiency of bio-transformations and lower envi-
ronmental impacts through reduction of chemical waste. 
Improvements in enantioselectivity, where one optically pure 

enantiomer is preferentially produced from a racemic sub-
strate, are sought, in part, to address regulatory requirements 
enforced by drug regulation agencies [1–3]. To improve 
enzyme selectivity the most effective mutations are often 
introduced within the active site region where direct interac-
tions with a substrate can occur [4, 5]. Epistatic interactions 
between residues within the active site region also play a 
significant role in influencing enzyme selectivity [5]. An 
epistatic interaction exists between two or more residues 
when their combined contribution to enzyme fitness devi-
ates from that expected by simply adding their individual 
contributions, i.e. non-additive vs additive [6]. Non-additive 
fitness contributions will complicate the exploration of the 
“fitness landscape” by making its topology more rugged [6, 
7]. It has not been established whether modelling sequence-
activity relationships under the assumption of additivity 
[8–11] is sufficient to accurately predict beneficial muta-
tions and their contributions to enzyme selectivity in the 
presence of strong epistatic effects, or whether non-additive 
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methods [10, 12–14] are required. In this study linear mod-
els and counterparts representing both pairwise and higher-
order (three or more) residue interactions are constructed 
and evaluated on enzymes whose enantioselectivities have 
been experimentally characterised.

Previous modelling studies predicting the preferred enan-
tiomer and the degree of enantioselectivity have primarily 
used quantitative structure-activity relationship (QSAR) 
or molecular dynamics methods [15–26]. Such methods 
often require high-resolution protein structures, however 
the rate at which such structures are produced lags signifi-
cantly behind the rate that proteins are sequenced and their 
activities characterised. Methods that guide the choice of 
beneficial mutations from sequence data alone are therefore 
desirable [27].

Machine learning kernel methods [28] including Gauss-
ian processes (GPs) and support vector machines (SVMs) 
have been used to describe the relationship between protein 
sequence and activity/function by representing pairwise 
interactions between residues based on residue–residue con-
tact maps [13, 14, 29]. The assumption is that sequences 
with similar structures, as described by a structure-based 
kernel function, will have similar functions. GP regression 
and classification has been used to improve the thermostabil-
ity, catalytic activity and ligand binding affinity of chimeric 
cytochrome P450 102A1-3 sequences [14], and expression 
and localisation of chimeric channelrhodopsins [29]. SVMs 
have been applied to classify structural viability of chimeric 
cytochrome P450 sequences [13].

Simple models using linear regression have also been suc-
cessfully applied to predict protein functional status, ther-
mostability and biological activity [8, 11, 30–33]. Linear 
models based on characterised sequences generated with 
SCHEMA-guided recombination [8, 11, 30, 31] have dem-
onstrated good predictive ability with minimal sampling of 
the protein fitness landscape accessible by recombination, 
also referred to as the protein recombinational landscape 
[11]. The SCHEMA algorithm [34–36] can be used to design 
libraries of chimeric sequences by taking advantage of the 
structural similarity of recombined sequences. By refer-
ring to a representative crystal structure and an alignment 
of homologous parent template sequences, each potential 
mutant in a library is assigned a disruption score that reflects 
the number of residue–residue contacts that would be broken 
due to novel combinations of fragments from parent tem-
plate sequences. Potential cut-points can be then identified 
that minimise the degree of structural disruption in a library, 
i.e. the boundaries of structural sub-units or blocks [37]. 
Proteins sampled from these optimised libraries are more 
likely to be folded and functional. Minimising the number 
of residue–residue contacts broken during recombination 
will tend to partition epistatic interactions into structural 
sub-units, promoting an additive fitness contribution from 

each fragment [8, 11, 38]. In contrast, when using a focused 
mutagenesis strategy such as saturation mutagenesis [39] 
this partitioning will not occur, thus increasing the likeli-
hood of non-additive fitness contributions.

