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contributions. Although the obtained ranking is still unsuit-
able for hit to lead optimization, the GRIM–HYDE scoring 
scheme is accurate and fast enough to post-process virtual 
screening data.
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Introduction

Molecular docking is still the most straightforward com-
putational technique to predict three-dimensional (3-D) 
atomic coordinates of a protein–ligand complex [1, 2]. 
Any docking attempt is aimed at simultaneously solving 
two questions: (i) What is the conformation of the ligand 
when bound to its target?, (ii) What is the relative orienta-
tion of the ligand with respect to its host protein? Almost 
35 years of practice and the development of over 60 dif-
ferent docking methods [3] have considerably helped 
the community to enhance the quality of the answers to 
the above two questions, and to better depict the precise 
applicability domain of the method. Very soon, computa-
tional chemists have realized that posing a drug-like low 
molecular weight ligand to a structurally druggable and 
reasonably rigid cavity is reachable in the large major-
ity of cases [4]. However, ranking these docking solu-
tions to prioritize the most relevant one in first place is 
still a major issue [5]. Pushed by massive interest of the 
pharmaceutical industry in structure-based drug design 
approaches, the docking community has then organized 
various resources to challenge computational chemists 
to refine both their practices and methods. Among the 
most important resources are the Community Structure 
Activity Resource (CSAR) [6] and the Drug Design Data 
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Resource (D3R) [7] which periodically organize chal-
lenges aimed at predicting protein–ligand coordinates 
prior to the release of their crystal structures, discrimi-
nating X-ray poses from decoys and scoring/ranking a set 
of ligands for well-defined targets [5, 8–14].

The first D3R Grand Challenge [13], launched in 
2015, was a good opportunity to test in real life condi-
tions, our recently-developed graph matching algorithm 
(GRIM) [15] to rank docking poses. GRIM converts pro-
tein–ligand atomic coordinates into a graph where each 
node is matched to an interaction pseudoatom (IPA) 
describing a single protein–ligand interaction (apolar 
contact, aromatic interaction, hydrogen bond, ionic bond, 
metal chelation). For each interaction, three IPAs are 
derived, one on the ligand-interacting atom, one on the 
protein-interacting atom and one at the geometric bar-
ycenter of the later two IPAs. Since the graph precisely 
depicts the corresponding protein–ligand interaction pat-
tern, two different protein–ligand complexes can thus be 
easily compared by using standard graph matching tech-
niques to determine a clique, in other words, the largest 
maximal common subgraph which describes the pro-
tein–ligand interaction pattern shared by the two inves-
tigated complexes. This simple graph alignment-based 
method produces a quantitative estimate of the similarity 
of two protein–ligand interaction patterns. It can there-
fore be used to rank docking poses by similarity to any 
reference interaction pattern (e.g. stored in the Protein 
Data Bank) or to post-process virtual screening dock-
ing data. In the latter two scenarios and starting from the 
same set of docking poses, GRIM significantly outper-
formed standard scoring functions in either posing a set 
of protein ligands or enriching virtual screening hits in 
true ligands [15].

In the first D3R challenge, GRIM rescoring of Surflex-
poses was ranked 3rd out of 42 submissions for the pose-
prediction of HSP90α and MAP4k4 inhibitors, respec-
tively [16]. To check the target and ligand set dependency 
of our method, we applied the same strategy to the D3R 
second challenge consisting in (i) pose prediction of 36 
agonists of the Farnesoid X nuclear receptor (FXR), 
(ii) rank/score a set of 102 FXR agonists by decreasing 
binding affinity. This novel competition represents a real 
challenge for several reasons: (i) the FXR receptor struc-
ture exhibits a flexible binding site whose conformation 
depends on the bound-ligand chemotype [17], (ii) some 
but not all ligands require a bound water [18], (iii) about 
one-third of the new ligands whose pose need to be pre-
dicted exhibit a chemotype never co-crystallized with the 
target, (iv) FXR ligands may adopt almost non overlap-
ping poses due to the large size and hydrophobic nature 
of the ligand-binding cavity.

Computational methods

FXR dataset

The structures of the FXR apo-receptor (PDB format) and 
102 FXR ligands (SD files and SMILES strings, Supple-
mentary Table  1) were downloaded from the D3R Grand 
Challenge 2 website [7] as a zipped archive file (417_
data_517096.zip). In addition, 26 agonist-bound FXR 
X-ray structures were defined as templates (Supplementary 
Table 2) by searching the RCSB Protein Data Bank [19] for 
the text keyword ‘FXR’ and a known bound ligand, con-
firmed as a true FXR agonist. Existing hydrogen atoms 
were removed and added again while optimizing both the 
protonation and tautomeric states of all atoms using Pro-
toss [20]. Water molecules were explicitly conserved at the 
condition that the water oxygen atom was closer than 6.5 Å 
from any ligand heavy atom and that at least two hydro-
gen bonds with either the protein and/or the ligand could be 
identified assuming a donor–acceptor distance lower than 
3.5  Å and a donor–hydrogen–acceptor angle higher than 
120°. Protein (including water atoms) and ligand atoms 
were then separately saved in MOL2 file format in SYBYL-
X 2.1.1 (Certera LP, Princeton, NJ, USA). Last, atomic 
coordinates (main chain atoms only) of the 26 protein tem-
plates were structurally aligned to that of the apostructure 
provided by the organizers of the D3R Grand Challenge, 
using the ‘Align_Structures’ module of SYBYL-X 2.1.1.

