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Introduction

The Drug Design Data Resource (D3R) organizes each year 
a blind prediction challenge that represents a unique oppor-
tunity to evaluate and validate computer-aided drug design 
workflows [1]. The D3R community provides a set of ligands 
as input and asks participants to blindly predict their relative 
binding affinities for a given target, and finally compares 
predicted ranking to experimental data.

For its second edition, the Grand Challenge 2 (GC2), the 
D3R community focused on the Farnesoïd X receptor (FXR) 
and provided a set of 102 ligands [2]. For Stage 1, partici-
pants were asked to classify the 102 ligands based on their 
predicted affinity for FXR, and to predict the binding pose 
of a subset of 36 ligands (S1 set). By the end of Stage 1, 
co-crystallized X-ray structures of the S1 set were released, 
allowing participants to refine their pose prediction protocol 
and to focus on the ligands relative affinities ranking for 
the GC2 Stage 2. The 66 ligands for which no co-crystal 
structures were available are subsequently referred to as the 
S2 set. In the present report, we describe our participation 
to Stage 2 using the S1 set structural data provided at the 
end of Stage 1.

In GC2, a key issue was to account for the flexibility of 
the FXR ligand binding site (LBS) [3]. Several methods 
are used to apprehend flexibility in docking procedures, 
starting either from a single or from an ensemble of pro-
tein conformations. The former case comprises induced-fit 
docking that typically allows only restricted motions of 
LBS side chains. The ensemble approach uses PDB struc-
tures or molecular dynamics (MD) simulation snapshots 
to either perform docking on each receptor conformation, 
or merge the energetic contribution of individual pro-
tein conformations into a potential grid used as receptor 
for the docking. While the former method could explore 
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extensively LBS local motions, the ensemble approach 
is likely to better account for large ligand-induced con-
formational changes in the LBS, such as loop motion. In 
the present report, we took advantage of the availability 
of diverse FXR structures co-crystallized with ligands of 
the same chemical series as the D3R ligands to combine 
two approaches to account for FXR LBS flexibility: (1) 
using the available FXR X-ray structures, we manually 
generated poses for the S2 set ligands based on S1 set 
co-crystallized ligands from the same chemical series; (2) 
using an ensemble docking approach with Autodock 4.2 
[4] based on six FXR structures sampling the flexibility 
of the FXR LBS. We merged the poses generated by both 
protocols, and retained a single pose for each ligand of 
the S2 set based on HYDE [5] scores. The selected poses 
for S2 set ligands and X-ray structures of S1 set ligands 
were pooled and ranked according to HYDE. The ex-aequo 
compounds were re-ranked according to their binding free 
energy estimated by MM/GBSA (Fig. 1).

The classification we submitted to the GC2 Stage 2 
ranked our protocol 5th out of the 77 submissions in the 
structure-based category. In the present report, we describe 
our poses generation and ligands ranking protocol, and dis-
cuss potential improvements to be routinely applied in a 
computer aided drug design pipeline.

Methods

Ligand preparation

The 102 small molecules provided by the D3R community 
in 2D SDF format were converted to 3D and protonated at 
pH 7.4 using Open Babel 2.3.2 [6]. Gasteiger partial charges 
were attributed using AutoDockTools 1.5.6 [4].

Manual edition using SeeSAR

Among the 102 ligands of the GC2, 96 are derived from four 
series (benzimidazoles, isoxazoles, spiros and sulfonamides) 
and six are miscellaneous. Most of the ligands from S2 set 
are very similar to the ligands from S1 set, whose co-crystals 
were released by the end of Stage 1. We selected the struc-
turally closest compound from the S1 set for each compound 
of the S2 set, and used the SeeSAR software [7] to modify 
the corresponding ligand structure in the co-crystal. The 
energy of the generated poses was minimized using a two-
step scheme: (1) the H-bond network within the protein and 
at the protein–ligand interface was optimized using Protoss 
[8]; (2) the ligand geometry was optimized using HYDE [5] 
as implemented in SeeSAR [7].