The combinatorial active site saturation test (CAST) [40] 
is an experimental strategy developed to focus the explora-
tion of the fitness landscape, producing what is often coined 
“small, but smart” sequence libraries. In this approach a 
number of residues with side-chains within the binding 
pocket of the enzyme are selected and assigned to groups of 
2–3 residues. These groups are then subjected to (iterative) 
saturation mutagenesis (ISM) [41]. Simultaneous mutation 
of groups of residues allows exploration of potentially ben-
eficial epistatic interactions.

Gumulya et al. [42] applied iterative CASTing to eight 
residues—Leu215, Arg219, Phe244, Leu249, Thr317, 
Thr318, Leu349 and Cys350—lining the binding pocket of 
the epoxide hydrolase (EH) from Aspergillus niger (AnEH) 
in order to improve the enantioselective preference for the 
(S) enantiomer of glycidyl phenyl ether. The study produced 
a set of mutants with a wide range of improved enantiose-
lectivities. Strong cooperative epistatic interactions between 
residues were observed along a number of the explored 
evolutionary pathways, as such this data set is suited to the 
development and evaluation of higher-order models.

In this study we determine whether the modelling of epi-
static interactions for the above described set of experimen-
tally characterised AnEH sequence variants [42] can improve 
the prediction of selectivity-enhancing mutations. Support 
vector regression (SVR) models are fitted with lower-order 
kernels and counterparts representing natural substitution 
rates and higher-order interactions between residues. Models 
are evaluated on a small set of AnEH mutants from separate 
protein engineering studies [43–45]. In addition, models are 
evaluated on two sequence-activity data sets with minimised 
and removed epistatic interactions—the thermostability data 
for a set of chimeric bacterial cytochrome P450 sequences 
[8] and a simulated control AnEH data set where each muta-
tion contributes additively to fitness.

Methods

Experimental data: AnEH sequences

A set of 145 AnEH sequence variants (including wild type) 
and their respective enantioselectivities for (S)-glycidyl 
phenyl ether was obtained [42] (Supplementary material 
Table S1). The enantioselectivity measurements are reported 
as the enantiomeric ratio between the fast and slow reacting 
enantiomers—an E value [46, 47] ranging from E = 5 (wild 
type) to E = 158 . Generally enzymes with E values < 15 
are considered not practically useful, 15–30 are moderate 
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and > 30 are excellent [47]. Nine of the sequences were 
observed to have identical amino acid insertions to at least 
one other, but also differing E values (Supplementary mate-
rial Table S4). Seven pairs of sequences have E value differ-
ences ranging from 1 to 4, while two pairs have differences 
of 10 and 22. The mean difference for all nine pairs is 5.33. 
E values for the pairs of sequences are well distributed, rang-
ing from 24 to 88 with a mean of 50.88. For each pair of 
duplicate sequences one has been removed and the average 
of their E values assigned to the remaining sequence, leaving 
136 unique sequences for the purpose of generating models.

E values for these AnEH variants have been calculated 
from the enantiomeric excess (e.e.) values for the substrate 
(s) and product (p) using Eq. (1) [48].

Experimental data: CYP102A sequences

If a given set of residues have no epistatic interactions, no 
improvement in predictive accuracy would be expected 
of a model that represents such interactions compared to 
one that assumes residue independence. To represent this 
scenario as closely as possible with experimental data, an 
additional interaction-minimised data set of 241 chimeric 
bacterial cytochrome P450 sequences and their respective 
thermostabilities was obtained (Supplementary material 
Table S2). The thermostability measurements are reported 
as the temperature at which 50% of the protein is inacti-
vated after 10 minutes ( T 10

50
). These sequences are generated 

from the SCHEMA-guided recombination of eight sequence 
blocks of the haem domains of cytochrome P450 BM3 
(CYP102A1) from Bacillus megaterium and its homologues 
(CYP102A2-3) [8]. Of the approximately 500 residue–resi-
due interactions in the original parent template structure, 
the average inter-block interactions broken in these chimeric 
sequences is fewer than 30 [8]. Although comparatively few 
residue–residue interactions are broken, it is expected that 
the influence of epistatic effects on the thermostability is 
largely reduced rather than completely non-existent. For a 
number of the sequences a deletion was observed at posi-
tions 230, 465 and 466. These positions are removed from 
all sequences in order to simplify analysis.