The SD files of the 102 ligands to dock were converted 
in three-dimensional (3-D) atomic coordinates with Corina 
v3.40 (Molecular Networks GmbH. Erlangen, Germany). 
The protonation state of every ligand was assigned at pH 
7.4 with Filter v.2.5.1.4 (OpenEye Scientific Software, 
Santa Fe, NM, USA) and verified manually. 3-D coordi-
nates were saved in MOL2 file format.

Docking poses generation

Ligands were docked to the above mentioned 26 protein 
structures using Surflex v.3066 [21]. For each protein input 
structure, a protomol was first generated using a list of 
binding site residues (including bound waters) for which at 
least one heavy atom was closer than 6.5 Å from one co-
crystallized ligand heavy atom. The protomol is a pseudo-
ligand used as a target to generate putative alignments of 
fragments of an input ligand. It utilizes three probes (C=O, 
NH, CH4) whose positions correspond to energetically 
favored locations for hydrogen bond acceptors, hydrogen 
bond donors and apolar atoms, respectively.

In order to better define the docking zone, an addi-
tional 3 Å voxels of space around the volume specified by 
the protomol (proto_bloat parameter set to 3) was chosen. 
The degree of buriedness (proto_thresh parameter) for the 
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primary volume used to generate the protomol was set to 
a value of 0.3. The protein residues side-chains were kept 
rigid. Other parameters were assigned as default. The dock-
ing accuracy parameter set –pgeom was used. The ‘pgeom’ 
option starts each docking from four initial and differ-
ent poses to ensure good search coverage, turns on ligand 
minimization prior to docking and after docking (in-pocket 
minimization), ensures that the returned poses are different 
from one another by at least 0.5 Å rmsd, and saves a total 
of 20 poses (ranked by Surflex energy score, from 000 to 
019). Each of the 102 FXR ligands was docked to each of 
the 26 protein structure templates, thereby generating a set 
of 53,040 (102 × 20 × 26) docking poses. Only poses with a 
predicted Surflex score (in pKd unit) higher than 2.0 were 
kept for further analysis.

GRIM rescoring

Protein–ligand interaction patterns were generated with 
IChem [22] for both the 26 X-ray structures and the dock-
ing poses, and further compared to that of 26 FXR-agonist 
X-ray templates with GRIM [15]. Each alignment was 
quantified using the empirical GRIMscore [15] (Eq. 1).

where NLig is the number of matched ligand-based IPAs, 
Ncenter is the number of matched centered IPAs, NProt is 
the number of matched protein-based IPAs, SumCl: 
∑pair weights in clique

∑all possible pair weights , RMSD is the root mean square deviation (in 

Å) of the matched clique, DiffI is the absolute value of the 
difference in the number of IPAs between reference and 
query.

For every ligand, the five poses with the highest GRIM-
score (GRIM-1 to GRIM-5) were retained.

In a previous study [15], the GRIMscore has been deter-
mined by fitting the above described six parameters to the 
IShape similarity score [15] parametrized on a training set of 
1800 protein–ligand X-ray structures. In contrast to IShape, 
the GRIM score shows an excellent and sharp discrimina-
tion between known similar and known dissimilar complexes 
[15]. Please note that GRIM assigns a weight to each IPA 
(used in the SumCl parameter), whose value is inversely pro-
portional to the frequency of the corresponding interaction 
among 9877 sc-PDB protein–ligand complexes [13].

Root‑mean square deviations to atomic coordinates

Root mean square deviations (rmsd) of predicted poses to 
the X-ray structures, released at the end of the first stage 
of the challenge, were computed using the rms routine of 

(1)

GRIMscore = 0.5006 + 0.0151.NLig + 0.0039.NCenter

+ 0.0143.NProt + 0.2098.SumCl

− 0.0720.RMSD − 0.0003.DiffI

the Surflex package. Rmsd were computed only for heavy 
atoms and included symmetry operations to explicitly 
account for equivalent atoms (e.g. carboxylate oxygen 
atoms). One compound (FXR_33) was excluded from the 
pose prediction phase of the challenge due to an oxidation 
during the co-crystallization process, generating a struc-
ture in the crystal that did not correspond to that initially 
provided.

Ligand ranking

For each of the 102 FXR ligands (FXR_1–FXR_102) to 
rank, the corresponding protein–ligand complex with the 
absolute best GRIMscore was selected and its binding 
free energy was estimated using the HYDE scoring func-
tion [23] (see Eq. 2) implemented in seeSAR (BioSolveIT 
GmbH, Sankt Augustin, Germany).

Briefly, the HYDE scoring function relies on atom type-
specific hydration and desolvation terms that have been 
carefully calibrated using octanol/water partition coeffi-
cients of small molecules. For more details on the HYDE 
scoring energy terms, the reader is referred to the original 
article [23].

Results and discussion

Suitability of known PDB interaction patterns for FXR 
agonist docking

We first examined the currently available protein–ligand 
interaction patterns in the PDB by selecting 25 entries 
(one having two chains considered) corresponding to FXR 
structures co-crystallized with 26 agonists of three differ-
ent chemotypes (Supplementary Table  2). At this step, 
we only considered FXR structures bound to a known 
agonist for two main reasons: (i) the FXR receptor, like 
most nuclear hormone receptors, is known to change its 
overall conformation with respect to the functional effect 
of the ligand [24], (ii) the purpose of the current D3R 
challenge was focused on FXR agonists only. The FXR 
structure in complex with ivermectin (PDBID 4wvd) was 
discarded from the list because of the very unique bind-
ing mode of the latter compound [25]. Ivermectin exhib-
its both a peculiar structure and protein–ligand interac-
tion pattern with respect to the 26 X-ray templates as well 
as the 102 FXR agonist to dock. We therefore decided to 
remove this structure, as we believe it would add more 
noise than true signal to the training set. The remaining 

(2)ΔG
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26 X-ray templates, despite evident structural similari-
ties, were all kept since the computing effort for docking 
and GRIM rescoring remains quite negligible.