Structures selection

All FXR structures available in the PDB [9], consisting of 25 
agonist-bound and 1 antagonist-bound structures (PDB Set), 
were retrieved and added to the 36 FXR structures provided 
after Stage 1 (S1 Set). We performed a hierarchical clus-
tering of the PDB and the S1 Sets based on their pairwise 
LBS RMSD to select a subset of structures that samples 
experimentally observed FXR LBS flexibility. The LBS was 
defined as the residues with at least one atom within 5 Å of 
a co-crystallized ligand. Pairwise RMSD were computed 
using Pymol [10]. The structures were clustered accord-
ing to hclust in R 3.2.3 [11]. We selected the representative 
structures based on three criteria: (1) we discarded isoxa-
zoles and miscellaneous bound structures since they were 
not represented in the S2 set, (2) we selected at least one 
structure for each cluster and (3) the co-crystalized ligand 
shared a common scaffold with at least one of the 66 Stage 
2 ligands. Selected FXR structures were protonated at pH 
7.4 with Chimera [12] using the ProPKA [13] module and 
Gasteiger partial charges were attributed using AutoDock-
Tools 1.5.6 [4]. Water molecules were not considered.

AutoDock 4.2

We ran AutoDock 4.2 [4] docking with default parameters 
(250 GA runs) to sample near-native poses and clustered 
the generated poses based on a 2 Å RMSD criteria. We con-
sidered cluster representatives, i.e. the lowest score pose 
of each cluster, for further scoring. S1 ligands predicted 
poses versus S1 ligands binding mode symmetry-corrected 
RMSD were computed using RDKit [14]. Ligand #33 was 
not included into the dataset for the docking protocol since 
the co-crystal showed an inconsistency in the ligand struc-
ture. A latter crystal structure provided by Roche allowed 
the completion of the dataset and was further included for 
the affinity ranking step.

Pose selection

For the ligands of the S1 set, we retained the crystallo-
graphic binding poses. For the ligands of the S2 set, refined 
poses of manually edited structures and cluster representa-
tives of the predicted binding modes using AutoDock 4.2 
were scored with HYDE; top score pose of each ligand was 
retained for further analysis.

HYDE

The HYdrogen bond and DEhydration (HYDE) empirical 
scoring function subsequently describes the energy bal-
ance between unfavorable hydrophilic dehydration and 
favorable hydrogen bonding during the binding process [5]. 
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The essential feature of HYDE is the integrated use of log 
P-derived atomic increments for the prediction of free dehy-
dration energy and hydrogen bonding energy. Taking the 
dehydration of atoms within the interface into account shows 
that some atoms contribute favorably to the overall score, 
while others contribute unfavorably [15].

MM/GBSA approach

MM/GBSA estimates the binding-free energy of a ligand 
to a target as the sum of the classical enthalpic contribu-
tions (bound, Van der Waals and electrostatic energies), the 
solvation free energies, and the entropic contribution [16]. 
Ligands parameters were generated with Antechamber [17, 
18]. Up to 100 steps of conjugate gradient minimization 
of the complex were performed using NAMD [19] and the 
GAFF/ff99SB force field [18, 20]. The OBC1 Generalized 
Born (GB) model parameters [21] and the LCPO method 
[22] were used to compute the polar contribution to the 
solvation energy and the solvent-accessible surface area 
(SASA), respectively. The entropic term was omitted.

Results

Pose generation

Manual edition

Among the 102 of the challenge, the co-crystals of the 36 S1 
set molecules were made available after GC2 Stage 1. Since 
the 66 S2 set molecules share high structural similarity with 
the S1 set ligands (average MACCS fingerprint Tanimoto 
= 0.94), we generated poses for the S2 ligands by editing 

closely related co-crystallized ligands from the S1 set. We 
edited the poses with the SeeSAR ligand editor. Poses were 
then submitted to a two-step minimization protocol using 
ProToss and HYDE as implemented in SeeSAR. The S2 
ligands and their corresponding S1 co-crystallized ligands 
are presented in Supplementary Table S1.