Simulated data: additive AnEH sequences

Using the 136 AnEH sequences described above as a tem-
plate, a control set of sequences are generated where epi-
static effects have been removed, i.e. the fitness contribu-
tion of each residue is made to be additive (Supplementary 

(1)E =

ln
e.e.p(1−e.e.s)

(e.e.p+e.e.s)

ln
e.e.p(1+e.e.s)

(e.e.p+e.e.s)

material Table S3). To model an additive fitness landscape, 
an NK-model as described by Kauffman and Weinberger 
[49] is applied. K is a coupling parameter that controls the 
degree of interactions between residues; by setting K = 0 the 
fitness contribution from each residue is treated as independ-
ent. The total fitness y of an N length sequence is defined as 
the average fitness contribution fi of its constituent amino 
acids (Eq. 2).

Fitness contributions for each amino acid per mutation site 
are drawn from an 8× 20 look-up table (Supplementary 
material Table S3), where each entry is randomly sampled 
from a gamma distribution with a mean and variance of 0.35 
[50]. By sampling from this distribution, residues will tend 
to be neutral (with low fitness contributions) and a few resi-
dues will tend to have a large impact on fitness [50]. For ease 
of comparison, fitness values are scaled to the same range 
as the E values observed in the experimentally derived set 
of AnEH sequences. A small amount of noise is then added 
to the calculated total fitness values for each sequence to 
represent possible experimental error. Error values are ran-
domly sampled from a uniform distribution U(−20, 20) that 
approximates the maximum range of E value differences 
observed in the set of duplicate AnEH sequences (Supple-
mentary material Table S4).

Support vector machines and kernel functions

SVMs [51–54] find the maximum margin hyper-
plane between a set of training sequence-activity data 
{(x1, y1), (x2, y2),… , (xn, yn)} in a given input space  , where 
x is the sequence content and y the observed activity. This 
is achieved through the use of a kernel function K(x, x�) , 
which maps the set of input {xi} into a feature space  by 
calculating the similarity between pairs of inputs x and x′ . 
The separating hyperplane in  may be non-linear in  . For 
SVR, linear regression is performed on {xi} points once they 
have been mapped to  . SVMs have been used extensively in 
the field of chemoinformatics to identify potential lead com-
pounds and ligand interaction partners [55]. Sequences (or 
ligands) are often encoded as numeric vectors representing 
a number of physicochemical properties [56]. The expecta-
tion is that sequences or individual residues with similar 
encodings will have similar activities and functions [57, 58]. 
We adapt a kernel function proposed by Sulimova et al.[59] 
to represent pairwise and higher-order interactions between 
residues. The kernel function itself is based on the pioneer-
ing work of Dayhoff and colleagues [60] that saw the intro-
duction of a Markovian based model of protein evolution and 
the production of a number of amino acid instantaneous rate 

(2)y =
1

N

N∑

i

fi
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matrices (Q), which have been the basis for the development 
of a number of models of evolution [61–63]. A conditional 
probability matrix P(t) containing the probabilities of an 
amino acid i changing into another amino acid j after a given 
time t ≥ 0 is derived directly from Q [64] through

Q can be any rate matrix estimated through Dayhoff or 
Henikoff [65] techniques. For the evolutionary model based 
kernel function used in the present study the Le and Gascuel 
rate matrix is used [63], due to the incorporation of evolu-
tionary rate variability and use of a larger and more diverse 
set of sequences in its construction. Given the above, an 
amino acid at the ith position in a given sequence is encoded 
as a feature vector

where aak is the kth possible ancestral amino acid within 
a standard 20 amino acid alphabet, P(aak) the probability 
of the ancestral amino acid, and P(aai|aak) the conditional 
probability of observing the transition from the ancestral 
to the extant amino acid at time t. As such, each N length 
sequence x is fully encoded as the concatenation ⌢ of its 
respective vectors

In its simplest form the function assumes linearity between 
the individual positional terms, i.e. K(x, x�) = xTx� . This 
representation treats residues as not interacting with other 
residues.

