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Introduction

Predicting protein–ligand binding affinities remains a dif-
ficult and important area of research in the field of drug 
design. As massive libraries of small molecules are being 
developed and synthesized [1, 2], it is increasingly necessary 
that accurate ranking of compounds’ binding affinities be a 
central part of virtual screening and drug development. To 
aid in the evaluation and progression of the field of drug dis-
covery, the NIH in partnership with the University of Cali-
fornia San Diego (UCSD) initiated the Drug Design Data 
Resource (D3R) project in 2015 [3]. The challenges thus 
far have been broken into three sub-challenges that evaluate 
strategies for pose prediction, ranking affinities, and relative 
free energy evaluation. When trying to evaluate the ability 
of a protein to bind to a small molecule, a likely pose must 
first be generated. This is the first step of docking meth-
ods. Docking strategies generally fall into three categories: 
stochastic methods such as Monte Carlo, systematically 
searching all available degrees of freedom, and simulation 
using molecular dynamics methods [4]. The next step is pose 
scoring, which is often done as part of the docking pro-
gram. Scoring functions can be classified as belonging to 
three groups: empirical scoring functions, force-field based 
scoring functions, and knowledge-based scoring functions 
[4]. These strategies can provide reasonable accuracy when 
evaluating large sets of diverse compounds. However, once 
compounds are identified, ranking and evaluating binding 
affinities of congeneric compounds remains an open problem 
in the field.
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In previous efforts, the Camacho lab has developed a 
number of tools and strategies to aid in rational drug dis-
covery that have successfully been validated in prospective 
drug discovery challenges. In the 2011 Community Struc-
ture-Activity Resource (CSAR), we developed Smina [5], 
an open-source fork of AutoDock Vina [6] that provides 
enhanced support for minimization and scoring. In the ACS 
2012 Teach-Discover-Treat (TDT) experiment we utilized 
our virtual screening server ZincPharmer [7] and Smina to 
predict the best bound structure of a non-triazolopyrimi-
dine inhibitor and most active compounds [8]. We also have 
developed a number of strategies aimed at identifying ideal 
receptor structure(s) for docking and/or affinity prediction 
[3]. Our results from previous CSAR and D3R competitions 
have shown that selection of an optimal receptor structure(s) 
is target dependent and an important step for both pose and 
affinity prediction, particularly for flexible receptors that 
exhibit diverse conformations. Furthermore, we showed that 
our rigid receptor docking and/or minimization and scoring 
functions like Smina can outperform flexible and other more 
complex methods submitted to these community-wide chal-
lenges [3, 9, 10].

The 2015 D3R grand challenge allowed us to develop 
a number of strategies aimed at identifying ideal receptor 
structure(s) for pose prediction and/or affinity prediction [9]. 
Strategies included methods that utilize all available recep-
tor/ligand co-crystals (referred to as “close” methods), all 
available ligands and a single holo-receptor structure (“min-
cross”), or a single receptor/ligand co-crystal (“cross”). The 
first grand challenge tasked participants with predicting (i) 
binding poses, (ii) affinity rankings, and (iii) relative affinity 
values for compounds that interact with two protein targets: 
heat shock protein 90 (HSP90) and Mitogen-activated pro-
tein kinase kinase kinase kinase 4 (MAP4K4). Based on 
these comprehensive approach to pose and ranking predic-
tion using rigid body docking/minimization, the Camacho 
group obtained the most accurate poses and best overall 
affinity and free energy rankings [3, 9].

Here, we present the results of the most recent chal-
lenge, the D3R grand challenge 2, with similar tasks as 
the 2015 grand challenge but for a new protein target, 
Farnesoid X Receptor (FXR). FXR provided a more chal-
lenging structure than the previous proteins due to the flex-
ibility of its hydrophobic binding pocket that displayed 
significant conformational changes upon ligand binding. 
The challenges were each split into two stages, with the 
first stage including all three aforementioned tasks and the 
second stage consisting of (ii) affinity ranking and (iii) free 
energy prediction after the release of 36 crystal structures 
for compounds in the pose prediction problem of stage 
one. Despite the differences in the target, our approaches 
again predicted the best overall ranking and absolute free 
energies. Based on a rigid receptor structure approach, 

Smina docking and/or minimization of compounds aligned 
to most chemically similar known bound ligands yielded 
the best affinity ranking when compared with other meth-
ods, including flexible docking. On the other hand, our 
community best overall free energy evaluation of con-
generic compounds entailed a more detailed mapping of 
interactions that required simulations of receptor flexibil-
ity, and a scoring function that explicitly evaluates the 
solvation of hydrophilic and hydrophobic contacts [11]. 
These efforts led to slightly better ranking relative to our 
best performing method in these limited data sets, moti-
vating the inclusion of flexibility to predict more accurate 
binding free energies.