This pose generation procedure was not possible for the 
compounds FXR #45 and #90 since steric clashes occurred 
in the binding site. Hence, only the docking procedure was 
used for these two ligands.

Docking

In order to cover the experimentally observed conforma-
tional variability of the FXR structures available in the PDB 
and the S1 set, we performed a hierarchical clustering based 
on their pairwise LBS RMSD. Overall, 1 structure from 
the PDB (PDB ID: 3OLF), and 5 structures from the S1 
set (HQMF, YFJN, SJPR, KJYP and HVIH) were retained 
(Fig. 2).

Predicted binding modes of the S1 and S2 ligands into 
the six selected conformations of FXR were generated using 
AutoDock 4.2. All generated poses were clustered according 
to their relative RMSD and only the cluster representatives, 
i.e. the lowest score member of each cluster, were retained. 
For each ligand, up to 55 poses were retained. Since experi-
mental binding modes were available for the ligands of the 
S1 set, the docking accuracy of our protocol was evaluated. 
As presented in Table 1 and Fig. 3, for single structure dock-
ing, the best-predicted poses of the S1 ligands displayed 
average RMSDs from 2.63 to 3.84 Å. For the ensemble 
docking, the best predicted binding modes of the S1 ligands 
displayed an average RMSD of 1.62 Å. Near native poses 
(RMSD <2 Å) could be retrieved for single structure and 

Fig. 1   Schematic representa-
tion of the protocol used to 
predict ligands relative affinities
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ensemble docking for respectively 19 and 28 out of the 36 
S1 ligands (Fig. 4).

According to the chemotype classification of the 
ligands of the S1 set provided by the D3R, the ensemble 
docking approach displayed a better performance on the 
benzimidazoles, spiros and sulfonamides compared to the 
isoxazoles and miscellaneous compounds (Fig. 4).

Pose selection

S1 set

Since the experimental binding modes were provided by the 
D3R for the S1 ligands, the performance of the HYDE scor-
ing function as implemented in SeeSAR in retrieving their 

Fig. 2   a LBS RMSD based 
multidimensional scaling of 
FXR available structures with 
hclust clusters coloration. No 
protein on the left of the dashed 
lines is bound to D3R like 
ligands. b Superimposition of 
3OLF (grey) and SJPR (green) 
and c local structural changes 
between JSPR (green) and 
HVIH (blue)

Table 1   Mean RMSD values 
and number of near native poses 
retrieved by the single structure 
docking approach and the 
ensemble docking approach

Structures 3OLF SJPR KJYP HVIH HQMF YFJN Ensemble

AutoDock 4.2 mean 
RMSD (Å)

2.63 3.16 3.21 3.05 3.84 2.85 1.62

Retrieved near 
native poses 
(RMSD <2 Å)

19 7 4 7 3 18 28
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experimental binding mode among the retained docking 
poses generated with AutoDock 4.2 was evaluated.

For 27 out of the 35 S1 ligands, the top score provided 
by the HYDE scoring function corresponded to the experi-
mental binding mode. For the remaining S1 ligands, one 
near native pose (RMSD <2 Å) was retrieved as a top score.

For the next step, experimental binding modes were 
retained.

S2 set

For the ligands of the S2 set, the poses generated using the 
manual edition and the docking protocols were scored using 
HYDE; the top score poses were selected. The poses gen-
erated using the docking approach (FXR ligands #39, 40, 
41, 43–45, 50, 53, 55, 56, 60–64, 66, 68, 72, 73, 80, 90, 93 
and 98) and using the manual edition approach (remaining 
ligands) were selected for the next step.