For each of the 26 PDB templates, a protein–ligand 
interaction pattern graph was obtained with IChem [22] 
and a full pairwise similarity matrix was generated, con-
sidering GRIMscore as a similarity descriptor. The cor-
responding heat map (Fig. 1) clearly shows three groups 
according to the chemotypes of the bound ligands. Ben-
zimidazoles appear to bind to FXR with a very homoge-
neous interaction pattern evidenced by very high pair-
wise similarities (GRIMscore > 1.0). For isoxazoles, the 
observed interaction patterns are clearly more diverse 
with a few highly similar complexes (e.g. 3rut, 3ruu, 
and 3p89; pairwise GRIMscore > 1.0) and much more 
complexes with still statistically significant interaction 
patterns but lower GRIMscores (between 0.7 and 1.0). 
The binding mode observed in the 3fxv entry seems to 
be unique to this group (Fig. 1). Last, the miscellaneous 
class is characterized by two different interaction patterns 
corresponding to FXR structures crystallized with either 
cholic acids (1osv, 1ot7_A, 1ot7_B, 4qe6) or tetrahy-
droazepinoindoles (3fli, 1l1b; Fig. 1).

To ascertain that the 26 X-ray structures are indeed suit-
able templates to select high-quality poses for the 102 FXR 
agonists to dock within this challenge, we next cross-docked 
each of the 26 template ligands into the remaining 25 avail-
able protein template structures (self-docking was not permit-
ted here). For each docking pose, the corresponding inter-
action pattern graph was compared and matched, with the 
GRIM alignment method [15], to the 25 interaction pattern 
graphs used as references. The benefit of rescoring Surflex 
poses by GRIM is nicely visible by comparing the root mean 
square deviations (rmsd) to the X-ray structure of the best 
predicted poses with or without GRIM rescoring (Fig.  2). 
Very high quality poses are picked by the GRIM scoring 
function for all 26 ligands (Fig. 2). With a single exception 
(PDB entry 1ot7, chain B), all corresponding ligands could be 
docked within 1.0 Å rmsd (median rmsd = 0.607 Å), thereby 
validating both the docking engine and the GRIM rescoring 
method as suitable for this particular dataset. Conversely, the 
best poses selected by the native Surflex score exhibit a higher 
and wider distribution of rmsd across the 26 reference ligands 
(Fig.  2). The GRIMscores associated to the GRIM-selected 
poses are also very high (median GRIMscore = 1.040) and 
demonstrate that the set of interaction patterns available in the 

Fig. 1   Heat map of pro-
tein–ligand interaction pattern 
similarity (GRIMscore) among 
26 reference FXR-agonist 
X-ray structures. Entries are 
grouped according to the three 
chemotypes (benzimidazoles, 
isoxazoles, miscellaneous) of 
the bound FXR-agonists. Pair-
wise similarity GRIMscores are 
calculated with IChem v5.2.6, 
and colored as follows: blue, no 
similarity (GRIMscore < 0.7); 
yellow, medium similar-
ity (0.7 < GRIMscore < 1.0); 
red, high similarity (GRIM-
score > 1.0)
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PDB is sufficient to precisely pick high-quality docking solu-
tions for previously uncharted ligands.1

GRIM rescues Surflex for selecting accurate poses 
for 36 novel FXR agonists

The first stage of the D3R Grand Challenge 2 aimed at 
predicting the binding mode of 36 novel FXR agonists 
(Supplementary Table 1) prior to the release of their FXR-
bound X-ray coordinates. Out of the 36 agonists, 25 ligands 
exhibit chemotypes already crystallized in complex with 
FXR and thus in the list of 26 PDB templates (21 benzi-
midazoles, two isoxazoles, one tetrahydroazepinoindole, 
one cholic acid) whereas 9 ligands (3 spiro[indoline-3,4′-
piperidine]-2-ones, 3 sulfonamides, 3 miscellaneous) 
exhibit chemotypes not yet crystallized with FXR. One 
compound (FXR_33) was excluded from the dataset fol-
lowing organizers’ request due to an oxidation of the com-
pound during the co-crystallization process.

Following our strategy successfully applied in the pre-
vious challenge [16], all ligands were first docked with 
Surflex [21] to all PDB templates. We eliminated the 
poses with a Surflex score inferior to 2.0. The remaining 
poses were then converted into interaction pattern graphs 
and further compared to the 26 reference interaction pat-
terns. For each ligand, the five poses with the highest 