Methods

Data preparation

A total of 102 compounds were provided from D3R in 
SMILES format and converted to 3D structures using Open 
Babel [12]. On our side, we used publicly available ligand-
bound structures of human FXR were downloaded from the 
Protein Data Bank (PDB) [13] (Table S1). These compounds 
formed the training set for pose prediction evaluation and 
receptor selection prior to submission. All structures were 
aligned to the D3R-provided apo structure using the align 
command in PyMOL 1.7.4.5 [14]. This was repeated in stage 
two when crystal structures for compounds from the pose 
prediction section of stage one were released. Available 
IC50 data for compounds (total of 8 unique compounds) 
was acquired from BindingDB [15] using the DISCO cross-
docking server (http://drugquery.csb.pitt.edu/disco/). Each 
test compound as well as the 27 training compounds were 
characterized and fell into five different chemical classes: 
benzimidazoles, isoxazoles, sulfonamides, spiros, and mis-
cellaneous. Figure 1a shows a breakdown of the number of 
compounds that fell into each category for different datasets. 
Additionally, examples of scaffolds for each class are shown 
in Fig. 1b.

Upon alignment of the available crystal structures, two 
main binding conformations were identified (Fig. 1c). The 
first was a near-native like conformation which was observed 
primarily in receptors docked to isoxazole and miscellaneous 
compounds (left). The second conformation was observed 
in receptors bound to benzimidazole compounds and is 
characterized by a shift in two α-helices adjacent to bound 
compounds (right). While no human FXR structures were 
available bound to sulfonamide compounds, homologous 
structures were available (mainly ROR co-crystals such as 
5ETH [16], 4WPF [17], and 4WLB [18]) and had binding 
modes similar to that seen in benzimidazole-bound FXR.

http://drugquery.csb.pitt.edu/disco/
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Affinity ranking

The main ranking submissions were generated using align-
close, dock-close, min-cross, align-cross, and dock-cross 
methods [9]. For the “close” methods, each test compound is 
scored in the receptor corresponding to the most chemically 
similar training compound; whereas the “cross” methods 
place each test compound in the same receptor (Table 1). For 
each test set compound, the most chemically similar training 
compound was identified using Babel 2.3.2 [12] using Tani-
moto score FP3. For align and min methods, 20 conformers 
for each compound were generated using Omega [19] and 

then aligned to the target ligand using Open3DALIGN 2.282 
[20]. Affinity values were generated by either minimization 
(align and min methods) or docking (dock methods) using 
Smina [5]. For docking, up to 20 poses were generated for 
each compound (--num_modes flag). For both methods, 
search was constrained to area of receptor centered on the 
known ligand (--autobox_ligand flag). Compounds were 
then ranked by the pose with best predicted score. For all 
software, default parameters and settings were used unless 
otherwise noted.

As discussed below, choosing the optimal receptor 
in cross methods is a difficult and extremely important 

Fig. 1  Available data used for training. a Breakdown of number of 
compounds in each class that were in: (top) publicly available from 
PDB, second from (top) PDB structures with IC50 data, second from 
(bottom) test compounds from D3R, and (bottom) compounds for 
pose prediction challenge. b Training and test compounds were from 
four main chemical class: (1) spiro—upper left, (2) benzimidazole—

upper right, (3) isoxazole—bottom left, and (4) sulfonamide—bottom 
right. c Overlaid structures of publicly available FXR structures and 
provided apo structure (apo structure shown in green in both). On left 
is apo-like binding mode seen in isoxazoles and on right is shifted 
binding mode seen in benzimidazoles