Relative affinity prediction

The S1 and S2 retained ligands were pooled and ranked 
according to HYDE. In case of similar scores, notably 

for the predicted high affinity ligands, the ex-aequo com-
pounds were re-ranked according to their binding free 
energy estimated by MM/GBSA.

The final ranking of the pooled S1 and S2 compounds 
was submitted as our prediction for the D3R GC2 under 
the alias dh2du.

Discussion

Chemical series dependent sampling variations

As presented in Fig. 4, AutoDock 4.2. allowed to retrieve 
near-native poses for the benzimidazoles, sulfonamides 
and spiros compounds using the ensemble docking 
approach. This observation is probably due to the pres-
ence of these chemotypes in the structures selected in the 
ensemble docking approach. For the miscellaneous class 
of compounds (for which no co-crystal was selected in the 
ensemble), no near-native poses could be retrieved. Since 
the FXR LBS conformation depends on the bound ligand 
(Fig. 2, helix H2 and H6), it should be taken into consid-
eration in the selection of structures for docking studies.

Fig. 3   RMSD distribution for ensemble docking (red), and single structure docking. Dashed lines represent the mean RMSD for each distribu-
tion

Fig. 4   Ensemble docking—best RMSD per ligand and per chemotype. The dashed line represents the near-native threshold (2 Å RMSD)
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Scoring

Relative affinity prediction

By the end of GC2 Stage 2, the D3R disclosed the experi-
mental IC50 of the ligands of the S1 and the S2 sets. The 
Kendall correlation factor τ between the ranking of the S1 
and the S2 ligands set according to (1) their experimental 
IC50 (experimental ranking) and (2) their predicted relative 
affinities was computed to evaluate the performance of the 
different GC2 participants protocols in terms of ranking 
accuracy. The ranking we submitted to the D3R GC2 led 
to Kendall τ coefficients of 0.35 and 0.41, respectively, on 
the S1 ligands set and the S1 + S2 ligands set. Our ranking 
was classified as the 5th best predictive result out of the 77 
submissions in the structure-based scoring category; the best 
Kendall τ coefficient of this category for the S1 + S2 ligands 
set being 0.46, and the best Kendall τ of the ligand-based 
category being 0.38.

To complete our observations, we evaluated the indi-
vidual performance of the HYDE, MM/GBSA and the 
combinaison of HYDE and MM/GBSA ranking schemes 
by assessing the Kendall τ correlation coefficients between 
their associated rankings on either the S1 set or the 
S1 + S2 set, and the experimental ranking (Table 2). On 
the S1 set, the MM/GBSA and HYDE ranking schemes 
displayed similar performance (τ = 0.38). On the S1 + S2 
set, the HYDE and HYDE–MM/GBSA ranking schemes 

displayed a better correlation with the experimental data 
than the MM/GBSA ranking scheme with respective τ of 
0.42, 0.41 and 0.35 (Table 2).

It is to note that the maximum predicted affinity for 
a given ligand with HYDE is <10−3 nM, which led to 
ex-aequo ranks for several ligands of the S1 and the 
S2 set that strongly impacted the Kendall τ correlation 
coefficients.

We then plotted the predicted ranking against the experi-
mental IC50 values for the compounds of the S1 + S2 sets 
(Fig. 5). According to the binding free energies obtained 
with MM/GBSA, the spiros compounds were ranked before 
the benzimidazole compounds (Fig. 5a) whereas the scores 
obtained with HYDE resulted in the opposite trend (Fig. 5b), 
which is in better accordance with experimental data.

Considering the ranking of the most populated chemo-
types, benzimidazoles and spiros were predicted with 
respective Kendall factors τ of 0.38 and 0.41 by MM/GBSA 
(Table 2). MM/GBSA outperformed HYDE score for the 
spiros family (τ = 0.41 vs. τ = 0.16, Table 2). Benzimida-
zoles rankings were better predicted by HYDE (τ= 0.46). 
Sulfonamides rankings were predicted by both methods with 
τ of −0.1 for HYDE and −0.09 for MM/GBSA. Other chem-
otypes (isoxazoles and miscellaneous compounds) were not 
sufficiently populated for a significant interpretation.