GRIMscore values, whatever their initial Surflex rank, 
are last retained. The overall quality of the docking/
rescoring protocol is judged by the rmsd of the ligand 
heavy atoms coordinates to the later released X-ray coor-
dinates. GRIM rescoring clearly aids the Surflex dock-
ing engine to find high quality poses as evidenced by 
the mean rmsd which is lower for highest ranked GRIM 
poses, GRIM-1 (rmsd = 3.25 Å), with respect to highest 
ranked Surflex poses, Surflex-1 (rmsd = 4.12 Å; Fig. 3). 
As already observed in the previous challenge [16], the 
GRIM-1 pose is usually the most accurate. If one con-
siders the absolute lowest rmsd pose out of the five pro-
posed by GRIM, there is no significant decrease of the 
mean rmsd (3.08 vs. 3.25  Å; Table  1; Fig.  3), thereby 
confirming that GRIM rescoring does not necessitate to 
output more than a single solution. However, we have to 
admit that the obtained results are not entirely satisfac-
tory since the mean rmsd is clearly above the threshold 
value (rmsd = 2.0 Å) generally considered as acceptable 
by the docking community. Considering the absolute 
lowest rmsd pose out of the 520 (20 × 26) generated for 
each ligand (Table  1; Fig.  3), we clearly evidence that 
the present challenge was not difficult from a pure dock-
ing viewpoint since the mean rmsd of the best possible 
pose is really low (rmsd = 1.34  Å; Fig.  3). The overall 
quality of the poses is certainly due to the use of multi-
ple protein structures (26 in the present case) account-
ing for the ligand-dependent flexibility of the binding 
site. Scoring these excellent poses appears to be more 
challenging since neither GRIM nor the Surflex scor-
ing function were able to rank them high enough to be 

Fig. 2   Distribution of root mean square deviations (in Å) from the 
true X-ray pose, for 26 reference FXR agonists docked to 25 FXR 
X-ray structures. Poses were scored according to GRIMscore or 
the native Surflex scoring function. The boxes delimit the 25th and 
75th percentiles, the whiskers delimit the 5th and 95th percentiles. 
The median and mean values are indicated by a horizontal line and 
a square, respectively. Crosses delimit the 1% and 99th percentiles, 
respectively. Minimum and maximum values are indicated by a dash 

Fig. 3   Mean root mean square deviations (in Å) from the true X-ray 
pose, for 35 new FXR agonists docked to 26 FXR X-ray structures. 
Poses were scored according to GRIMscore or the native Surflex 
scoring function. Top ranked poses by GRIM and Surflex are labelled 
GRIM-1 and Surflex-1, respectively. The lowest rmsd pose identi-
fied by GRIM and Surflex are labelled GRIM-best and Surflex-best, 
respectively. The median values are indicated by a horizontal line, the 
standard deviation to the mean by a whisker 

1  Previous experiences suggest that GRIMscore values above 0.70 
correspond to a statistically significant similarity of the two interac-
tion patterns under comparison.
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selected. GRIM rescoring is however definitely better 
than relying on the original docking score provided by 
Surflex.

Analyzing the obtained rmsd values by chemotype, we 
clearly see that only agonists from the benzimidazole series 
were accurately docked with 18 out of 23 compounds posed 

Table 1   Accuracy of pose 
selection (rmsd in Å to X-ray 
solution) for 36 FXR agonists

n.a not available
a 1st ranked pose according to GRIMscore
b 2nd ranked pose according to GRIMscore
c 3rd ranked pose according to GRIMscore
d 4th ranked pose according to GRIMscore
e 5th ranked pose according to GRIMscore
f 1st ranked pose according to Surflex score
g Lowest rmsd pose out of 20 Surflex solutions

Compound rmsd to X-ray, Å

GRIM-1a GRIM-2b GRIM-3c GRIM-4d GRIM-5e Surflex-1f Surflex-bestg

FXR_1 4.00 4.14 5.84 4.77 3.90 3.53 3.08
FXR_2 7.31 7.63 7.77 7.67 8.04 7.10 1.03
FXR_3 7.76 4.93 8.13 5.94 4.75 6.59 2.16
FXR_4 3.89 6.50 3.92 6.23 7.35 7.24 1.18
FXR_5 0.48 0.69 0.51 0.68 0.63 7.50 0.48
FXR_6 0.75 0.73 0.70 0.76 0.69 1.86 0.70
FXR_7 1.11 1.10 1.30 1.21 n.a. 1.52 1.10
FXR_8 3.88 3.88 6.45 3.87 5.06 1.50 0.98
FXR_9 1.19 4.78 4.77 6.93 0.89 1.47 0.89
FXR_10 4.81 4.52 4.80 4.44 n.a 4.79 1.34
FXR_11 4.50 2.69 4.48 3.38 4.75 5.05 2.16
FXR_12 8.66 8.60 8.68 8.85 8.44 6.90 1.29
FXR_13 4.61 4.60 7.78 4.61 4.66 1.66 1.66
FXR_14 0.61 0.65 1.57 0.73 1.46 1.28 0.61
FXR_15 7.81 4.66 5.08 7.80 7.61 7.91 2.02
FXR_16 5.78 5.78 4.32 5.61 7.95 7.28 1.11
FXR_17 2.69 5.82 6.14 8.63 6.13 2.80 1.15
FXR_18 7.57 9.09 7.74 7.56 7.60 7.26 4.18
FXR_19 1.17 0.79 1.20 4.94 1.20 1.56 0.79
FXR_20 0.73 1.17 0.93 n.a n.a 2.20 0.73
FXR_21 0.97 0.77 0.76 0.77 0.77 1.53 0.77
FXR_22 0.79 0.90 2.00 0.68 2.04 1.70 0.68
FXR_23 7.82 7.81 6.82 6.49 n.a 7.02 2.92
FXR_24 0.74 1.39 1.41 1.44 n.a 2.19 0.74
FXR_25 1.73 1.73 1.73 5.04 n.a 5.21 1.42
FXR_26 1.32 1.35 1.36 1.34 1.34 1.68 1.32
FXR_27 0.50 0.96 0.76 0.73 0.67 1.80 0.50
FXR_28 0.62 0.56 0.94 1.15 0.97 2.25 0.56
FXR_29 0.79 0.84 0.85 0.84 0.82 1.64 0.79
FXR_30 1.94 1.98 1.97 1.84 1.83 6.07 1.42
FXR_31 1.82 1.15 1.98 1.17 1.93 2.16 1.15
FXR_32 2.07 2.06 2.08 2.07 2.06 2.52 1.43
FXR_34 5.41 4.42 4.48 3.91 n.a 12.82 2.38
FXR_35 6.93 6.74 1.10 6.81 4.51 7.04 1.10
FXR_36 1.25 1.16 1.10 1.20 6.79 1.79 1.10
Mean rmsd 3.25 3.33 3.47 3.82 3.98 4.12 1.34
Median rmsd 1.94 2.06 2.00 3.89 2.57 2.51 1.11
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with a rmsd below 2.0 Å (Fig. 4). None of the two isoxa-
zoles (FXR_4, FXR_23) was properly docked although 
this series had already been co-crystallized with the tar-
get. Agonists bearing a new chemotype (sulfonamides, 
spiro compounds, miscellaneous) were systematically mis-
docked, considering either GRIM or the Surflex scoring 
function. Only the novel tetrahydroazepinoindole (FXR_5) 
was accurately posed (Fig. 4).