This linear implementation has been extended to repre-
sent pairwise and higher-order residue interactions, specifi-
cally as both a polynomial and Gaussian radial basis func-
tion (RBF)

where d and � are additional kernel parameters and c an 
arbitrary constant.

For a simple baseline comparison the Spectrum kernel 
[66] is also applied. A sequence is encoded as the count 
of each k-mer l subsequence, whose characters are derived 
from an alphabet 

where �(x) is a mapping of x from an input space  into  , 
�l(x) is the number of times l occurs in x and k �{1, 2, 3, 4} . 
A k-mer size of 1 is simply the frequency of each amino 
acid within a sequence. In contrast, the use of k-mer sizes 

(3)P(t) = exptQ

(4)
aat

i
=

�√
P(aak)

t P(aai�aak)t,

k = 1,… , k = 20) ∈ ℝ
20

(5)x =
(
ℝ

20

aat
i=1

⌢ ℝ
20

aat
i=2

⌢ ...ℝ20

aat
i=N

)

(6)Polynomial K(x, x�) = (xTx� + c)d

(7)RBF K(x, x�) = exp
(
−�||x − x�||2

)

(8)�(x) = (�l(x))l∈k

≥ 2 captures the co-occurrence of multiple consecutive resi-
dues, providing a simplified representation of residue–resi-
due interactions.

Evaluating SVR models

Once optimal hyperparameters are found (Supplementary 
material S5), 50× 5-fold ( 80% training set, 20% test set) 
cross-validation (CV) is performed for all kernel functions. 
Pearson correlation coefficients (r) are recorded for each CV 
fold and the mean r from the resulting 250 models is used to 
compare the kernel functions. In addition, the mean absolute 
error (MAE) is calculated for each CV fold. To test the sta-
tistical significance of the differences between models fitted 
with each kernel function, a two-sided unpaired Welch t test 
at a 99% confidence interval is used. To compensate for bias 
from repeated CV, MAE and Fisher transformed r values are 
generated from a single stratified tenfold CV. For stratified 
CV each fold has approximately the same mean target value 
and is representative of the full data set.

The predictive performance of SVR models when trained 
on sequence-activity data sets of varying size is evaluated 
using the following procedure [14]: (i) a subset of sequences 
are randomly sampled from the full data set, (ii) models 
are trained on this subset, (iii) the activity/fitness values for 
unsampled sequences are predicted, and (iv) the predictive 
ability of each model is evaluated by calculating its respec-
tive r and MAE values. This procedure is repeated 1000 
times for each sample size while increasing the size of the 
training sample within the range of 15–115 for the experi-
mental and simulated AnEH and CYP102A data sets. As the 
CYP102A data set includes a larger number of sequences, 
the procedure is extended to sample sizes from 115 to 215 
and repeated 100 times to reduce computation time. For the 
experimental AnEH data set, a single SVR model is con-
structed for each kernel function by training on the full set of 
136 variants. The predictive ability of the resulting models 
is evaluated by predicting the E values for an additional set 
of 16 mutants produced during previous protein engineer-
ing studies [43–45] (Supplementary material Table S6). The 
respective enantioselective preferences for these 16 mutants 
for (S)-glycidyl phenyl ether have also been characterised. 
For two of the mutants the reported E values are calculated 
based on the relationship between the extent of conversion 
(c) and e.e.p according to Eq. (9) [67].

E values obtained through different methods will vary 
depending on a number of factors [46]. For consistency, 
reported values for c, e.e.p and e.e.s [43] are used to calculate 
the E values using Eq. (1) for these two mutants. For nine of 

(9)E =

ln[1 − c(1 + e.e.p)]

ln[1 − c(1 − e.e.p)]
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these mutants amino acid content at one or more mutation 
sites is not seen in the training data at equivalent sites (Sup-
plementary material Table S6).