Table 1  Descriptions of methods for automated affinity ranking

Method Receptor choice Pose selection

Align-close Most similar training compound Conformers aligned to reference receptor ligand and Smina minimization
Dock-close Most similar training compound Smina docking
Min-cross Same receptor for all compounds Conformers aligned to closest training ligand and Smina minimization
Align-cross Same receptor for all compounds Conformers aligned to reference receptor ligand and Smina minimization
Dock-cross Same receptor for all compounds Smina docking
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decision. For each cross method (dock, align, or min), we 
selected receptors from our training set based on three crite-
ria: Spearman coefficient when ranking training compounds 
with known IC50s,  R2 value with known IC50 compounds, 
and the percent of training compounds posed within 2.0 Å 
of the crystal pose. Additionally, rankings were tested both 
with waters present in the crystal structures and with waters 
removed. No conserved waters were identified in training 
structures and removing waters from the receptors generally 
gave better results on training data and so final submissions 
were done with no crystal waters present. For dock-cross, 
receptors were chosen based on best Spearman ρ and best 
 R2, for min-cross, only best Spearman ρ was chosen, and for 
align-cross, a receptor was chosen that gave best combina-
tion of all three criteria. Results of training evaluation for 
both stages are shown in Fig. 2.

Free energy evaluation

For stage two of the competition, the challenge consisted 
of evaluating the relative free energies of binding of two 

sets of congeneric compounds (Set 1 and Set 2). Co-crys-
tal structures for the compounds from the pose prediction 
challenge were released (FXR1-36), and each free energy 
prediction group (Table S2) contained a compound with 
a solved co-crystal structure (Fig. 3). These compounds 
were used as templates to build bound models for the 
full set of congenerics. Both Set 1 and 2 were analyzed 
in the following manner. Force field parameters for each 
compound were generated using Antechamber [21] from 
AMBER14 [22]. Fifty nanosecond molecular dynamics 
simulations were then run for each compound in the cor-
responding crystal structure using AMBER14. Simulations 
were then analyzed and compounds were characterized 
according to solvation of observed contacts (i.e., hydrogen 
bonds and hydrophobic interactions) and their solvation 
(fully, partially, or de-solvated). Relative free energy val-
ues for compounds were then assigned based on observed 
contacts for each simulation using the parametrized con-
tact potential described in [11, 23].

Fig. 2  Training data for a stage one and b stage two. Methods were evaluated based on Spearman correlation,  R2, and the percent of compounds 
within 2.0 Å of the cocrystal pose

Fig. 3  Compounds used for 
basis of comparison for predic-
tion of relative free energies 
of binding for a free energy 
prediction set one (FXR17 scaf-
fold) and b free energy predic-
tion set two (FXR10 scaffold). 
R-group modifications for each 
set are shown in Tables 2 and 3 
respectively
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Results

2015 grand challenge: affinity ranking

The 2015 grand challenge involved two targets. These 
were HSP90 and MAP4K4, which had test compound 
groups of sizes 180 and 18, respectively. The 2015 chal-
lenge was also split into two stages, with new co-crystal 
structures released in stage two, the results of which are 

shown in Fig. 4. As shown in Fig. 4a, six of the seven 
best rankings for HSP90 were submitted by our lab. For 
MAP4K4, we submitted the 5th best ranking, though our 
methodology could have predicted a better ranking if 
we would have selected the optimal receptor for screen-
ing (see below). This was in part due to the small set of 
available data, only 8 MAP4K4 structures had IC50 data 
whereas HSP90 had 69 compounds with IC50 data.

Table 2  SLN representation 
for R-groups for free energy 
prediction Set 1

FXR93 has same R-groups as FXR17 but has nitrogen and carbon atoms switched as marked by *  in 
Fig. 3a

Compound R1 R2

FXR17 O=C(OCC)C[5]=CC=C(N)C=C@6 C[0]=CC=CC=C@1
FXR45 O=C(OCC)C[5]=CC=C(N)C=C@6 FC(F)(F)OC[4]=CC=CC=C@5
FXR46 NC(C[5]=CC=CC=C@6)=O C[0]=CC=CC=C@1
FXRF7 NC[2]=CC(C(OCC)=O)=CC=C@3 C[0]=CC=CC=C@1
FXR48 NC[2]=CC=C(CC(OCC)=O)C=C@3 C[0]=CC=CC=C@1
FXR49 NC[2]=CC=C(C(C)=O)C=C@3 C[0]=CC=CC=C@1
FXR91 NC[2]=CC=CC=C@3 C[0]=CC=CC=C@1
FXR93* NC[2]=CC=CC=C@3 C[0]=CC=CC=C@1
FXR95 NC[2]=CC=C(NC(C)=O)C=C@3 C[0]=CC=CC=C@1
FXR96 NC[2]=CC=C(C(N(C)C)=O)C=C@3 C[0]=CC=CC=C@1
FXR98 NC[2]=CC=C(C(NC)=O)C=C@3 C[0]=CC=CC=C@1
FXR99 NC[2]=CC=C(OC)C=C@3 C[0]=CC=CC=C@1
FXR100 NC[2]=CC=C(S(= O)(N)=O)C=C@3 C[0]=CC=CC=C@1
FXR101 NC[2]=CC=C(C(O)=O)C=C@3 C[0]=CC=CC=C@1
FXR102 NC[2]=CC=C(C(N[9]CCOCC@10)=O)C=C@3 C[0]=CC=CC=C@1