Since GRIM rescoring is a knowledge-based approach, 
we next looked at which preexisting protein–ligand inter-
action patterns have been used to select the final poses. 
As to be expected, GRIM has chosen available interaction 
patterns from the benzimidazole series to rescore docking 
poses of compounds sharing this chemotype (Table  2). 
Since this series adopt a very homogenous binding mode 
(Fig. 1), it is therefore no surprise that most of the new 
compounds from this series were docked with low rmsd 
values. Similarly, the two isoxazoles were also rescored 
according to interaction patterns from the same chemi-
cal series. Nevertheless, our knowledge-based scoring 
approach failed in selecting accurate poses (Table  2). 
We previously demonstrated that known interaction pat-
terns for this chemotype were more diverse (Fig.  1), 
thereby explaining the difficulty to dock such compounds 
(Table  2). Interestingly, the low two-dimensional (2-D) 
similarity of the new isoxazoles to the existing templates 
(Table 2) may explain the hard attempt of GRIM to find 
out the existing good poses generated by Surflex (Table 1) 
but not scored high enough. For agonists exhibiting a 

novel chemotype (sulfonamides and spiro compounds), 
none of the existing interaction patterns was adequate for 
rescoring (Table 2). In most cases, these compounds were 
rescored considering only shape similarity to known tem-
plates, as evidenced by the Npol value, which accounts 
for the number of polar nodes in the selected alignment 
subgraph (Table 2). In GRIM, nodes have seven possible 
pharmacophoric properties corresponding to the encoded 
interaction type (hydrophobic, aromatic, hydrogen bond 
donor, hydrogen bond acceptor, negative ionisable, posi-
tive ionisable, and metal complexation). Whereas apolar 
nodes (hydrophobic, aromatic) describe mostly the shape 
of the bound ligand, polar nodes (remaining five proper-
ties) are placed at the location of polar protein–ligand 
interactions (hydrogen and ionic bonds), therefore 
increasing the confidence for the selected pose.

In the present case, the Npol descriptor exhibited 
quite often a null value, demonstrating that the GRIM 
alignment method has not found a single common pro-
tein–ligand polar interaction with the template. Among 
the miscellaneous series, only the novel tetrahydroaz-
epinoindole FXR_5 was accurately docked, by similar-
ity to the interaction pattern observed for the 3fli tem-
plate of the same series (Table  2). Last, the cholic acid 
analog FXR_34 was misdocked, even if four interaction 
pattern templates from the same series were available 
(1osv, 1ot7_A, 1ot7_B, 4qe6) but not chosen by GRIM 
(Table 2).

Fig. 4   Root mean square devia-
tions (in Å) of the GRIM-1 pose 
from the true X-ray pose for 35 
novel FXR agonists
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Defining good practices for GRIM rescoring: are 
docking failures predictable?

To better delineate the applicability domain of GRIM res-
coring, we plotted the observed rmsd of the the top-1 GRIM 
pose with respect to three simple descriptors: GRIMscore, 

2-D similarity to the X-ray ligand chosen for interaction 
template matching, and number of conserved polar inter-
actions between the selected pose and the template pose 
(Npol parameter). The corresponding scatter plots (Fig. 5) 
clearly show some conditions that favor GRIM selection. 
They are here recapitulated by the following three rules:

Table 2   Characteristics of 
GRIM top-ranked docking 
poses for 35 FXR agonists

a Set of protein coordinates used for docking
b Surflex pose number
c Set of protein–ligand coordinates used as template for graph matching
d GRIMscore
e Number of polar nodes in the clique
f 2-D chemical similarity (Tanimoto coefficient) between query and template ligands, calculated from 166-
bit MDL public keys
g Root mean square deviations (in Å) from X-ray pose