Implementation

An in-house application was developed in Java to construct 
and evaluate SVR models. The implementation is based on 
an adaption of the LIBSVM package, version 2.82 [68]. 
Code developed for this study is available on request to 
authors.

Results

Pairwise and higher‑order models predict E values 
with improved accuracy for AnEH variants

From the SVR 50× 5-fold CV results for the experimen-
tally derived AnEH sequences (Table 1), the polynomial and 

RBF models all demonstrate similar predictive ability with a 
mean r of 0.91. The linear model produces a lower mean r of 
0.84. Of the Spectrum kernel models, the 2- and 3-mer mod-
els perform best with a mean r of 0.89. The 1- and 4-mer 
models have a lower mean r of 0.83 and 0.84 respectively. 
Polynomial d = 2 and d = 3 models demonstrate the lowest 
mean MAEs, with values of 11.42 and 11.49 respectively. 
Other models have mean MAEs, from lowest to highest, 
of RBF: 12.60, Spectrum 2-mer: 12.96, Spectrum 3-mer: 
13.14, Spectrum 4-mer: 14.31, Spectrum 1-mer: 15.92 and 
linear: 16.1. Comparing the mean MAE for each model type 
against the experimental error of the nine pairs of duplicate 
sequences (Supplementary material Table S4), mean MAEs 
are higher than the average experimental error ( ±11–16 vs 
± 5.33). Mean r values and MAEs for AnEH models and 
respective hyperparameters are summarised in Table 1.

Comparing the average predictions from 50× 5-fold 
CV for models fitted with the linear and polynomial d = 2 
functions (Fig. 1a), the polynomial d = 2 models have sub-
stantially lower error for sequences with higher E values, 

Table 1   50× 5-fold cross-validation results and hyperparameters 
for support vector regression (SVR) models. Models are trained and 
tested on experimentally derived sequence-activity data for wild type 
variants and mutants derived from Aspergillus niger epoxide hydro-
lase (AnEH) and chimeric bacterial P450s (CYP102A1-3), and on 

simulated AnEH sequences with additive fitnesses. The Pearson cor-
relation coefficient (r) and mean absolute error (MAE) is calculated 
per fold and the average taken over 250 models. SVR models for the 
simulated AnEH sequences have the same hyperparameters as the 
experimentally derived counterpart

The best mean Pearson correlation and MAE values for each data set are highlighted in bold

Data Kernel function Avg. Pearson ( � ± �) Avg. MAE ( � ± �) C � �

AnEH Linear 0.84 ± 0.07 16.10 ± 3.04 1E + 01 1E − 03 10
Polynomial d = 2 �.�� ± �.�� ��.�� ± �.�� 1E + 01 1E − 03
Polynomial d = 3 �.�� ± �.�� 11.49 ± 2.00 1E + 02 1E − 02
RBF �.�� ± �.�� 12.60 ± 2.53 1E + 02 1E − 03
Spectrum 1-mer 0.84 ± 0.06 15.92 ± 2.79 1E − 01 1E − 01
Spectrum 2-mer 0.89 ± 0.04 12.96 ± 2.41 1E − 01 1E − 03
Spectrum 3-mer 0.89 ± 0.04 13.14 ± 2.54 1E − 01 1E − 02
Spectrum 4-mer 0.83 ± 0.06 14.31 ± 2.60 1E − 01 1E − 02

CYP102A Linear 0.90 ± 0.03 1.90 ± 0.21 1E + 03 1E − 05 0.001
Polynomial d = 2 �.�� ± �.�� �.�� ± �.�� 1E − 03 1E − 02
Polynomial d = 3 0.92 ± 0.02 1.70 ± 0.19 1E − 04 1E − 02
RBF 0.91 ± 0.02 1.79 ± 0.19 1E + 03 1E − 02
Spectrum 1-mer 0.89 ± 0.03 1.92 ± 0.20 1E − 02 1E − 03
Spectrum 2-mer 0.90 ± 0.03 1.89 ± 0.22 1E − 03 1E − 02
Spectrum 3-mer 0.90 ± 0.03 1.89 ± 0.21 1E − 03 1E − 05
Spectrum 4-mer 0.89 ± 0.03 1.89 ± 0.23 1E − 03 1E − 03