The MM/GBSA approach is widely used to approximate 
ligand–protein binding free energy [16]. In the present 
work, we used an unique MM/GBSA calculation on each 

Table 2   Kendall correlation 
factor τ for the S1, S1 + S2 
sets and their most populated 
chemotypes according to 
HYDE, MM/GBSA and the 
hierarchical ranking

S1 + S2 sets S1 set Benzimidazoles Spiros Sulfonamides

Compounds 102 36 47 22 23
HYDE 0.42 0.38 0.46 0.16 −0.10
MM/GBSA 0.35 0.38 0.38 0.41 −0.09
Hierarchical ranking 0.41 0.35 0.37 0.17 −0.11

Fig. 5   Theoretical rankings against the experimental IC50 values as predicted by MM/GBSA (a), HYDE (b), and HYDE-MM/GBSA (c)
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individual pose. Better results could be obtained using MM/
GBSA free energies averaged over a set of MD simulations 
snapshots or an ensemble of X-ray crystal structures since 
(1) the dynamics of the complex influences the binding free 
energy and (2) the accuracy of the results can be statistically 
assessed [16]. However, these benefits come with a signifi-
cantly higher computational cost hardly compatible with a 
high-throughput pipeline. We only applied few minimization 
steps to reduce the steric clashes and computed the binding 
free energies from a single ligand–protein structure, imply-
ing a strong dependence between the predicted binding free 
energies and the predicted binding modes.

Protocol automation

For the D3R GC2, a lot of structural data were available 
since many X-ray structures were (1) provided by the organ-
izers and (2) available in the PDB. Since structural data were 
not always available for the chemotypes that are structurally 
close to the compounds studied in a drug discovery program, 
we performed a retrospective evaluation of a fully automated 
procedure using AutoDock 4.2 [4] and AutoDock VINA [23] 
for the binding mode prediction step (Fig. 6) and HYDE for 
the pose selection and ranking steps.

We used the ensemble docking protocol we applied in 
the D3R GC2 with the 36 ligands from the S1 set. Auto-
Dock VINA displayed a slightly better performance than 
AutoDock 4.2 in retrieving near-native poses (RMSD <2 Å) 
(30 and 28 out of 36 ligands, respectively) with respective 
average RMSD of 1.32 and 1.62 Å (Fig. 6). HYDE score 
allowed to retrieve most of the AutoDock VINA generated 
near-native poses (23 out of 30) which was not the case with 
the AutoDock 4.2 generated near-native poses (14 out of 28).

In terms of ranking, the automated protocol using Auto-
Dock VINA and HYDE score displayed similar results com-
pared to the strategy we used in the D3R GC2, with respec-
tive τ values of 0.44 and 0.40 on the S1 + S2 set and the S1 
set, respectively. This automated protocol should be favored 
in a prospective CADD program.

Conclusion

In the present report, we described our structure-based 
hierarchical ranking protocol that was ranked 5th out of the 
77 submissions in the structure-based category of the D3R 
GC2. This protocol strongly relied on experimental data 
since we used a manual edition of co-crystallized ligands 
and numerous target structures through an ensemble dock-
ing approach. However, we also described a fully automated 
approach to overcome the manual edition step that displays 
similar results (Kendall τ of 0.41 and 0.44, respectively). 
Scoring and ranking using the HYDE scoring function is 
adapted for high to low affinity ligands and can be routinely 
applied for medium size compounds collections. HYDE dis-
played a good performance in estimating the relative affinity 
of the FXR ligands in the datasets provided by the D3R. 
However, since ties can be obtained with ligands display-
ing similarly theoretical high affinities, a strict ranking can-
not always be performed. Advanced rescoring at the cost of 
computational time using methods such as polarizable force 
field and molecular mechanics could bring a higher degree 
of accuracy for binding free energy prediction.
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