Ligand Proteina Poseb Templatec GRIMscored Npole Tcf rmsdg

FXR_1 3olf 6 3olf 0.90 1 0.32 4.00
FXR_2 3olf 7 3olf 0.78 1 0.55 7.31
FXR_3 3oki 15 3oki 0.93 0 0.55 7.76
FXR_4 3rut 8 3rut 0.84 0 0.42 3.89
FXR_5 3fli 3 3fli 1.11 3 0.77 0.48
FXR_6 3oki 11 3oki 1.15 3 0.67 0.75
FXR_7 3ook 0 3ook 1.06 0 0.66 1.11
FXR_8 3oki 10 3oki 0.94 0 0.76 3.88
FXR_9 3oof 2 3oof 0.93 3 0.59 1.19
FXR_10 1osh 3 1osh 0.80 0 0.34 4.81
FXR_11 3oof 4 3oof 0.81 1 0.51 4.50
FXR_12 3olf 3 3olf 0.84 0 0.50 8.66
FXR_13 3oof 5 3oof 1.03 3 0.75 4.61
FXR_14 3oki 13 3oki 1.25 3 0.63 0.61
FXR_15 3ook 15 3ook 0.84 0 0.53 7.81
FXR_16 3omk 1 3omk 0.80 0 0.43 5.78
FXR_17 3oof 7 3oof 0.80 3 0.46 2.69
FXR_18 3omk 6 3omk 1.02 0 0.60 7.57
FXR_19 3oki 8 3oki 1.10 3 0.76 1.17
FXR_20 3olf 0 3omk 1.06 6 0.69 0.73
FXR_21 3ook 18 3ook 1.19 3 0.85 0.97
FXR_22 3oki 3 3oki 1.12 3 0.78 0.79
FXR_23 3ruu 7 3hc5 0.87 1 0.58 7.82
FXR_24 3oof 1 3oof 1.17 6 0.85 0.74
FXR_25 3omk 1 3omk 1.08 3 0.82 1.73
FXR_26 3oof 6 3oof 1.10 3 0.72 1.32
FXR_27 3ook 3 3ook 1.39 5 0.98 0.50
FXR_28 3ook 18 3ook 1.39 9 0.67 0.62
FXR_29 3ook 10 3ook 1.42 9 0.67 0.79
FXR_30 3olf 17 3olf 1.07 9 0.75 1.94
FXR_31 3oof 2 3oof 1.08 3 0.68 1.82
FXR_32 3ook 14 3ook 1.08 2 0.74 2.07
FXR_34 3olf 0 3olf 0.89 3 0.47 5.41
FXR_35 3oof 0 3oof 1.13 3 0.63 6.93
FXR_36 3olf 11 3olf 1.30 12 0.78 1.25
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Rule 1: a very high GRIMscore (>1.0) generally leads 
to a low rmsd (<2.0). There are only four exceptions to 
this rule, one for which the GRIMscore is below the 1.0 
threshold (FXR_9) although the rmsd is <2.0, and three 
(FXR_13, FXR_18 and FXR_35) for which the rmsd is 
>2.0 although the GRIMscore is >1.0. (Fig. 5a).

Rule 2: a high 2-D similarity to the template ligand 
(Tc > 0.6) generally leads to a low rmsd (<2.0 Å). This rule 
is verified for 31 out of 35 ligands analyzed. There are no 
cases for which GRIM could prioritize a good pose from 
a template in which the X-rayed ligand had a low 2-D 
similarity to the compound to dock (Fig. 5b). In four cases 
(FXR_8, FXR_13, FXR_18, FXR-35), a sufficiently high 
2-D similarity to the template ligand could not guide GRIM 
to find out a good pose. When this 2-D similarity is low 
(<0.60), GRIM fails with no exception. Interestingly, such 
a strong 2-D chemical similarity to PDB templates was not 
required to properly dock HSP90α and MAP4K4 inhibitors 
in the previous D3R challenge [16]. This rule might thus be 
dataset-dependent.

Rule 3: Good poses correspond to interaction patterns 
with at least two conserved polar interactions (Npol ≥ 2). 
In this challenge, we prioritized pose selection by the over-
all GRIMscore. This strategy clearly fails in case the com-
mon interaction pattern subgraph chosen for pose selection 
is lacking enough polar nodes (NPol parameter). Assum-
ing only shape conservation (Npol = 0), there is only one 
ligand (FXR_7) out of nine that is well docked by GRIM 
(Fig.  5c). In case Npol is equal to 1 (one common FXR-
agonist polar interaction), no docking success (rmsd < 2.0) 
could be reported as well. It is only when Npol is greater 
or equal to 2 that good rmsd values begin to be observed 
(Fig. 5c). There are only three ligands (FXR_13, FXR_34, 
FXR_35) for which the rule is not verified despite a Npol 
value of 3.0. These three rules clearly define a strict appli-
cability domain for GRIM rescoring, at least for the present 
dataset of 36 agonists. New challenges will enable to pre-
cise whether these rules are transferable to new datasets or 
not.

Reasons for failure

After the submission of the first set of predictions (stage1: 
prediction of up to five poses for each ligand), X-ray 
structure of the 36 new agonists in complex with FXR 
were released. The comparison of the corresponding pro-
tein–ligand interaction patterns with that of our 26 PDB 
templates illustrates the difficulty of the present challenge 
(Fig.  6a). With the exception of all benzimidazoles and 
one tetrahydroazepinoindole (FXR_5), all novel FXR ago-
nists adopt an unprecedented binding mode (Fig.  6a). A 
molecular explanation to this observation lies in the large 
(750–1025 Å3) and hydrophobic cavity in FXR that is able 
to accommodate very different and almost non-overlapping 
agonists. Despite these significant hurdles, observed fail-
ures to predict binding modes of these ligands are not due 
to real docking issues. Among the set of proposed poses by 
Surflex, true docking failures (Surflex-best rmsd <3.0  Å) 
were only reported for three ligands (FXR_1, FXR_18 and 