Simulated AnEH Linear �.�� ± �.�� 13.98 ± 2.58 – – –
Polynomial d = 2 �.�� ± �.�� ��.�� ± �.�� – –
Polynomial d = 3 0.79 ± 0.07 13.59 ± 2.08 – –
RBF 0.80 ± 0.07 13.99 ± 2.70 – –
Spectrum 1-mer 0.62 ± 0.10 20.24 ± 3.19 – –
Spectrum 2-mer 0.77 ± 0.07 16.61 ± 2.50 – –
Spectrum 3-mer 0.78 ± 0.07 14.91 ± 2.46 – –
Spectrum 4-mer 0.76 ± 0.08 14.81 ± 2.75 – –
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Fig. 1   Observed vs average predicted (over 250 models) a E values 
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i.e. those with the strongest cooperative epistatic interac-
tions. The mean MAE for sequences with E values ≥ 100 
is 41.04 and 26.34 for linear and polynomial d = 2 models 
respectively (Supplementary material Table S7). In contrast 
the MAE is 12.56 and 9.24 for sequences whose E values 
are < 100 . Gradually increasing the number of sequences 
trained on from 15 to 115, the polynomial models have 
higher mean r values across all training set sizes compared 
to other models (Fig. 1b). RBF, Spectrum 2- and 3-mer mod-
els have slightly lower average r values, while linear and 
Spectrum 1- and 4-mer models display markedly lower r 
values compared to the other model types across most sam-
ple sizes. On average when trained on approximately 100 
sequences, linear and Spectrum 1- and 4-mer models have 
the same predictive power as the polynomial models trained 
on approximately 20 sequences ( r ≈ 0.8). Similar results are 
observed for mean MAE values—the polynomial models 
have a lower mean MAE across all sample sizes compared to 

all other models (Supplementary material Fig. S8). On aver-
age polynomial models require approximately 40 sequences 
to achieve a mean MAE of 10, whereas linear and Spectrum 
1- and 4-mer models require approximately 60.

Comparing the distributions of r values from the strati-
fied tenfold CV (Fig. 2a), functions that result in significant 
improvements in model predictive ability compared to lin-
ear models include the polynomial d = 2 (p value ≤ 0.01), 
d = 3 (p value ≤ 0.01), RBF (p value ≤ 0.01 ) and Spectrum 
3-mer (p value ≤ 0.05 ) functions. MAE distributions pro-
duced by polynomial d = 2 (p value ≤ 0.01), d = 3 (p value 
≤ 0.01 ) and RBF (p value ≤ 0.05 ) models are significantly 
improved compared to linear models. Significance values for 
the comparison of all functions from stratified tenfold CV 
are provided as Supplementary material Fig. S9 (a and b).

For the test set of 16 AnEH mutants (Fig. 3) the polyno-
mial d = 2 and d = 3 models have the highest correlation 
between observed and predicted E values, with r values 
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of 0.87 and 0.89 respectively. RBF and Spectrum 4-mer 
models also display relatively high r values of 0.75 and 0.7 
respectively. Other models have lower predictive power with 
r values of Spectrum 3-mer: 0.59, Spectrum 1-mer: 0.55, 
Spectrum 2-mer: 0.51 and linear: 0.51. Polynomial d = 2 
and d = 3 models also have the lowest error with MAEs of 
4.35 and 4.23 respectively. Other models have MAEs, from 
lowest to highest, of Spectrum 1-mer: 6.14, linear: 6.43, 
Spectrum 2-mer: 7.5, RBF: 9.7, Spectrum 3-mer: 9.72 and 
Spectrum 4-mer: 16.18.