Table 3  SLN representation 
for R-groups for free energy 
prediction Set 2

Compound R1 R2

FXR10 CC[2]=CC=C(C(O)=O)C=C@3 C[0]=CC=CS@1
FXR12 CC[2]=CC=C(C(O)=O)C=C@3 ClC[0]=CC=CC=C(@1)S
FXR38 CC[2]=CC=C(C(OC)=O)C=C@3 C[0]=CC=CS@1
FXR41 CC[2]=CC=C(C(OC)=O)C=C@3 ClC[0]=CC=CC=C(@1)S
FXR73 CC[2]=CC=C(O)C=C@3 C[0]=CC=CS@1
FXR74 CC[2]=CC=C(C(O)=O)C=C@3 BrC[0]=CC=CC=C(@1)S
FXR75 CC[2]=CC=NC=C@3 C[0]=CC=CS@1
FXR76 CC[2]=CC=C(C(O)=O)C=C@3 SC[5]=CC=CC=C@6
FXR77 CC[2]=CC=C(C(O)=O)C=C@3 SC[5]=CC=CC(Cl)=C(@6)Cl
FXR78 CC[2]=CC=C(C(O)=O)C=C@3 SC[5]=C(Cl)C=CC=C(@6)Cl
FXR79 CC[2]=CC=CC(C(O)=O)=C@3 C[0]=CC=CS@1
FXR81 CC[2]=CC=C(C(O)=O)C=C@3 SC[5]=CC=CC(Cl)=C(@6)C
FXR82 CC[2]=CC=C(C(O)=O)C=C@3 SC[5]=CC=CC(Cl)=C(@6)F
FXR83 CC[2]=CC=C(C(O)=O)C=C@3 SC[5]=C(Cl)C=CC(Cl)=C@6
FXR84 CC[2]=CC=C(C(O)=O)C=C@3 SC[5]=C(F)C=CC=C@6
FXR85 CC[2]=CC=C(C(O)=O)C=C@3 SC[5]=C(C)C=CC=C@6
FXR88 CC[2]=CC=C(C(O)=O)C=C@3 SC[5]=C(C(F)(F)F)C=CC=C@6
FXR89 CC[2]=CC=C(C(O)=O)C=C@3 SC[5]=CC=C(Cl)C=C@6
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2016 grand challenge: affinity ranking

Given a set of 102 compounds targeting FXR, the challenge 
was to rank them based on predicted binding affinity. The 
binding pocket of FXR is large and significantly hydropho-
bic, including five Met residues that contact known ligands. 
This present a challenge for pose prediction and affinity 
ranking as many scoring functions place a large weight on 

hydrogen bonds, whereas calibration of different hydropho-
bic contacts such as halogens remains challenging [24, 25]. 
Stage two differed from stage one in that the 36 co-crystal 
structures from stage one pose prediction were made avail-
able to participants.

Because “cross” methods greatly outperformed “close” 
methods in our stage one training, we submitted five differ-
ent rankings for stage one predictions (Fig. 4c). Methods 

Fig. 4  Results of D3R grand challenges affinity ranking sub-chal-
lenge. Our submissions shown as large circles, others as small dia-
monds (or squares for incomplete submissions). a Results for HSP90 

challenge. b Results for MAP4K4 rankings challenge. c Stage one 
ranking results. d Stage two rankings results. e Free energy set one 
prediction results. f Free energy set two prediction results



293J Comput Aided Mol Des (2018) 32:287–297 

1 3

submitted were align-, dock-, and min-cross methods using 
receptor chosen from training data as having the best Spear-
man correlation. Also submitted was dock-cross with recep-
tor chosen for best  R2 value, and dock-cross with best Spear-
man correlation but using only subset of training data from 
benzimidazole compounds. The min-cross and dock-cross 
using best overall Spearman receptors performed the best of 
our methods in this stage, with both overlapping error bars 
with the top overall predictions.