Fig. 5   Variation of the root mean square deviations (in Å) to the 
X-ray poses for 35 FXR agonists as a function of three properties: a 
GRIMscore of the pose, b 2-D similarity of the FXR agonist to the 
FXR-bound template ligand used by GRIM, c number of polar nodes 
(polar interactions, Npol) in the clique common to the protein-FXR 
ligand docked pose and the protein–ligand PDB template chosen by 
GRIM for pose selection. Docking poses complying to a precise rule 
are enclosed by a red circle 
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FXR_23). The case of the isoxazole FXR_23 is perfectly 
illustrative. The top-1 GRIM pose (Fig.  6b) was gener-
ated by analogy of the corresponding interaction pattern 
found on the 3hc5 template of the same chemical series, 
nicely overlapping the aryl-isoxazole moieties of both com-
pounds. Surprisingly, the disclosed X-ray pose of FXR_23 
departs considerably from that already seen for FXR isoxa-
zole agonists (Fig. 6b). None of the solutions generated by 
Surflex are similar to this unexpected pose. It is interest-
ing to notice that two out of these three ligands are among 
the less potent agonists of the dataset, with in vitro binding 
affinities in the micromolar range.

GRIM failed to propose reliable poses for three ben-
zimidazoles (FXR_8, FXR_13, FXR_35) although 
they exhibit the canonical benzimidazole-binding 
mode (Fig.  6a) and despite the existence of suitable 
poses generated by Surflex (Surflex-best rmsd <2.0  Å, 
Table  1). The overall cross-like shape of the ligands as 
well as the exact binding amino acids are found, but the 

benzimidazole ring switched to the area normally occu-
pied by a cyclohexyl ring (Fig.  6c). In these examples, 
the GRIMscore is dominated by the conservation of apo-
lar contacts (in other words, the overall ligand shape) 
at the cost of an important hydrogen bond between the 
benzimidazole and Tyr373 side chain. The same obser-
vation applies to most of the scoring failures for which 
the GRIM-selected pose has been dominated by shape 
conservation (Fig. 5c). The herein described pose selec-
tion protocol, biased towards the highest GRIMscore is 
therefore not suited for hydrophobic ligands binding to 
predominantly apolar cavities. Removing poses with 
no common polar interactions to the chosen template 
(Npol = 0) before final GRIM ranking should avoid some 
of the above reported failures in the future.

Altogether, combining Surflex for pose generation and 
GRIM for ranking remains a robust docking strategy. 
When compared to the 51 other contributions to the first 
phase of the D3R Grand Challenge 2, the Surflex/GRIM 

Fig. 6   Predicted versus X-ray protein–ligand interaction patterns 
for 35 FXR agonists. a A posteriori observed binding mode similar-
ity of 35 novel FXR agonists to 26 known PDB ligands, as a func-
tion of the root mean square deviations (in Å) of the GRIM-1 pose 
to the true X-ray structure. For each novel FXR-agonist X-ray struc-
ture, the highest GRIMscore considering all 26 PDB templates is 
used to quantify binding mode similarity. b Predicted (cyan sticks) 
versus X-ray pose (tan sticks) of the agonist FXR_23 bound to the 
FXR receptor (white ribbons). GRIM-1 pose was obtained by dock-
ing FXR_23 to the 3ruu atomic coordinates and selected according 

to the similarity of its interaction pattern to that of the 3hc5 ligand 
(light green sticks). Heteroatoms are colored in blue (nitrogen), red 
(oxygen), yellow (sulfur) and dark green (chlorine). c Predicted (cyan 
sticks) versus X-ray pose (tan sticks) of the agonist FXR_8 bound 
to the FXR receptor (white ribbons). GRIM-1 pose was obtained by 
docking FXR_8 to the 3oki atomic coordinates and selected accord-
ing the similarity of its interaction pattern to that of the 3oki ligand 
(light green sticks). Heteroatoms are colored in blue (nitrogen) and 
red (oxygen)
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protocol lies among the top contributions sharing a pos-
ing accuracy in the 2–3 Å rmsd range (Fig. 7).

Ranking GRIM poses by the HYDE scoring function: 
estimating the binding affinity of 102 FXR agonists

In a second step, the binding affinity of 102 FXR ago-
nists (Supplementary Table  2), including the 36 ligands 
(FXR_1-FXR_36) considered for the pose prediction 
phase and 66 additional ligands (FXR_37-FXR_102), was 
predicted and compared to the experimental affinity data 
released once the challenge was closed. The GRIM-1 pose 
of each ligand was thus rescored with the HYDE scoring 
function [23]. This scoring function was chosen because of 
the very careful estimation of the desolvation contributions 
to the overall binding free energy of a wide array of diverse 
protein–ligand complexes. Importantly, HYDE is not para-
metrized against any particular training set and provides a 
balanced assessment of the energetics of desolvation con-
sidering three atomic physicochemical properties: local 
hydrophobicity, solvent accessible surface, and contact sur-
face area. When applied to the FXR dataset of 102 ligands, 
HYDE scoring of the GRIM-1 pose yielded the third most 
accurate ranking with a Kendall’s τ ranking coefficient of 
0.442 (Fig.  8a) and a Pearson’s ρ correlation coefficient 
of 0.593 (Fig. 8b). Predicted HYDE binding free energies 
were systematically higher than that derived from in vitro 
experimental binding affinity data but an overall trend 
could be confirmed. The current performance in affinity 
ranking is slightly better than that obtained for the previ-
ous D3R challenge for two different datasets (180 HSP90α 
inhibitors, 18 MAP4K4 inhibitors) [13], but far from being 
usable for hit to lead optimization, thereby confirming most 
previous attempts to accurately predict binding free ener-
gies for a set of heterogeneous compounds [11, 26]. Since 
the observed ranking and correlation coefficients were not 
improved for the subset of benzimidazoles for which dock-
ing poses are of good quality, consistent failures in predict-
ing binding free energies cannot be attributed to error in 