Minimisation of epistatic interactions in CYP102A 
variants results in similar accuracy across all models

For the CYP102A data set, the polynomial d = 2 , d = 3 and 
RBF models have approximately the same predictive ability 
with mean r values from 50× 5-fold CV of 0.93, 0.92 and 
0.91 respectively. The linear and Spectrum models also all 
have r values of approximately 0.90. Polynomial d = 2 and 
d = 3 models have the lowest mean MAEs with values of 
1.60 and 1.70. All other models have mean MAEs of approx-
imately 1.9. Mean r and MAE values for each CYP102A 
model and respective hyperparameters are summarised in 
Table 1. Average predictions from 50× 5-fold CV for linear 
and polynomial d = 2 models (Fig. 1c) shows both models 
are similar in accuracy for sequences across the full range 
of thermostabilities. Gradually increasing the number of 

training sequences from 15 to 115 shows the polynomial and 
RBF models marginally outperform other models in terms 
of the mean r value across most sample sizes (Fig. 1d). At 
higher sample sizes ( > 115), mean r values for polynomial 
and RBF models continue to improve up to approximately 
0.92 while r values for linear and Spectrum models level off 
at approximately 0.87.

From the stratified tenfold CV, only the polynomial d = 2 
models demonstrate significant improvement in r (p value 
≤ 0.05 ) and MAE (p value ≤ 0.01 ) values compared to those 
models fitted with a linear function (Fig. 2c, d). Significance 
values for the comparison of all functions from stratified 
tenfold CV are provided as Supplementary material Fig. S9 
(c and d).

A lack of epistatic interactions results in no gain 
in accuracy from pairwise and higher‑order 
functions in simulated AnEH sequences

For the simulated AnEH sequences, with the exception of 
the Spectrum 1-mer function, models produce a mean r from 
50 × 5 CV of approximately 0.8. The r values from highest 
to lowest being polynomial d = 2 and linear: 0.82, RBF: 0.8, 
polynomial d = 3 : 0.79, Spectrum 3-mer: 0.78, Spectrum 
2-mer: 0.77 and Spectrum 4-mer: 0.76. Models fitted with 
a Spectrum 1-mer function have a substantially lower mean 
r value of 0.62. The mean MAEs produced by most models 
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are similar and are polynomial d = 2 : 12.4, polynomial 
d = 3 : 13.59, linear: 13.98, RBF: 13.99, Spectrum 4-mer: 
14.81 and Spectrum 3-mer: 14.91. Spectrum 1- and 2-mer 
models have higher mean MAEs of 20.24 and 16.61 respec-
tively. Mean r values and MAEs for the simulated AnEH 
models and respective hyperparameters are summarised in 
Table 1. Comparing the average predictions from 50× 5-fold 
CV for models fitted with the linear and polynomial d = 2 
functions (Fig. 1e) shows both models produce similar pre-
dictions and error for the full range of simulated E values.

Gradually increasing the size of the training data from 15 
to 115, linear and polynomial d = 2 models have approxi-
mately equal r values at all samples sizes (Fig.1f). Polyno-
mial d = 3 and RBF models (at sample sizes > 65 ) have mar-
ginally lower mean r values. Spectrum 2- and 3-mer models 
have slightly lower mean r values compared to polynomial 
d = 3 models at all sample sizes. Spectrum 4-mer models 
on average require > 75 sequences to have r values approxi-
mately equal to Spectrum 2- and 3-mer models ( r ≈ 0.73

). The Spectrum 1-mer models have substantially lower 
mean r values compared to all other models, only achieving 
a maximum r value of approximately 0.6 at sample sizes 
of > 90 . Differences in the mean r values between linear, 
polynomial d = 2 and d = 3 models, and between Spectrum 
2- and 3-mer models, are largely reduced when removing 
the error randomly assigned to the simulated fitness values 
(Supplementary material Fig. S10).

The distributions of r and MAE values from stratified 
tenfold CV (Fig. 2e, f) show that models fitted with any of 
the kernel functions, with the exception of Spectrum 1-mer, 
are not significantly different from those fitted with a linear 
function. Models fitted with the Spectrum 1-mer function 
have significantly lower r (p value ≤ 0.01 ) and higher MAE 
(p value ≤ 0.01 ) values compared to linear models. Signifi-
cance values for the comparison of all functions from strati-
fied tenfold CV are provided as Supplementary material Fig. 
S9 (e and f).