For stage two we submitted seven predictions, includ-
ing dock- and align-close, dock-cross with Spearman and 
 R2 maxing receptors. Additionally, dock- and align-close 
lists with rankings of free energy prediction compounds 
reordered to match our rankings from the free energy evalu-
ation challenge were also submitted. And finally, a ranking 
was submitted where predicted poses were analyzed and re-
ranked manually based on predictions of important interac-
tions observed in free energy prediction analysis. As shown 
in Fig. 4d, we predicted the best overall prediction and 
three out of seven top rankings. These three were all dock 
methods, with the top two being dock-close variants and the 
third being dock-cross with docking against the Spearman-
maximizing receptor.

2016 grand challenge: free energy prediction

Two groups of test compounds were designated for pre-
diction of relative binding affinities. Compounds FXR10, 
FXR12, and FXR17 had solved crystal structures released 
for stage two, allowing for comparison of compound behav-
ior in receptor environments that should be close to ideal. As 
shown in Fig. 4e, f, our results for both groups were amongst 
the best predictions in the competition, with RSMDs of 
0.95 kcal/mol for free energy group one being the top score 
of that section, and 1.39 kcal/mol for free energy group two 
being the third best score.

Discussion

The D3R grand challenges have served as an informa-
tive view at the current state-of-the-art strategies used in 
the community for common drug design problems. These 
challenges are broken down into three sub-challenges that 
are key problems in the field of rational drug design. The 
challenge of pose prediction is at the root of this field. A 
meaningful pose, say, <2 Å is necessary in order for a scor-
ing function to have some hope to select the compound in a 
virtual screen. The next problem is affinity ranking. Given 
a library of compounds, sort them by the strength of their 
interaction with the target of interest. This is an increasingly 
important challenge as our ability to design and create drug-
like compounds improves. With an ever-increasing array of 

possible drug compounds [1, 19], it is necessary to accu-
rately distinguish quality compounds. Finally, the hit-to-lead 
problem requires meaningful predictions of relative binding 
free energies to improve potency and selectivity of hits. The 
grand challenges provide quality blinded datasets for evalua-
tion and comparison of the wide variety of methods tested by 
participants. The Camacho lab has taken part in both grand 
challenges, consistently obtaining best affinity rankings 
using unbiased strategies. Here we discuss our predictions 
in the 2016 grand challenge and compare them with similar 
techniques successfully applied in the 2015 grand challenge.

Affinity ranking

The scoring problem for rational drug design efforts remains 
a challenge because the accuracy of scoring functions 
remains incremental (see, e.g., Fig. 4). In previous commu-
nity-wide competitions it has been shown that top-of-the-
line results can be generated with established scoring func-
tions [26] and automated strategies that make appropriate 
use of known co-crystal structures [3, 4]. Using our previ-
ously described strategies we were able to predict affinity 
rankings with high accuracy. In particular, our dock-close 
and dock-cross methods had Kendall’s tau values of ≥0.4 
as reported by D3R. Surprisingly, in this year’s challenge 
we found that our dock methods outperformed align meth-
ods. This might have been expected for the first stage of the 
challenge since compound similarity was low in stage one, 
with an average Tanimoto similarity of 0.58. However, it 
was also true for the second phase where average Tanimoto 
similarity increased to 0.94. We would have expected that 
align and cross methods would improve more when more 
similar compounds are available. What we found, however, 
is that dock methods improve the most between stages. This 
was the case for FXR because docking is a better alternative 
than minimization in a fully buried rigid pocket. As shown 
in Fig. 4d, for stage 2, docking against binding pockets with 
similar ligands (dock-close) led to high quality predictions 
for ranking compounds based on binding affinity relative to 
simply minimizing the compounds aligned to same ligands 
(align-close).