Fig. 7   Accuracy of 52 con-
tributions to the stage 1 (pose 
prediction) of the D3R Grand 
Challenge 2. The accuracy of 
each contribution is described 
by the mean rmsd of the 
highest-ranked pose to the X-ray 
coordinates of 35 test FXR 
agonists, released after clos-
ing the challenge. Incomplete 
submissions are indicated by 
white bars 

Fig. 8   Assessment of the GRIM–HYDE rescoring protocol for rank-
ing and affinity prediction of 102 FXR agonists. a Comparison of the 
GRIM–HYDE protocol with respect to 57 competing contributions in 
this challenge, estimated by the Kendall’s τ ranking coefficient. Error 
bars were obtained by re-computing all statistics in 10,000 rounds 
of resampling with replacement, where, in each sample, the experi-
mental IC50 data were randomly modified based on the experimental 
uncertainties (data provided by the organizers). b Predicted (ΔGpred) 
versus experimental (ΔGexp) absolute binding free energies in kJ/
mol. The red line indicates a linear regression fit of predicted to 
experimental values
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atomic coordinates but merely to inconsistent treatment of 
energetics.

Conclusions

We have herein applied a knowledge-based graph matching 
method (GRIM) to rank docking poses of 36 novel FXR 
agonists. Although the current poses have been generated 
by Surflex, the rescoring protocol is fully independent on 
any docking tool, at the condition that correct MOL2 file 
formats can be generated. This second D3R docking chal-
lenge was significantly more demanding than the previous 
one for the major reason that the large and apolar ligand-
binding site of the chosen target (FXR receptor) is able to 
accommodate chemically heterogeneous ligands in many 
different ways. Docking predictions were reasonably accu-
rate (mean rmsd = 1.97  Å) for the class of 21 benzimida-
zoles already co-crystallized with FXR, which exhibited a 
conserved binding mode. For other chemical classes, the 
existence (isoxazoles) or not (spiroindolines and sulfona-
mides) of known similar PDB templates, did not impact 
GRIM posing, which was very unsatisfactory (rmsd above 
4 Å). Several reasons could be invoked to explain these sys-
tematic rescoring failures: (i) the inability of the docking 
engine to provide a single accurate pose for further rescor-
ing, (ii) the impossibility to predict completely novel bind-
ing modes, (iii) the bias in GRIM rescoring towards poses 
with the highest protein–ligand interaction pattern simi-
larity to that of existing PDB templates, thereby favoring 
quite often shape matching for ligands with a predominant 
hydrophobic character.

However, the current challenge has taught us interesting 
rules to improve future predictions. First, the obtained data 
confirm the well-known bias of fast energy-based scoring 
functions to rank improper poses among the top-ranked 
solutions. Any knowledge-based rescoring scheme [27–30] 
similar in spirit to GRIM is therefore preferable to relying 
only on docking scores. In our current rescoring protocol, 
poses with very low predicted binding energies (predicted 
pkd <2) were filtered out and not subjected to GRIM res-
coring. Later, the comparison of the experimental solutions 
with our predictions surprisingly identified several cases 
where reasonably good poses (rmsd to X-ray pose <2  Å) 
were rejected for the simple reason that the predicted pkd 
was below 2. We will therefore remove this filter in our 
next rescoring protocol.

Second, GRIM rescoring relies on the existence of a 
similar protein–ligand interaction pattern in the PDB. For 
unbalanced interaction patterns dominated by apolar con-
tacts, we identified a bias in prioritizing shape overlap over 
the conservation of a few but very important hydrogen 
bonds or salt bridges. As a workaround, we thus propose 

to eliminate from the set of GRIM selections, any pose for 
which the number of aligned graph polar nodes to the cho-
sen template is below a value of 2.

Third, rescoring the GRIM highest ranked pose using 
the HYDE scoring function provided one of the most accu-
rate affinity ranking strategy submitted to this challenge. 
Due to the overall speed of the procedure, we therefore pro-
pose to apply this rescoring protocol to virtual screening 
where GRIM is used to prioritize a few thousand ligands to 
be further rescored with HYDE within a reasonable amount 
of cpu time (ca. 10 s/compound).

GRIM presents several advantages over alternative 
knowledge-based rescoring strategies: (i) it can be cou-
pled to any docking algorithm, (ii) it does not constrain 
ligand docking but rewards interaction patterns already 
present among PDB templates, (iii) it takes advantage 
of ligands with similar binding modes and not necessar-
ily similar chemical structures [16], (iv) it can be applied 
in a target family-biased pose selection process in which 
PDB templates from the same protein but also from similar 
targets can be used to store reference interaction patterns, 
(v) it permits to directly quantify binding mode similarity 
between a predicted protein–ligand complex and any PDB 
template at a very high throughput.

GRIM is part of the IChem toolkit and available for non-
profit research at http://bioinfo-pharma.u-strasbf.fr/labweb-
site/download.html.
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