Discussion and conclusions

There are a number of significant challenges that are faced 
in the engineering of new and useful biocatalysts [69]. One 
challenge is the presence of epistatic interactions which, 
although potentially beneficial to the activity of an enzyme, 
are difficult to study experimentally. Computational methods 
can be applied to capture and model the complex relation-
ship between residues and enzyme activity [27]. The use 
of structural data, though very informative, will assume 
that the crystal structure is representative of reaction con-
ditions. By developing predictive models from experimen-
tal data it is possible to implicitly capture the factors that 
contribute to the activity of an enzyme. These models can 

guide exploration of the fitness landscape to those areas 
more likely to yield proteins with useful properties [8–11, 
14, 23, 29–31, 70, 71]. As more cost-effective assaying and 
sequencing technologies are developed, the need for meth-
ods that can learn from characterised sequences and guide 
protein design will increase.

In this study we demonstrate that SVR models represent-
ing pairwise and higher-order residue interactions, i.e. with 
polynomial and RBF kernel functions, predict enantiose-
lectivity-enhancing mutations for a set of experimentally 
characterised AnEH variants with significantly improved 
accuracy compared to models simply using amino acid fre-
quencies or linear representations. Evaluating models on a 
control set of simulated AnEH sequences with additive fit-
nesses and an additional set of AnEH mutants with experi-
mentally characterised E values supports these observa-
tions. Models representing residue interactions also explain 
more of the variation in enantioselectivity measurements, 
able to learn from smaller sequence-activity data sets. For 
the experimental AnEH sequences it is interesting to note 
that models fitted with the Spectrum 1-mer function, rep-
resenting sequences simply as their respective amino acid 
frequencies, perform largely equivalently to those models fit-
ted with a linear function. When fitted with Spectrum kernel 
functions with k-mer sizes of 2 and 3, models also display 
comparatively high predictive ability, likely due to the sim-
plified representation of residue–residue interactions. The 
lower predictive ability resulting from the use of larger k-
mer sizes is likely due to the generation of extremely sparse 
sequence encodings, i.e. most large k-mers will not appear 
in the training set of sequences and receive values of zero, 
or only appear once.

A major concern for predictive models is whether they 
are overfitting the data. One indicator of overfitting is when 
model error is lower than experimental error. The focus of 
the present study is the modelling of enantioselectivity E 
values for AnEH variants. The error in E value measure-
ments for biocatalysis is rarely reported in the literature, 
partly due to the difficulty in comparing values from differ-
ent calculation methods and reaction conditions, e.g. pH and 
temperature. Where experimental error has been reported, 
values range from less than ± 5 [72–76] to (significantly) 
higher [72, 73, 77]. We estimate the true experimental error 
by referring to the AnEH sequences with multiple E value 
measurements (Supplementary material Table S4), whose 
average error is ± 5.33 . The errors of the predictions (calcu-
lated as MAEs) are generally greater than the errors gauged 
from the experimental data ( ±11–16), meaning that over-
fitting does not explain the differences in prediction accuracy 
between the functions used to fit the models.

The study also demonstrates that if a library design strat-
egy is used that partitions epistatic interactions into struc-
tural sub-units, such as SCHEMA-guided recombination, 
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models based on amino acid frequencies or assumptions of 
additivity will have predictive accuracies largely equivalent 
to pairwise and higher-order counterparts. However, some 
additional predictive power can be gained from pairwise and 
higher-order models when they are constructed on a greater 
number of sequences. These observations are exemplified 
by the prediction of thermostabilities for the set of chimeric 
bacterial P450s. The results from this study highlight the 
sensitivity of different engineering strategies to epistatic 
interactions. The choice of strategy should therefore be con-
sidered carefully given its implications for the predictability 
of enzyme activity in computational studies.
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