Retrospective analysis

To see if our choice of receptors for cross methods was opti-
mal, we retrospectively calculated Spearman correlation 
coefficients for all receptors for cross methods against the 
actual affinity values released after the end of the challenge 
(Fig. 5). Analysis of dock-cross receptor choice is shown in 
Fig. 5a. For stage one receptors PDBs 3OLF [27] and 1OSV 
[28] were chosen due to having best Spearman correlation 
and  R2 on the training data, respectively. For stage two, 
PDB 3OLF again resulted in best ranking of training data, 
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however FXR34 had best  R2 of training data. The receptor 
which would have given the best ranking of the FXR com-
pounds for dock-cross was FXR13, which was tied for tenth 
highest Spearman on training set. The receptor we selected 
for min-cross (PDB 3OMK [27]) was the one which resulted 
in best Spearman when ranking our training data prospec-
tively and retrospectively (Fig. 5b). This receptor selection 
was the best available, even with the 36 newly released struc-
tures for stage two. Finally, Spearman correlation coeffi-
cients for FXR compounds against every available cocrystal 
structure and scored using align-cross are shown in Fig. 5c. 
For this method we took a hybrid approach and picked the 
receptor with the best combination of Spearman correlation, 
pose prediction (% of training compounds within 2.0 Å), and 
 R2, which for align-cross was PDB 3RVF [29]. However, 
this led to poor ranking prediction. Retrospectively, the best 
receptor for align-cross would have been PDB 3OOF [27], 
which had the fourth-highest Spearman ρ prospectively.

Additionally, we calculated average root-mean-square 
deviation (RMSD) values for our align-close and min-cross 
methods to compare to our submitted ones for dock-close. 
We found that align-close and min-cross performed similarly 
at pose prediction, with average first-pose RMSD values of 
4.67 and 4.69 Å respectively, significantly higher than the 
3.37 Å for dock-close. This makes sense given the similari-
ties in how poses are generated for each method. We also 
calculated Spearman correlation values for FXR1-36 and 
FXR37-102 subsets of our dock-close submission to see if 
having true crystal structures provided significant improve-
ment over holo-like structures. We found that these sub-
sets had Spearman ρ of 0.482 and 0.486 respectively. This 
shows that while having a true co-crystal structure provides 
a good framework for pose prediction, the ability of force 
fields used in docking methods still has significant area for 
improvement.

Optimal strategies for virtual screening

Table 4 summarizes prospective and retrospective analy-
sis for the 2015 [9] and 2016 (here) grand challenges for 
the automated methods listed in Table 1. For prospective 
rankings, we found that dock-close was the best performing 
method over the course of the two grand challenges (average 
Spearman ρ = 0.43). We see that while dock-close performed 
the best for FXR and HSP90 affinity ranking challenges, it 
was about average for prospective ranking of MAP4K4 and 
the worst at retrospective ranking. For retrospective rank-
ings, we find that dock-cross performed the best (average 
Spearman ρ = 0.49). This is interesting because dock-cross 
didn’t perform the best for any of the targets. Yet, overall 
dock-cross rankings using the optimal receptor always yields 
near-optimal correlations.

Fig. 5  Retrospective analysis of optimal receptor selection of a dock-
cross, b min-cross, and c align-cross methods. Retrospective scoring 
against test data shown in blue, training data shown in green. Large 
circles represent receptors submitted to D3R and are labeled along 
x-axis, light diamonds are all other possible receptors
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The difference between these targets is that overall dock-
close performs better when targets have a well-defined bind-
ing pocket, such as those of FXR and HSP90 (see Fig. 6), 
whereas MAP4K4 is a large open pocket where ranking is 
much more dependent on scoring. Given the known limita-
tions of scoring functions, reliance on scoring is not a good 
strategy and we find that for MAP4K4 optimal rankings 
were obtained for local minimization methods (align and 
min). These methods align conformers to a cocrystal ligand 
which ensure a reasonable starting pose. Using the optimal 
strategy for each target, our approaches would have been 
able to yield a top-of-the-line average Spearman ρ = 0.53. 
We note that these correlations are significantly superior to 
those reported in earlier community challenges [3, 9, 30] 
and they should provide a meaningful enrichment in virtual 
screening.

While it appears that dock-close and dock-cross are the 
best methods for situations such as the D3R grand challenges 
where you have months to work on rankings, an attractive 
application of these strategies is automation for virtual 
screening. An additional factor to consider when selecting 
which strategy to use is the amount of time necessary for 

each method. Each compound minimization takes only a 
few seconds using Smina, compared to 30 s–1 min for each 
docking. While these timescales are relatively quick for 
close methods, the time required rapidly increases for cross 
methods when you have many receptors to score against. 
Because of this, depending on the application or specific 
system of interest (receptor structures and compounds) it 
might be better to use a slightly less accurate method such 
as min-cross or align-cross (average retrospective Spearman 
ρ of 0.43 and 0.44 respectively).

An attractive application of these strategies is automa-
tion for virtual screening. Indeed, methods shown in Table 4 
do not require human intervention, and can result is the 
absolute best ranking for all targets (as compared to other 
methods). An additional factor to consider when selecting 
virtual screening strategies is the amount of time necessary 
for each method. Align- and min-cross methods are lim-
ited by the minimization step that takes only a few seconds 
using Smina. On the other hand, dock-methods are limited 
by docking that takes about 30 per compound. Depending 
on the size of the compound library, a fast but perhaps less 
accurate strategy could also be min-cross or align-cross 

Table 4  Prospective and 
retrospective analysis of 
ranking strategies in D3R grand 
challenges

Shown is value of Spearman ρ for each method in prospective and retrospective analysis for each receptor 
target in past two grand challenges. Best method for each receptor shown in bold. Note that close methods 
are the same for prospective and retrospective columns because they use the receptor of most similar com-
pound, which doesn’t change retrospectively

Method FXR pro-
spective

FXR retro-
spective

HSP90 pro-
spective

HSP90 retro-
spective

MAP4K4 
prospective

MAP4K4 
retrospec-
tive

Align-close 0.30 0.30 0.46 0.46 0.33 0.33
Dock-close 0.53 0.53 0.50 0.50 0.25 0.25
Min-cross 0.31 0.31 0.30 0.47 0.41 0.51
Align-cross 0.24 0.32 0.37 0.44 0.11 0.57
Dock-cross 0.42 0.50 0.40 0.47 0.06 0.51

Fig. 6  Examination of binding pockets of a FXR (provided by D3R), b HSP90 (PDB 4YKY [35]), and c MAP4K4 (PDB 4OBO [36])
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(average retrospective Spearman ρ of 0.43 and 0.44 respec-
tively). How good is the best predicted Spearman ρ of 0.53 
(dock-close)? To answer this question, we examined how 
well we were able to provide enrichment for the top 25 best 
affinity compounds. Out of the 25 best compounds in D3R, 
we predicted 14 of them in the top 25 of our ranking (56%), 
while a random ranking would be 6 (see Fig. 7). This shows 
that even with moderate Spearman correlation values, we are 
able to provide significant enrichment in predicting relative 
binding affinities of compounds.

Free energy prediction

Accurate prediction of relative binding a difficult problem. A 
variety of methods were used in the previous grand challenge 
[3], including docking [31], MM/GBSA [31, 32], Glide [33], 
and QM/MM [31]. These methods span a wide range of both 
computational intensity and accuracy, including free energy 
perturbation [34]. In this category, we used a combination of 
molecular dynamics simulations for modeling protein ligand 
interactions, which then were evaluated based on a contact 
potential that is modulated according with the solvation of 
these contacts [11]. These predictions were among the most 
accurate in the competition with root-mean-square error 
(RMSE) values of predictions for both groups of around 
1 kcal/mol. This evaluation led to slightly better rankings 
than those predicted by, dock-close, the overall best method. 
Namely, free energy evaluation and dock-close method pre-
dicted Spearman ρ of (0.186 and 0.51) and (0.075 and 0.52), 
for Set 1 and Set 2, respectively. This modest improvement 
is encouraging since ultimately more accurate free energy 
evaluations must account for receptor flexibility.

The D3R grand challenges have provided an excellent 
opportunity for the evaluation of tools and strategies for 
rational drug design. We previously presented strategies for 
optimal pose prediction evaluated in the 2015 grand chal-
lenge [9]. Here we discussed the application of our strate-
gies to the problem of ranking the relative affinity of a set of 
compounds against a protein target. We again showed that 
the selection of the receptor structure (or structures) used for 
docking or minimization is important to obtain an optimal 
prediction. We found that methods which take into account 
all available structural information (close methods) perform 
best for targets with constrained binding sites; whereas for 
targets with open binding pockets or highly variable bind-
ing modes, methods that use only a single receptor structure 
(cross methods) perform better.
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